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ABSTRACT

Recently, bug-bounty programs have gained popularity and become
a significant part of the security culture of many organizations.
Bug-bounty programs enable organizations to enhance their se-
curity posture by harnessing the diverse expertise of crowds of
external security experts (i.e., bug hunters). Nonetheless, quanti-
fying the benefits of bug-bounty programs remains elusive, which
presents a significant challenge for managing them. Previous stud-
ies focused on measuring their benefits in terms of the number of
vulnerabilities reported or based on the properties of the reported
vulnerabilities, such as severity or exploitability. However, beyond
these inherent properties, the value of a report also depends on
the probability that the vulnerability would be discovered by a
threat actor before an internal expert could discover and patch it.
In this paper, we present a data-driven study of the Chromium
and Firefox vulnerability-reward programs. First, we estimate the
difficulty of discovering a vulnerability using the probability of
rediscovery as a novel metric. Our findings show that vulnerability
discovery and patching provide clear benefits by making it difficult
for threat actors to find vulnerabilities; however, we also identify
opportunities for improvement, such as incentivizing bug hunters
to focus more on development releases. Second, we compare the
types of vulnerabilities that are discovered internally vs. externally
and those that are exploited by threat actors. We observe signif-
icant differences between vulnerabilities found by external bug
hunters, internal security teams, and external threat actors, which
indicates that bug-bounty programs provide an important benefit
by complementing the expertise of internal teams, but also that
external hunters should be incentivized more to focus on the types
of vulnerabilities that are likely to be exploited by threat actors.

CCS CONCEPTS

« Security and privacy — Economics of security and privacy;
Software and application security; « Information systems —
Browsers; World Wide Web.

WWW °23, May 1-5, 2023, Austin, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
the ACM Web Conference 2023 (WWW °23), May 1-5, 2023, Austin, TX, USA, https:
//doi.org/10.1145/3543507.3583352.

Amutheezan Sivagnanam
Pennsylvania State University

Afiya Ayman
Pennsylvania State University
USA

Aron Laszka
Pennsylvania State University
USA

KEYWORDS

security, vulnerability discovery, bug bounty, vulnerability reward
program, Chrome, Mozilla, web browser, technology policy

ACM Reference Format:

Soodeh Atefi, Amutheezan Sivagnanam, Afiya Ayman, Jens Grossklags,
and Aron Laszka. 2023. The Benefits of Vulnerability Discovery and Bug
Bounty Programs: Case Studies of Chromium and Firefox. In Proceedings of
the ACM Web Conference 2023 (WWW °23), May 1-5, 2023, Austin, TX, USA.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3543507.3583352

1 INTRODUCTION

Traditionally, testing the security of software products and ser-
vices was the responsibility of internal security teams and external
penetration-testing teams. However, these efforts are necessarily
limited in their size and in the range of expertise applied. This
limitation puts defenders at a disadvantage compared to attack-
ers since public products and services may be targeted by myri-
ads of attackers, who possess diverse expertise. Spearheaded by
Netscape as a forerunner in 1995 [14], bug-bounty programs—which
are also known as vulnerability reward programs—have emerged as
a key element of many organizations’ security culture [19, 26, 36].
Bug-bounty programs are a form of crowdsourced vulnerability
discovery, which enables harnessing the diverse expertise of a large
group of external bug hunters [14]. A program gives hackers the
permission to test the security of a software product or service and
to report vulnerabilities to the organization sponsoring the pro-
gram [21]. By rewarding valid reports with bounties, the program
incentivizes hackers to spend effort on searching for vulnerabilities
and reporting them [1, 37]. In addition to enabling the sponsoring
organization to fix security vulnerabilities before they could be
exploited, a bug-bounty program also publicly signals the organi-
zation’s commitment to continuously improving security.
However, quantifying the benefits of a bug-bounty program re-
mains elusive, which presents a significant challenge for managing
them. A number of prior research efforts have investigated bug-
bounty programs (e.g., Finifter et al. [14], Zhao et al. [36], Laszka et
al. [20, 21], Maillart et al. [23], Luna et al. [22], Elazari [10], Malladi
and Subramanian [24], and Walshe and Simpson [34]). However, a
common limitation of previous studies is that they typically mea-
sure the value provided by a bug-bounty program in terms of the
number of vulnerabilities reported or, in some cases, based on the
inherent properties of the reported vulnerabilities, such as sever-
ity or exploitability. As we discuss below, the number of reported
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vulnerabilities and their inherent properties alone cannot quantify
security benefits since they ignore the likelihood of discovery.
While some vulnerability reports provide immense value to or-
ganizations by enabling them to patch vulnerabilities before threat
actors would exploit them, other reports might provide relatively
low value. First, some vulnerabilities might be discovered anyway
by internal security experts before any threat actors could exploit
them. Reports of such vulnerabilities provide low value since or-
ganizations could patch these vulnerabilities before exploitation
without spending funds to reward external bug hunters. Second,
some vulnerabilities might never be discovered by threat actors. Patch-
ing such vulnerabilities is futile; in fact, it could even be considered
harmful since patches can reveal the existence of vulnerabilities to
threat actors [30]. Finally, even if some vulnerabilities are eventu-
ally discovered by threat actors, discovery might take so long that
the software components become obsolete before the vulnerabili-
ties could be exploited [7, 31]. In contrast, other software projects
may have relatively stable code bases over time, which also domi-
nates the number of discovered vulnerabilities [29]. In light of these
considerations, the value of a vulnerability report hinges not only
on the inherent properties of the vulnerability, such as severity,
but also on the probability that the reported vulnerability would be
exploited by threat actors before another benign actor would report it.

