End-to-End Learning of Probabilistic Hierarchies on Graphs

Daniel Zügner, Bertrand Charpentier, Morgane Ayle,

Sascha Geringer, Stephan Günnemann

ICLR 2022

Technical University of Munich

Real-World Graphs are Often Hierarchical

- Real-world graphs are often hierarchically organized.
- E.g., in citation networks, subgraphs are **more densely connected** the more specialized they become.
- Hierarchical clustering aims to discover the latent hierarchy in the data.

- Since we typically do not have **ground-truth information** about the underlying hierarchy, we mostly rely on unsupervised learning with **internal metrics**.
- Existing quality metrics are discrete, i.e., not differentiable.

 Existing clustering approaches are mostly heuristic and not directly related to the evaluation metrics.

- 1. We propose a **probabilistic model over hierarchies** via **continuous relaxation** of a tree's parent assignment matrices.
- 2. We **theoretically analyze** the model by drawing connections to **absorbing Markov chains**, which
- 3. allows **efficient and exact computation** of **lowest-common-ancestor** (LCA) probabilities, which enables us to
- 4. learn hierarchies on graphs by end-to-end optimization of relaxed versions of quality metrics such as Dasgupta cost and TSD score.

- A continuous relaxation of discrete tree hierarchies.
- Learnable matrices *A* and *B* contain parent assignment probabilities for leaves and internal nodes.
- We can easily obtain **valid tree hierarchies** via rowwise sampling from *A* and *B*.

- A continuous relaxation of discrete tree hierarchies.
- Learnable matrices *A* and *B* contain parent assignment probabilities for leaves and internal nodes.
- We can easily obtain **valid tree hierarchies** via rowwise sampling from **A** and **B**.

- A continuous relaxation of discrete tree hierarchies.
- Learnable matrices *A* and *B* contain parent assignment probabilities for leaves and internal nodes.
- We can easily obtain **valid tree hierarchies** via rowwise sampling from *A* and *B*.

- A continuous relaxation of discrete tree hierarchies.
- Learnable matrices *A* and *B* contain parent assignment probabilities for leaves and internal nodes.
- We can easily obtain **valid tree hierarchies** via rowwise sampling from **A** and **B**.

- A continuous relaxation of discrete tree hierarchies.
- Learnable matrices *A* and *B* contain parent assignment probabilities for leaves and internal nodes.
- We can easily obtain **valid tree hierarchies** via rowwise sampling from *A* and *B*.

- A continuous relaxation of discrete tree hierarchies.
- Learnable matrices *A* and *B* contain parent assignment probabilities for leaves and internal nodes.
- We can easily obtain **valid tree hierarchies** via rowwise sampling from *A* and *B*.

, Hierarchical Clustering Metrics

Two established internal metrics for hierarchical clustering:

Dasgupta Cost [Dasgupta 2016]

$$\operatorname{Das}(\widehat{\mathcal{T}}) = \sum_{v_i, v_j \in \mathcal{E}} P(v_i, v_j) \cdot \sum_{z} \mathbb{I}_{[z=v_i \wedge v_j]} c(z)$$

Tree-Sampling Divergence (TSD) [Charpentier and Bonald 2019]

$$TSD(\hat{T}) = KL(p(z)||q(z)), \text{ where}$$
$$p(z) = \sum_{v_i, v_j \in \mathcal{E}} P(v_i, v_j) \mathbb{I}_{[z=v_i \wedge v_j]}$$
$$q(z) = \sum_{v_i, v_j \in V} P(v_i,)P(v_j) \mathbb{I}_{[z=v_i \wedge v_j]}$$

, Hierarchical Clustering Metrics

Two established internal metrics for hierarchical clustering:

Dasgupta Cost [Dasgupta 2016]

$$\operatorname{Das}(\widehat{\mathcal{T}}) = \sum_{v_i, v_j \in \mathcal{E}} P(v_i, v_j) \cdot \sum_{z} \mathbb{I}_{[z = v_i \wedge v_j]} c(z)$$

Tree-Sampling Divergence (TSD) [Charpentier and Bonald 2019]

$$TSD(\hat{T}) = KL(p(z)||q(z)), \text{ where}$$
$$p(z) = \sum_{v_i, v_j \in \mathcal{E}} P(v_i, v_j) \mathbb{I}_{[z=v_i \wedge v_j]}$$
$$q(z) = \sum_{v_i, v_j \in V} P(v_i,)P(v_j) \mathbb{I}_{[z=v_i \wedge v_j]}$$

Lowest common ancestors (LCAs) occur in both metrics.

