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e E.g., in citation networks, subgraphs are more

densely connected the more specialized they

become.
* Hierarchical clustering aims to discover the A

latent hierarchy in the data.
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g Problem Outline
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* Since we typically do not have ground-truth information about the underlying
hierarchy, we mostly rely on unsupervised learning with internal metrics.

 Existing quality metrics are discrete, i.e., not differentiable.

* Existing clustering approaches are mostly heuristic and not directly related to the
evaluation metrics.
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We propose a probabilistic model over hierarchies via continuous relaxation of
a tree’s parent assignment matrices.

We theoretically analyze the model by drawing connections to absorbing
Markov chains, which

allows efficient and exact computation of lowest-common-ancestor (LCA)
probabilities, which enables us to

learn hierarchies on graphs by end-to-end optimization of relaxed versions of
qguality metrics such as Dasgupta cost and TSD score.
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* We can easily obtain valid tree hierarchies via row- Observed Graph

wise sampling from A and B. (leaf nodes)
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. » Hierarchical Clustering Metrics

Two established internal metrics for hierarchical clustering:

Dasgupta Cost [Dasgupta 2016]
Das(T) = ) P00 ) ) Tympry) ()
Vi, VEE Z

Tree-Sampling Divergence (TSD) [Charpentier and Bonald 2019]
TSD(T) = KL(p(2)||q(2)), where

P@ =) P19z
vi,vjEE

q(z) = z P(Vi»)P(Vj)H[Fvi/\vj]
vi,vjEV



. » Hierarchical Clustering Metrics

Two established internal metrics for hierarchical clustering:

Dasgupta Cost [Dasgupta 2016]
Das(f") = z P(vi' vj) . z H[Z:vi/\vj]c(z)
Vi, VEE Z

Tree-Sampling Divergence (TSD) [Charpentier and Bonald 2019]
TSD(T) = KL(p(2)||q(2)), where

P@ =) P,
vi,vjes

a@ =) PP,
vi,vjEV

Lowest common ancestors
(LCAs) occur in both metrics.



. » Hierarchical Clustering Metrics: Relaxation

Relaxed Dasgupta Cost

Soft-Das(7") = z

Relaxed Tree-Sampling Divergence (TSD)
Soft-TSD (T) = KL(p(2)]|q(z)), where

Z?(Z) = :E: I)(tﬁ,ty)fj(Z':: Vi ﬁ\ty)
vbvjES

I’(vq,ty) ‘:E:Zf)(Z'==’Ui/N’Vf)C(Z)
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If

Z=ViN\Vj

C](Z)===:E:v.vlevl)(tﬁ,)1)(37)})(Z = V; ﬁ\ty)

Indicators replaced by
expectations (probabilities)

| to P(z = v; ANvj)



. » Efficient Computation of LCA Probabilities
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* Computation of LCA probabilities given matrices A and B is nontrivial.

* Key result: we draw connections to absorbing Markov chains to derive efficient
closed-form matrix equations to compute LCA probabilities:
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* Computation of LCA probabilities given matrices A and B is nontrivial.

* Key result: we draw connections to absorbing Markov chains to derive efficient
closed-form matrix equations to compute LCA probabilities:

Theorem 6. The vector of LCA probabilities of all internal nodes w.r.t. leaf nodes v; and v; can be
computed in a vectorized way via

P\igfvj c Rn’ _ (Pézinc o P\fljm)T _ (I L panc o Panc)—l PLCA _ sz_’ 9)

Vi,Vi

where ® denotes the element-wise (Hadamard) product. (See proof in App.|A.9)

Complexity for the whole graph: O (#internal_nodes? - #edges)



Results

O/gg Dasgupta cost (lower is better) Normalized TSD (higher is better)
Alg. Ward Louv. UF HypHC HGHC RGHC Avg.lk. | FPH | Ward Louv. UF HypHC HGHC RGHC Avg. k.| FPH
Brain 618.81 777.14 71233 571.64 749.40 556.57 556.64 §503.67 ) 31.72 29.28 28.61 17.48 24.18 22.05 28.88 | 32.34
OpenFlight 382.45 633.66 393.58 46343 487.96 48890 363.40 355.61) 55.48 51.51 53.89 39.08 4950 3956 52.05 | 57.72
Genes 202.17 24726 251.01 49526 366.53 247.07 196.51 [183.63 ] 66.80 67.47 62.95 20.66 5333 5181 66.68 | 67.69

Citeseer 9227 17823 98.61 21562 15026 131.89 84.04 | 77.16 | 69.43 6845 67.40 3722 57.61 50.61 67.99 }§ 69.57
Cora-ML 281.82 336.86 342.86 442.09 411.49 350.00 297.03 §254.78 | 56.47 57.51 53.06 30.73 46.76 4268 55.41 | 58.02
PolBlogs 377.63 44348 350.74 330.58 354.86 433.77 364.14 §262.48 | 27.54 2593 25.23 2221 2394 1941 25.29 | 3141
WikiPhysics 736.11 986.32 753.81 759.07 840.15 740.87 658.04 [537.95 } 45.28 46.03 43.40 3202 39.70 3839 4323 | 49.97
ogbn-arxiv 22,870 31,655 52,666 OOM 22,076 24,077 20,760 (14,354} 36.77 37.75 2475 OOM 26.05 2521 33.70 | 39.66
ogbl-collab 13,835 20,664 91,807 OOM 34934 21,057 15,714 (13,493 | 45.33 46.12 2790 OOM 2480 34.07 4540 | 48.36
DBLP 31,138 40,744 148,439 OOM 94,384 44424 36,463 31,686} 38.26 40.92 20.21 OOM 1596 27.82 38.97 | 41.66

Table 1: Hierarchical clustering results (n’ = 512). Bold/underline indicate best/second best scores.

Dataset FPH| DCSBM DW Ad./Ad. VGAE
Cora-ML 95.7 95.5 94.3 86.5 95.9
Citeseer 96.2 93.6 96.0 76.8 94.8

PolBlogs 943 | 949 848 926 92.8
WikiPhysics |97.2| 969 929  96.6 97.0

Brain 941] 952 838 907 932
OpenFlight [993| 990 943 984  99.0
G 69.8 66.9 70.3 53.0 66.6
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