Research Questions. Benefits of vulnerability discovery (RQ1):

To study the issues mentioned above, we consider the probability
of rediscovery, that is, the probability that a previously discovered
vulnerabilities is independently rediscovered by another bug hunter.
The probability of rediscovery should be a key consideration for
bug-bounty and vulnerability management since known vulnera-
bilities have a negative impact only if they are (re-)discovered by
threat actors before they are patched (and before the patches are ap-
plied by users). In this context, Schneier [32] conjectures that when
one “person finds a vulnerability, it is likely that another person
soon will, or recently has, found the same vulnerability” Indeed,
based on studying Microsoft security bulletins, Ozment finds that
vulnerability rediscovery is non-negligible; but this result is based
on a small sample (14 re-discovered vulnerabilities, constituting
7.69% of all vulnerabilities listed in the bulletins) [28]. In contrast,
we characterize rediscovery probabilities based on thousands of
vulnerability reports and thereby respond to Geer’s call to conduct
longitudinal research in this context [16].

e RQ1.1: Are vulnerabilities rediscovered? Are vulnerabilities
more difficult to find, in terms of rediscovery probability, in
stable releases than in development ones?

e RQ1.2: Are vulnerability discoveries and rediscoveries clus-
tered in time, or is rediscovery a “memory-less” process?

Benefits of bug bounties (RQ2): If external bug hunters work
similarly to internal security teams and discover similar vulnera-
bilities, then bug-bounty programs provide relatively low security
benefits, and internalizing vulnerability-discovery efforts might be
more efficient than sponsoring bug-bounty programs. However,
theoretical work by Brady et al. suggests that there are efficiency
benefits to testing software products in parallel by different teams
that likely use different test cases and draw on different types of
expertise [6]. Supporting this view, Votipka et al. report key differ-
ences between internal security testers and external bug hunters
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based on a survey of 25 participants, focusing on how each group
finds vulnerabilities, how they develop their skills, and the chal-
lenges that they face [33]. In contrast, we focus on the actual vulner-
abilities reported by these groups to facilitate the quantification of
security benefits from the perspective of a sponsoring organization.
e RQ2: Do external bug hunters report different types of vul-
nerabilities than internal discoveries?

Management of vulnerability discovery and bug bounties
(RQ3): The objective of both external and internal vulnerability
discovery is to find and patch vulnerabilities that would be found
by threat actors (since patching vulnerabilities that threat actors
would not find provides a much lower security benefit).! Hence,
the benefits of running bug-bounty programs hinge on whether
bug hunters find the same set of vulnerabilities that the threat
actors would find. If there is a significant discrepancy, bug-bounty
managers must try to steer bug hunters towards discovering the
right types of vulnerabilities, e.g., using incentives.

e RQ3.1: Do bug hunters report similar types of vulnerabilities
than those that are being exploited by threat actors?

e RQ3.2: Which types of vulnerabilities are the most difficult
to discover?

To answer these questions, we collect vulnerability data from
the issue trackers of two major web browsers, Chromium (i.e., the
open-source project that provides the vast majority of code for
Google Chrome) and Firefox. We combine these with other datasets
and apply a thorough data cleaning process to reliably determine
which reports are internal and which are external, which releases
and components are impacted by each issue, which reports are
duplicates (i.e., rediscoveries), which vulnerabilities were exploited,
etc. Our cleaned datasets and our software implementation of the
data collection and cleaning processes are publicly available [5].

Organization. The remainder of this paper is organized as fol-
lows. Section 2 provides an overview of our data collection and
cleaning processes. Section 3 presents an in-depth analysis of the
benefits of vulnerability discovery and bug-bounty programs. Sec-
tion 4 discusses related work on vulnerability discovery and bug
bounties. Finally, Section 5 presents concluding remarks.

2 DATA COLLECTION AND CLEANING

We collect reports of security issues (i.e., vulnerabilities) from the
issue trackers of Chromium and Firefox. An original report of a
vulnerability is a report that does not have duplicate in its Status
field, which has typically—but not always—the earliest report date.
A duplicate report, identified by duplicate in its Status field, is a
report of an issue that had already been reported. If the duplicate
and original reports were submitted by different bug hunters, then
we consider the duplicate to be an independent rediscovery.

Due to lack of space, we describe the technical details of the data
collection and cleaning processes in our online appendix [4].

