
1 DAML Group, Technical University of Munich
2 SNAP, Stanford University

Language-Agnostic Representation Learning
of Source Code from Structure and Context

Daniel Zügner1, Tobias Kirschstein1, Michele Catasta2, Jure Leskovec2, Stephan Günnemann1

May 3-7
Virtual EventICLR 2021 Code: www.daml.in.tum.de/code-transformer

tl;dr
q We set the new SOTA on code summarization by

learning from Structure and Context of programs.
q Our language-agnostic design enables joint training

on multiple programming languages.
q Our novel multi-language training substantially

improves performance on each individual language.

Task: Code Summarization
q Predict a method’s name given its body.

q A common task to evaluate ML models’ performance on code.
q In high-quality code bases, a method’s name summarizes its functionality.
q Labels come ‘for free’, and there is lots of high-quality open-source code.

Structure and Context Representation

Code Transformer

()
Self-Attention

(a) Transformer on Text (b) Transformer on Graphs (c) Code Transformer

Transformers are very expressive

enc(p1) enc(p2) enc(p3) enc(p4)

p1 p2 p3 p4

+ + + +

ENCODER LAYER

Input encodings

Absolute position encodings

()
Self-Attention

? ? ? ?

❌ No absolute

positions in

relational data

1

2

3
4

RELATIONAL ENCODER LAYER

Input encodings

ENCODER LAYER

()
Relational Attention

1

2

3
4

enc(r11)

✅ Relation

 encodings

Input encodings

enc(r12)

enc(r13) enc(r14)

Results

q Our Code Transformer outperforms all baselines in all scenarios.
q Multilanguage training improves results on each individual language.

q This is true for all studied models using the Structure, opening exciting
directions for future research. No improvement for Context-only models.

q Strongest gains are on Ruby, the language with fewest training samples.

Table: Code Summarization Results on the CodeSearchNet dataset (F1 score).

q For instance, get_model() is far away from the return statement in the
Context; it is hard for a model to capture such long-range dependencies.

q In the AST, the two corresponding nodes are only a few hops apart.
q Many previous works only learn from either Structure or Context.

q We propose the Code Transformer, which learns jointly from both.

def	get_model():
		if	condition:
				train()
				...	[20	tokens]
		else:
				return	model

Source Code as Sequence of Tokens Source Code as Abstract Syntax Tree

1

2

3 4

1

2

3

4

1 hop

26 hops

5 hops

Context Structure

2 hops

4 hops
def	get_model():
		if	condition:
				train()
				...	[20	tokens]
		else:
				return	model

Source Code as Sequence of Tokens Source Code as Abstract Syntax Tree

1

2

3 4

1

2

3

4

1 hop

26 hops

5 hops

Context Structure

2 hops

4 hops

Source code as sequence of tokens
(referred to as Context)

Source code as Abstract Syntax Tree
(AST; referred to as Structure)

LSTMs, TransformersTypical
models: GNNs, LSTMs on AST paths

Structure and Context are complementary representations of a program.

Model Python Javascript Ruby Go

Si
ng

le
-

la
ng

ua
ge code2seq 29.3 24.0 14.3 47.5

GREAT 33.2 28.9 23.4 48.2
Code Transformer 35.0 32.1 27.5 51.3

M
ul

ti-
la

ng
ua

ge

code2seq* 29.3 26.1 19.9 48.2
Change (Δ) -0.02 +2.09 +5.65 +0.72

GREAT* 33.9 30.4 26.9 50.4
Change (Δ) +0.70 +1.55 +3.51 +2.18

Code Transformer 36.2 33.2 31.2 53.0
Change (Δ) +1.21 +1.08 +3.74 +2.63

Mult. +
Pretrain

Code Transformer 37.4 34.3 32.0 54.7
Change (Δ) +2.38 +2.20 +4.51 +3.31

* Adapted by us for multilanguage training

AST distance F1 score
Sibling shortest paths 46.17
Ancestor shortest paths 47.89
Shortest paths 47.76
Personalized PageRank 48.47
All of the above 48.75

AST distance F1 score
Code Transformer + Pretrain 53.77
Code Transformer 52.22

– Structure 50.34
– Context 49.45
– Pointer Network 48.50

Figure: t-SNE visualization of
multilanguage embeddings

Multilanguage embeddings
q We obtain a shared embedding space for

multiple programming languages.

q Similar methods tend to be mapped to
regions close-by in embedding space.

q We can ‘measure’ similarity of program-
ming languages via their embeddings.

def [MASK](s):
l = s.lower()
if l in ("true", "t", "1"):

return True
if l in ("false", "f", "0"):

return False
raise Exception(

"Unable to convert string '%s‘“
"to a boolean value" % s

)

Predictions:
(0.8) parse_bool
(0.1) to_lower
...
(0.01) get_string

Example

1

53 hops

2

1

-2

shortest
path

length

ancestor
distance

sibling
distance

PPR
score to
node 5

q Can be computed from the AST for any programming language.
q Capture the local and global structure in the AST.

q Language-agnostic design instead of specialized proprietary pipelines.
q Enables training on any programming language, even jointly (see results).

q Efficient binning enables using continuous-valued distances (e.g., PPR).

Relative Distances on the AST

1

53 hops

2

1

-2

shortest
path

length

ancestor
distance

sibling
distance

PPR
score to
node 5

Shortest
path length

1

53 hops

2

1

-2

shortest
path

length

ancestor
distance

sibling
distance

PPR
score to
node 5

Ancestor
distance

1

53 hops

2

1

-2

shortest
path

length

ancestor
distance

sibling
distance

PPR
score to
node 5Sibling

distance
Personalized

PageRank scores

Table: Ablation of AST distances
w/o Context (Java-small dataset)

Table: Ablation of Structure and
Context (Java-small dataset)

Ablation study

Demo: http://code-transformer.org

http://www.daml.in.tum.de/code-transformer
http://code-transformer.org/