, Hierarchical Clustering Metrics: Relaxation

Relaxed Dasgupta Cost

Soft-Das
$$(\hat{T}) = \sum_{v_i, v_j \in \mathcal{E}} P(v_i, v_j) \cdot \sum_z P(z = v_i \wedge v_j) c(z)$$

Relaxed Tree-Sampling Divergence (TSD)

Soft-
$$TSD(\hat{T}) = KL(p(z)||q(z))$$
, where

$$p(z) = \sum_{v_i, v_j \in \mathcal{E}} P(v_i, v_j) P(z = v_i \wedge v_j)$$

$$q(z) = \sum_{v_i, v_j \in V} P(v_i,)P(v_j) P(z = v_i \wedge v_j)$$

Indicators replaced by expectations (probabilities) $\mathbb{I}_{[z=v_i \wedge v_j]} \text{ to } P(z=v_i \wedge v_j)$

Solution of LCA Probabilities

- Computation of **LCA probabilities** given matrices **A** and **B** is nontrivial.
- Key result: we draw connections to absorbing Markov chains to derive efficient closed-form matrix equations to compute LCA probabilities:

So Efficient Computation of LCA Probabilities

- Computation of **LCA probabilities** given matrices **A** and **B** is nontrivial.
- Key result: we draw connections to absorbing Markov chains to derive efficient closed-form matrix equations to compute LCA probabilities:

Theorem 6. The vector of LCA probabilities of all internal nodes w.r.t. leaf nodes v_i and v_j can be computed in a vectorized way via $P_{v_i \neq v_j}^{LCA} \in \mathbb{R}^{n'} = (P_{v_i}^{anc} \odot P_{v_j}^{anc})^T \cdot (I + \tilde{P}^{anc} \odot \tilde{P}^{anc})^{-1} \qquad P_{v_i,v_i}^{LCA} = A_{vi}, \qquad (9)$ where \odot denotes the element-wise (Hadamard) product. (See proof in App. A.9)

Complexity for the whole graph: $O(\#internal_nodes^2 \cdot \#edges)$

ه Results																	
ס		Dasgupta cost (lower is better)						Normalized TSD (higher is better)									
1	Alg.	Ward	Louv.	UF	HypHC	HGHC	RGHC	Avg. lk.	FPH	Ward	Louv.	UF	HypHC	HGHC	RGHC	Avg. lk.	FPH
I	Brain	618.81	777.14	712.33	571.64	749.40	556.57	556.64	503.67	<u>31.72</u>	29.28	28.61	17.48	24.18	22.05	28.88	32.34
(OpenFlight	382.45	633.66	393.58	463.43	487.96	488.90	363.40	355.61	<u>55.48</u>	51.51	53.89	39.08	49.50	39.56	52.05	57.72
(Genes	202.17	247.26	251.01	495.26	366.53	247.07	196.51	183.63	66.80	<u>67.47</u>	62.95	20.66	53.33	51.81	66.68	67.69
(Citeseer	92.27	178.23	98.61	215.62	150.26	131.89	84.04	77.16	<u>69.43</u>	68.45	67.40	37.22	57.61	50.61	67.99	69.57
(Cora-ML	281.82	336.86	342.86	442.09	411.49	350.00	297.03	254.78	<u>56.47</u>	57.51	53.06	30.73	46.76	42.68	55.41	58.02
I	PolBlogs	377.63	443.48	350.74	330.58	354.86	433.77	364.14	262.48	27.54	25.93	25.23	22.21	23.94	19.41	25.29	31.41
	WikiPhysics	736.11	986.32	753.81	759.07	840.15	740.87	658.04	537.95	45.28	46.03	43.40	32.02	39.70	38.39	43.23	49.97
(ogbn-arxiv	22,870	31,655	52,666	OOM	22,076	24,077	20,760	14,354	36.77	37.75	24.75	OOM	26.05	25.21	33.70	39.66
	ogbl-collab	13,835	20,664	91,807	OOM	34,934	21,057	15,714	13,493	45.33	46.12	27.90	OOM	24.80	34.07	45.40	48.36
I	DBLP	31,138	40,744	148,439	OOM	94,384	44,424	36,463	31,686	38.26	40.92	20.21	OOM	15.96	27.82	38.97	41.66

Table 1: Hierarchical clustering results (n' = 512). Bold/underline indicate best/second best scores.

Dataset	FPH	DCSBM	DW	Ad./Ad.	VGAE
Cora-ML	95.7	95.5	94.3	86.5	95.9
Citeseer	96.2	93.6	<u>96.0</u>	76.8	94.8
PolBlogs	<u>94.3</u>	94.9	84.8	92.6	92.8
WikiPhysics	97.2	96.9	92.9	96.6	<u>97.0</u>
Brain	<u>94.1</u>	95.2	83.8	90.7	93.2
OpenFlight	99.3	<u>99.0</u>	94.3	98.4	<u>99.0</u>
Genes	<u>69.8</u>	66.9	70.3	53.0	66.6

Table 4: AUC-PR score (%) for link prediction.

16

Paper, Code & More: https://www.daml.in.tum.de/fph