Note that some bug hunters could be malicious; in this paper, we define bug hunter
as someone who reports a vulnerability, thereby helping the program. At the same
time, they might also try to exploit the vulnerability, which could be reported as the
vulnerability being exploited in the wild. Since we focus on the benefits of vulnerability
discovery, we study both activities strictly from the programs’ perspective.
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2.1 Data Collection

We collect the following five attributes for each vulnerability: im-
pacted release channels (stable and/or development), security sever-
ity (critical, high, moderate, or low), weakness type represented as
broad type of Common Weakness Enumeration (CWE), affected
components, and programming languages (i.e., languages of files
that were modified to patch the issue). Note that for ease of ex-
position, we use the same names for severity levels and impacted
releases for Chromium and Firefox; however, there is no one-to-one
equivalence since there may be differences between the definitions
of the two VRPs. For a duplicate report, we use the attributes of the
original report as the attributes of the duplicate. If an original report
is missing some attributes, we use the attributes of its duplicates.

Chromium: We collect the details of all vulnerability reports
from September 2, 2008 — September 13, 2022 from the Chromium
issue tracker? using Monorail API version 23. For each report, the
Chromium issue tracker lists affected components, impacted release
channels, comments that include conversations among internal
employees and external parties, as well as a history of changes (i.e.,
amendments) made to the report.

Firefox: We collect data from two main resources, the Bugzilla
Firefox bug tracker? and the Mozilla website (Known Vulnerabil-
ities® and Mozilla Foundation Security Advisories (MFSA)®). We
collect security reports from January 24, 2012 — September 15, 2022.
The MFSA lists vulnerabilities for Mozilla products. We scrape advi-
sories for Firefox to be able to identify reports that pertain to stable
releases. We also collect the Reporter field, which some pages in
MFSA have, to identify external vs. internal reporters.

2.2 Data Cleaning

Rediscovery and Duplicate Reports. In both issue trackers, there
is a Status field that indicates whether a report is a duplicate of
a previously reported vulnerability or an original report. In the
Chromium issue tracker, for rediscoveries the Status field is marked
as Duplicate. For each duplicate report, we follow the Mergelnto field
to retrieve the referenced original report. If that is also a duplicate,
we again follow the Mergelnto field of the referenced report until
we find the original. In the Firefox issue tracker, we can similarly
determine whether a report is a duplicate based on the Status field,
and we can find the original report by following the references
(recursively, if needed). Some vulnerabilities are reported multiple
times by the same hunter; we remove these redundant reports and
keep only the earliest report of each vulnerability for each hunter.
Some vulnerabilities do not have accessible pages in Bugzilla. Since
we cannot identify the earliest report for these vulnerabilities, we
excluded them from our rediscovery analysis. Some Firefox reports
are incomplete with respect to replication and patching. For some of
these, Mozilla opened a new report of the vulnerability, which was
then completed with respect to this information, and the first report
was marked as a duplicate. We also exclude these vulnerabilities
from our analysis since they are not actual rediscoveries.

Zhttps://bugs.chromium.org/p/chromium/issues/
3https://chromium.googlesource.com/infra/infra/+/master/appengine/monorail/api/
4https://bugzilla.mozilla.org/home
Shttps://www.mozilla.org/en-US/security/known-vulnerabilities/
Chttps://www.mozilla.org/en-US/security/advisories/
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External vs. Internal Reports: Chromium. The Chromium issue
tracker contains reports of vulnerabilities either reported internally
by Google or reported externally by bug hunters. For each report,
we use the reporter’s email address to classify the report as either an
internal or an external report. Note that we cannot always determine
the report’s origin based solely on the email address. For each such
email address, we manually check the associated activities, such
as vulnerabilities reported and comments posted to determine the
reporter’s origin. We are able to identify the email address of the
actual external reporter for 98% of the valid external reports.

External vs. Internal Reports: Firefox. Vulnerabilities in Firefox
VRP are reported either internally by Firefox team members or
by external reporters. We use four steps to separate internal and
external reports. First, we use the Whiteboard and bug-flag fields
in the report information page. If a report has reporter-external
in Whiteboard or sec-bounty in bug-flag, we generally consider
the report to be external; otherwise, we consider it to be internal.
However, there are reports, which do not have the above keywords,
but were reported by external bug hunters. To identify those reports,
in the next step, we leverage a snow-balling technique (on the
report comments) to identify around 650 reports that appear to
be from internal team members of Mozilla on the first glance, but
their actual reporters are external. In the third step, we consider
reporters that appear to have both internal and external reports
(around 50). We manually disambiguate these cases by reading
comments and checking their public websites. In the last step, we
leverage the Reporter field in the MFSA by matching the reporters’
profile names (from Bugzilla) with the names mentioned by the
MFSA. By applying the above steps, we are able to distinguish
internal and external reports in 97% of the cases.

Stable vs. Development Release Channels. Stable releases are widely
used by end users, while development releases are typically used
only by testers and bug hunters. We use the term release channel to
refer to these different release versions. Note that we distinguish
between reports that affect stable releases and reports that affect
only development releases. In Chromium, there are reports that af-
fect both stable and development releases, which we exclude from
our analysis of stable vs. development. For Firefox, we consider
Bugzilla reports that are listed in the MFSA to be reports that affect
stable releases.

