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• Real-world graphs are often hierarchically 
organized. 

• E.g., in citation networks, subgraphs are more 
densely connected the more specialized they 
become.

• Hierarchical clustering aims to discover the 
latent hierarchy in the data.

Real-World Graphs are Often Hierarchical

Figure: [Girvan and Newman 2002]



Problem Outline
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• Since we typically do not have ground-truth information about the underlying 
hierarchy, we mostly rely on unsupervised learning with internal metrics.

• Existing quality metrics are discrete, i.e., not differentiable.

• Existing clustering approaches are mostly heuristic and not directly related to the 
evaluation metrics.



Contributions
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1. We propose a probabilistic model over hierarchies via continuous relaxation of 
a tree’s parent assignment matrices.

2. We theoretically analyze the model by drawing connections to absorbing 
Markov chains, which

3. allows efficient and exact computation of lowest-common-ancestor (LCA) 
probabilities, which enables us to

4. learn hierarchies on graphs by end-to-end optimization of relaxed versions of 
quality metrics such as Dasgupta cost and TSD score.



Probabilistic Hierarchy Model

• A continuous relaxation of discrete tree 
hierarchies.
• Learnable matrices 𝑨 and 𝑩 contain parent 

assignment probabilities for leaves and internal 
nodes.
• We can easily obtain valid tree hierarchies via row-

wise sampling from 𝑨 and 𝑩. 
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Hierarchical Clustering Metrics
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Two established internal metrics for hierarchical clustering:

Dasgupta Cost [Dasgupta 2016]
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Lowest common ancestors
(LCAs) occur in both metrics.
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Hierarchical Clustering Metrics: Relaxation

Relaxed Dasgupta Cost

Soft−Das $𝒯 ='
)!,)"∈ℇ

𝑃 𝑣- , 𝑣. ⋅'
/
𝑃(𝑧 = 𝑣- ∧ 𝑣.)𝑐(𝑧)

Relaxed Tree-Sampling Divergence (TSD)

Soft−𝑇𝑆𝐷 $𝒯 = KL(𝑝 𝑧 ||𝑞 𝑧 ), where

𝑝 𝑧 ='
)!,)"∈ℇ

𝑃 𝑣- , 𝑣. 𝑃(𝑧 = 𝑣- ∧ 𝑣.)

𝑞 𝑧 ='
)!,)"∈4

𝑃 𝑣- , )𝑃(𝑣. 𝑃(𝑧 = 𝑣- ∧ 𝑣.)

Indicators replaced by 
expectations (probabilities)
𝕀 #$%!∧%" to 𝑃(𝑧 = 𝑣' ∧ 𝑣() 
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Efficient Computation of LCA Probabilities

• Computation of LCA probabilities given matrices 𝑨 and 𝑩 is nontrivial.

• Key result: we draw connections to absorbing Markov chains to derive efficient 
closed-form matrix equations to compute LCA probabilities:
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Complexity for the whole graph: 𝑂(#𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙_𝑛𝑜𝑑𝑒𝑠) ⋅ #𝑒𝑑𝑔𝑒𝑠)



Results
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Paper, Code & More:
https://www.daml.in.tum.de/fph

https://www.daml.in.tum.de/fph