2.3 Other Data Sources

Most vulnerabilities that have been fixed have links to the Google or
Mozilla source-code repositories in their comments, which we use
to identify the files that were changed to fix the vulnerability. For
each vulnerability with a repository link, we collect the program-
ming languages of the files that were changed. We also leverage
CVEDetails” and MITRE CWE? to collect information regarding
CVE IDs and weakness types (CWEs), when available.

To identify exploited vulnerabilities, we first collect an initial set
of exploited vulnerabilities from the Known Exploited Vulnerabili-
ties Catalog of CISA®. Then, we extend this set iteratively using a

"https://www.cvedetails.com/
8https://cwe.mitre.org/
https://www.cisa.gov/known-exploited-vulnerabilities- catalog
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Table 1: Summary of Datasets

Security Severity Chromium | Firefox

Critical 309 1,420
High 8,616 2,332
Moderate 5,598 1,156
Low 2,720 605
Impacted Releases || Chromium | Firefox
Stable 8,152 3,002
Development 5,325 3,064
Reports Chromium | Firefox
Duplicates 3,905 1,262
Originals 21,453 4,804
Reports’ Origins Chromium | Firefox
Externals 12,221 1,837
Internals 13,137 4,229

Table 2: Comparison of Stable and Development Releases

Impacted Releases H Chromium [ Firefox
Number of Unique External Reporters

Stable 1,297 413
Development 198 285
Ratio of Rediscovered Vulnerabilities

Stable 8.63% 9.27%
Development 4.26% 12.37%

Mean Patching Time in Days

Stable 80.73 73.62

Development 12.35 103.36

snowballing method by identifying terms in comments related to
exploitation (e.g., exploited in the wild) and gathering vulnerabilities
whose comments include these terms.

2.4 Summary of Datasets

For Chromium, we collected in total 25,358 valid reports of secu-
rity issues. Of these, 12,221 were externally reported, and 13,137
were internally reported. Among reports with information about
impacted releases (13,477 reports in total), 8,152 reports pertain to
stable releases, and 5,325 pertain to development one. Finally, 21,453
are original reports, and 3,905 are duplicate reports. For Firefox,
we collected in total 6,066 valid reports of security issues, of which
4,804 are original reports, and 1,262 are duplicates. There are 3,002
reports of vulnerabilities which pertain to stable releases, and 3,064
reports that pertain to development releases. 1,837 reports were re-
ported externally, and 4,229 were reported internally. Table 1 shows
summary statistics of the two datasets. Table 2 shows the number
of unique external bug hunters (note that 86 external reports were
submitted anonymously for Firefox). For year-over-year temporal
analysis, we provide annual data in Appendix A. We observe that
most key metrics of interest are stable (e.g., fraction of duplicate
reports is around 18.2% for Chromium with 4.9% standard deviation
annually), which suggest that the reward programs’ evolution over
the past years does not significantly impact our findings.
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3 RESULTS

3.1 Benefits of Vulnerability Discovery and Bug
Bounty Programs

3.1.1  Probability of Rediscovery (RQ 1.1). We begin our analysis
by investigating whether vulnerabilities are more difficult to find in
stable releases than in development ones. To quantify this, we first
study the probability that a vulnerability is rediscovered. Table 2
shows for each release channel the ratio of vulnerabilities that are
rediscovered at least once. In Firefox, vulnerabilities that impact
development releases are rediscovered more often than those that
impact stable releases; in Chromium, it is vice versa.

Before drawing any conclusions about the difficulty of finding
vulnerabilities, we must also consider the number of unique ex-
ternal reporters working on stable and development releases (see
Table 2). We find that in both Chromium and Firefox, there are
considerably more bug hunters who report vulnerabilities in stable
releases than in development ones. Combined with the rediscovery
probabilities, this suggests that it is more difficult to find vulnera-
bilities in stable releases: although stable releases seem to attract
significantly more attention, differences in rediscovery probabilities
are less pronounced.

However, there is one more factor that can contextualize the
difference in rediscovery probabilities: the amount of time required
to patch a vulnerability. If it takes longer to patch a vulnerability,
bug hunters have more time to rediscover it, which should lead
to a higher rediscovery probability, ceteris paribus. Table 2 shows
the average time between the first report of a vulnerability and
the time when it was patched. We compute the time to patch Agy
as Afy = Tgix — Tearliest» Where Tgy is the date and time when the
vulnerability was fixed and Te,yjiest is When the vulnerability was
first reported in the issue tracker. For Chromium, we observe that
vulnerabilities in stable releases are patched much slower than in
development releases, giving bug hunters significantly more time
to rediscover them. For Firefox, the evidence is more nuanced. Here,
we also observe a lower rediscovery probability for stable releases
even though there is a larger workforce; however, hunters have to
work with a slightly shorter average patching time window.

FINDING 1. The rediscovery probabilities, number of bug hunters,
and mean patching times in conjunction suggest that vulnerabilities
are easier to find in development releases; vulnerabilities that are easy
to find are likely to be discovered and patched during development,
demonstrating the benefits of vulnerability discovery.

3.1.2  Rediscovery Probability over Time (RQ 1.2). Since the prob-
ability of rediscovery alone cannot quantify the benefit of a vul-
nerability report, we contextualize the rediscovery probabilities of
stable, development, and both releases together with the impact of
patching. For a duplicate report, we define the time until rediscovery
as Arediscovery = Topen — Tearliest (i-e., difference between the time
of submitting the duplicate report and the submission time of the
earliest report of the vulnerability). We estimate the probability
Pr[Re(t) |t < Agy] that a vulnerability is rediscovered on the ¢-th
day after it is first reported (this event is denoted Re(t)) given that
the vulnerability has not been patched by day ¢ as follows:

|{0d |d €D, 0q € Ofix, Amdiscoverd = t}| /|Oﬁx| (1)
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Figure 1: Probability that a vulnerability is rediscovered a
certain time after its first report, given that it has not been
patched by that time. F and C denote Firefox and Chromium.
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Figure 2: Probability that a vulnerability is not fixed in t days
after it is first reported (Pr [A Fix > t]) in development (solid
lines) and stable releases (dashed lines).

The nominator is the number of original reports (o4) that have not
been fixed by day t (04 € Ogy) and are rediscovered on the ¢-th day
after they are first reported (Arediscover, = t)- The denominator is
the number of original reports that have not been fixed by day ¢.

Similarly, we also estimate probability Pr [Re(w) | w < Agy] for
the w-th week as follows:

|{0d |d € D,og € Ogy, 7w — 6 < Arediscoverd < 7W}| /0sx|  (2)

where Oy — {o € 0| gy, > 7w}, i.e., not fixed by week w.
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Figure 4: Probability that a vulnerability is rediscovered on
the ¢-th day after it is first reported (Pr[Re(t)]).

Fig. 1a shows that rediscovery probabilities decrease over time in
both Chromium and Firefox. We fit curves to identify and visualize
important trends; building principled models that fit these trends
is a major task, which we leave for future work. When fitting
curves, we weigh each probability value by its confidence, which we
measure as the number of vulnerabilities based on which the value
is estimated. We also computed the probability that a vulnerability
is not patched in t days after it is first reported (see Fig. 3). This
shows that 20% of vulnerabilities are patched within 5 days of first
being reported and that most vulnerabilities are patched quickly.

Interestingly, even if we remove the condition (t < Agy) and con-
sider the probability of rediscovery without the impact of patching,
there is still a rapid decline in the first few days in both curves, i.e.,
Firefox and Chromium (see Fig. 4). On the other hand, both curves
have long tails later, which suggests a somewhat memory-less pro-
cess of discovery (i.e., some vulnerabilities that are not discovered
soon may remain hidden for long).

Figs. 1b and 1c show the probability that a vulnerability is re-
discovered in the w-th week after it is first reported (condition
w < Agy) for vulnerabilities in stable and development releases,
respectively. We observe that rediscovery probabilities are lower in
stable releases than in development releases. In particular, this sug-
gests that vulnerabilities in stable releases are more difficult to find
and are non-trivial (see Fig. 1b). Further, the long tail suggests that
vulnerabilities that have not yet been found may remain hidden for
a long time, and discovery is mostly a memory-less process.

However, there is a small peak in both curves in the first few
days, which contradicts the memory-less property of rediscovery
in stable releases, and suggests a clustering of rediscoveries. One
hypothesis is that vendors pay more to external bug hunters for the
discovery of vulnerabilities in stable releases relative to develop-
ment releases. As a result, bug hunters may stockpile vulnerabilities
in development releases to receive higher rewards by reporting
vulnerabilities in stable releases, which increases the likelihood
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Figure 5: Comparison of internal (W) and external (¥) security
reports in Chromium and Firefox.

of duplicate reports. We tested this hypothesis by checking the
reward policies of these two vendors. However, we did not find
evidence for a higher reward policy for stable releases in either
Chromium or Firefox. Instead, the reward policies are mostly based
on vulnerability severity. Another hypothesis for the small peak
in both curves (specifically for Chromium) is that vulnerabilities
are more likely to be discovered shortly after they are introduced;
exploring this hypothesis would require further technical analysis.

Fig. 1c shows rapid decline in the first few days. This suggests
that most vulnerabilities in development releases are rediscovered
in the first few days after they are introduced.

FINDING 2. Vulnerability discoveries are clustered in time, which
suggests that there is a limited pool of easy-and-quick-to-discover
vulnerabilities. Other vulnerabilities may remain hidden for long.
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3.1.3 Internal Discoveries and External Bug Hunters (RQ2). Next,
we study the differences between reports of different origins (i.e.,
external versus internal) for Chromium and Firefox. We provide a
detailed comparison considering release channels in Appendix B.

Fig. 5 shows the distributions of internal vs. external reports
with respect to weakness types and impacted components. As for
weakness types (see Fig. 5a), the most common type among internal
Chromium reports is Memory buffer bound error (32.5%), while
the most common type among external reports is Expired pointer
dereference. In contrast, Memory buffer bound error is the most
common type among both internal and external Firefox reports
(Fig. 5¢). As for impacted components (see Fig. 5b and Fig. 5d),
the Blink component was most common among both internal and
external Chromium reports; while in Firefox, DOM: Core & HTML is
the most common impacted component among external reports and
JavaScript Engine: JIT is the most common among internal ones.

We also compared internal and external reports in terms of im-
pacted release channels, severity, and programming languages. In
Chromium, stable releases are impacted by a higher percentage of
reports than other releases, for both internal (50.1%) and external
(78.9%) reports. In Firefox, we observe that 57.8% of external reports
pertain to stable releases, while 54.1% of internal reports relate to
development releases. As for severity, a high percentage of both
internal and external reports have a high severity. Further, external
reports are more common than internal reports among vulnerabili-
ties with critical severity. We also find that vulnerabilities in C++
code are most frequently reported both internally and externally
and in both Chromium and Firefox.

Based on Pearson’s chi-squared test, external and internal reports
follow significantly different distributions in terms of impacted re-
lease channels, severity level, weakness type, affected components,
and programming languages for both Chromium and Firefox.

FINDING 3. External bug hunters and internal security teams report
different types of vulnerabilities, which indicates that bug-bounty
programs do complement the expertise of internal teams.

3.2 Management of Bug Bounty Programs

3.2.1 Vulnerabilities Reported and Exploited (RQ 3.1). Finally, we
study how many vulnerabilities have been discovered and exploited
by malicious actors and what the differences are between these ex-
ploited vulnerabilities and other vulnerabilities. Among the 25,358
(Chromium) and 6,066 (Firefox) valid vulnerability reports, we can
identify 37 and 18 vulnerabilities that have been exploited in the
wild for Chromium and Firefox, respectively. We compare these
exploited vulnerabilities to those that are discovered by benevo-
lent external reporters. We also compare these vulnerabilities with
all other vulnerabilities (i.e., vulnerabilities that have not been ex-
ploited) based on release channels, severity, weakness type, compo-
nents, and programming languages (see Appendix C). We perform
chi-squared tests for all these comparisons as well. However, we
acknowledge that the number of exploited vulnerabilities is limited,;
therefore, the results of our analysis might not be generalizable.

Comparison with Other Externally Reported Issues. Since our focus
is on bug-bounty programs, we study the differences and similari-
ties between vulnerabilities that are exploited by threat actors and
vulnerabilities that are reported by external bug hunters (Fig. 6).
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Figure 6: Comparison of exploited vulnerabilities (M) and
external security reports () in Chromium and Firefox based
on weakness types and impacted components.

As for release channels, all exploited Chromium vulnerabilities im-
pact stable releases, while only 78.9% of external reports pertain to
stable releases. In Firefox, 88.9% of exploited vulnerabilities impact
stable releases, while only 57.5% of external reports pertain to stable
releases. With respect to severity, 71.4% of exploited Chromium
vulnerabilities are of high severity, whereas only 45.3% of external
report have high severity. In Firefox, 62.5% of exploited vulnerabili-
ties have critical severity, while only 25.8% of external reports have
critical severity. Among both exploited vulnerabilities and external
reports, vulnerabilities in C++ code were the most common.

As for weakness types, Memory buffer bound error is the most
commonly exploited type of vulnerability in both Chromium and
Firefox (Figs. 6a and 6¢). Fortunately, this weakness type is also very
common among external reports in both Chromium and Firefox: it
is the most common type in Firefox, and the second most common
type in Chromium (just slightly behind the most common type,
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Expired pointer dereference). With respect to impacted components,
the Blink component of Chromium is the most common among
both exploited vulnerabilities and external reports (see Fig. 6b). In
Firefox, the XPConnect component is the most commonly impacted
by exploited vulnerabilities; however, this component is relatively
rare among external reports.

Our exploratory statistical tests show that for Chromium, ex-
ploited vulnerabilities and external reports follow significantly
different distributions in terms of impacted release channels and
security-severity levels; however, this does not hold for affected
programming languages. Similarly, in Firefox, exploited vulnerabil-
ities and external reports follow significantly different distributions
in terms of impacted release channels and security severity.

FINDING 4. There are significant differences between the types of
vulnerabilities that are reported by bug hunters and those that are
exploited by threat actors in terms of impacted release channels, and
security-severity levels, which suggests that bug bounties could be
more effective if they incentivized bug hunters to shift their focus.

3.2.2 Difficulty of Discovery (RQ 3.2). We estimate the probability
of rediscovery as a function of the inherent properties of a vulnera-
bility (i.e., security severity, weakness type, impacted components,
and programming languages) to study whether different types of
vulnerabilities are more or less difficult to rediscover (see Fig. 7). As
for security severity, vulnerabilities with critical and high severity
in Firefox and vulnerabilities with critical severity in Chromium are
rediscovered more than vulnerabilities with other severity levels.
This can be partially explained by reward policies, which scale with
the severity of the vulnerabilities. In Chromium, vulnerabilities
with low severity are rediscovered more than vulnerabilities with
high and moderate severity levels. In Firefox, vulnerabilities with
low severity are rediscovered more than vulnerabilities with mod-
erate severity level. This may imply that vulnerabilities with low
severity are not only low-impact, but they are also shallow and
easier to find. With respect to programming languages, vulnera-
bilities related to CSS files in Chromium and Java files in Firefox
have higher probabilities of rediscovery compared to vulnerabilities
related to files in other languages.

As for weakness types in Chromium, vulnerabilities of the type
Permission issues are rediscovered more than vulnerabilities of other
types (Fig. 7a). In Firefox, vulnerabilities of type Incorrect type con-
version or cast are more likely to be rediscovered than vulnerabilities
of other types (Fig. 7c). We also observe that vulnerabilities that im-
pact the UI>-Browser component in Chromium and the Networking
component in Firefox are more likely to be rediscovered than vul-
nerabilities that impact other components (Figs. 7b and 7d). We also
performed statistical tests between different types of vulnerabilities.
The results show that there are significant differences between the
rediscovery probabilities of different types of vulnerabilities.

FINDING 5. There are significant differences between the rediscov-
ery probabilities of different types of vulnerabilities. Since vulnerabil-
ities that are more severe than others receive higher rewards, and they
are also rediscovered more often than other vulnerabilities, vendors
could include other properties of vulnerabilities in their reward policy
to incentivize external bug hunters.
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Figure 7: Fraction of vulnerabilities that are rediscovered at
least once in Chromium and Firefox.

4 RELATED WORK

From a technical perspective, vulnerability discovery can be ap-
proached with a variety of static, dynamic, and concolic analysis
methods as well as fuzzing [8, 11]. Taking an analytical and em-
pirical perspective, Massacci and Nguyen [25] evaluated different
mathematical vulnerability discovery models, which can be benefi-
cial for vendors and users in terms of predicting vulnerability trends,
adapting patching and update schedules, and allocating security
investments. Prior works also investigated the empirical facets of
vulnerability discovery in the context of bug bounty programs (e.g.,
[1,9, 10, 22, 23, 35, 36]) and security bulletins (e.g., [12, 13]); how-
ever, research on rediscovery of vulnerabilities is sparse. Ozment
[28] provided data on rediscovery frequency based on Microsoft’s
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vulnerability bulletins and concluded that rediscovery is not negligi-
ble and should be explicitly considered in discovery models. Finifter
et al. [14] studied VRPs; in one part of their study, they estimated
average rediscovery rates of 4.6% and similar rates for Chromium
and Firefox, respectively. Both studies had to rely on very small
datasets, but can serve as key motivators for our work. Herr et al.
[17] estimated that vulnerability rediscovery occurs more often
than previously reported (1% to 9%) in the literature (e.g., [27])
and discuss patterns of rediscovery over time. Our work relies on
a considerably more sizable dataset, which allows us to consider
inherent patterns of rediscovery such as impacted release channels
or weakness types. As such, our work goes well beyond the mere
estimation of rediscovery rates.

Complementary to our investigation of vulnerability discovery,
Iannone et al. [18] study how, when, and under which circum-
stances vulnerabilities are introduced into software by developers
and how they are removed. While Iannone et al. studied the life-
cycle of vulnerabilities by analyzing source code, Alomar et al. [3]
conducted 53 interviews with security practitioners in technical
and managerial roles to study vulnerability discovery and manage-
ment processes in the wild. In contrast, Akgul et al. [1], Votipka
et al. [33], and Fulton et al. [15] conducted surveys and interviews
with bug hunters. Alexopoulos et al. [2] also studied bug hunters,
but instead of conducting interviews, they collected information
about a large number of bug hunters from public sources.

5 CONCLUSION

Our analysis illustrates that it is more difficult to rediscover vulner-
abilities in stable releases than in development releases, considering
all aspects of the process, including the number of bug hunters
and the time-to-patch. Further, vulnerability discoveries and redis-
coveries tend to be clustered in time after the first discovery, but
seem to exhibit a long tail afterwards. In addition, the rediscovery
probabilities of different types of vulnerabilities vary considerably.
Likewise, our analysis shows that external bug hunters and internal
staff and tools report different types of vulnerabilities, indicating
that bug-bounty programs leverage the diverse expertise of exter-
nal hackers. Furthermore, we discuss initial evidence regarding
the difference between vulnerabilities that are exploited by threat
actors and those found by external bug hunters.

Suggestions for Improving Bug Bounties. Bug-bounty programs
may benefit from incentivizing external hunters to focus more on
development releases since the temporal clustering in stable re-
leases suggest that some vulnerabilities that are relatively easy to
find are not discovered during development. Similarly, programs
may benefit from incentivizing hunters to focus more on the types
of vulnerabilities that are likely to be exploited by threat actors.
Our analysis offers another important facet for the management of
bug-bounty programs. Conducting the work to identify a vulnera-
bility and filing a comprehensive report is a time-consuming matter.
However, duplicate reports are typically not rewarded. As such, our
work may provide guidance regarding how to channel the attention
of bug hunters to avoid collisions or which patch development or
triage efforts to prioritize to avoid hacker frustration.



The Benefits of Vulnerability Discovery and Bug Bounty Programs: Case Studies of Chromium and Firefox

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. CNS-1850510. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the
National Science Foundation. We thank the anonymous reviewers
for their valuable feedback and suggestions.

REFERENCES

(1]

[10]

[11

[12

[13]

[14]

(15

[16]

Omer Akgul, Taha Eghtesad, Amit Elazari, Omprakash Gnawali, Jens Grossklags,
Michelle Mazurek, Daniel Votipka, and Aron Laszka. 2023. Bug hunters’ perspec-
tives on the challenges and benefits of the bug bounty ecosystem. In 32nd USENIX
Security Symposium (USENIX Security). https://doi.org/10.48550/arXiv.2301.04781
Nikolaos Alexopoulos, Andrew Meneely, Dorian Arnouts, and Max Miihlhauser.
2021. Who are vulnerability reporters? A large-scale empirical study on FLOSS.
In 15th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). Article 25, 12 pages. https://doi.org/10.1145/3475716.
3475783

Noura Alomar, Primal Wijesekera, Edward Qiu, and Serge Egelman. 2020. “You've
got your nice list of bugs, now what?” Vulnerability discovery and management
processes in the wild. In 16th USENIX Conference on Usable Privacy and Security
(SOUPS). 319-339. https://www.usenix.org/conference/soups2020/presentation/
alomar

Soodeh Atefi, Amutheezan Sivagnanam, Afiya Ayman, Jens Grossklags, and Aron
Laszka. 2023. The benefits of vulnerability discovery and bug bounty programs:
Case studies of Chromium and Firefox (Online Appendix). Technical Report. arXiv.
https://doi.org/10.48550/arXiv.2301.12092

Soodeh Atefi, Amutheezan Sivagnanam, Afiya Ayman, Jens Grossklags, and Aron
Laszka. 2023. Dataset: The benefits of vulnerability discovery and bug bounty
programs. (February 2023). https://doi.org/10.6084/m9.figshare.22056617
Robert M. Brady, Ross J. Anderson, and Robin C. Ball. 1999. Murphy’s law,
the fitness of evolving species, and the limits of software reliability. Technical
Report UCAM-CL-TR-471. University of Cambridge, Computer Laboratory. https:
//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-471.pdf

Sandy Clark, Michael Collis, Matt Blaze, and Jonathan M. Smith. 2014. Moving
targets: Security and rapid-release in Firefox. In 21st ACM SIGSAC Conference on
Computer and Communications Security (CCS). 1256-1266. http://dx.doi.org/10.
1145/2660267.2660320

Lei Cui, Jiancong Cui, Zhiyu Hao, Lun Li, Zhenquan Ding, and Yongji Liu. 2022.
An empirical study of vulnerability discovery methods over the past ten years.
Computers & Security 120, Article 102817 (2022), 13 pages. https://doi.org/10.
1016/j.cose.2022.102817

Aaron Yi Ding, Gianluca Limon De Jesus, and Marijn Janssen. 2019. Ethical
hacking for boosting IoT vulnerability management: A first look into bug bounty
programs and responsible disclosure. In 8th International Conference on Telecom-
munications and Remote Sensing (ICTRS). 49-55. https://doi.org/10.1145/3357767.
3357774

Amit Elazari. 2019. Private ordering shaping cybersecurity policy: The case of
bug bounties. In Rewired: Cybersecurity Governance, Ryan Ellis and Vivek Mohan
(Eds.). Wiley. https://ssrn.com/abstract=3161758

Sarah Elder, Nusrat Zahan, Rui Shu, Monica Metro, Valeri Kozarev, Tim Menzies,
and Laurie Williams. 2022. Do I really need all this work to find vulnerabilities?
An empirical case study comparing vulnerability detection techniques on a Java
application. Empirical Software Engineering 27, 6, Article 154 (2022). https:
//doi.org/10.1007/s10664-022-10179-6

Sadegh Farhang, Mehmet Bahadir Kirdan, Aron Laszka, and Jens Grossklags. 2019.
Hey Google, what exactly do your security patches tell us? A large-scale empirical
study on Android patched vulnerabilities. 2019 Workshop on the Economics of
Information Security (WEIS), 24 pages. https://doi.org/10.48550/arXiv.1905.09352
Sadegh Farhang, Mehmet Bahadir Kirdan, Aron Laszka, and Jens Grossklags.
2020. An empirical study of Android security bulletins in different vendors. In
The Web Conference 2020. 3063-3069. https://doi.org/10.1145/3366423.3380078
Matthew Finifter, Devdatta Akhawe, and David Wagner. 2013. An empiri-
cal study of vulnerability rewards programs. In 22nd USENIX Security Sym-
posium (USENIX Security). 273-288.  https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/presentation/finifter

Kelsey R. Fulton, Samantha Katcher, Kevin Song, Marshini Chetty, Michelle L.
Mazurek, Daniel Votipka, and Chloé Messdaghi. 2022. Vulnerability discovery for
all: Experiences of marginalization in vulnerability discovery. In 2023 IEEE Sym-
posium on Security and Privacy (S&P). 289-306. https://doi.ieeecomputersociety.
org/10.1109/SP46215.2023.00017

Dan Geer. 2015. For good measure: The undiscovered. ;login: 40, 2 (2015), 50-52.
https://www.usenix.org/publications/login/apr15/geer

(17]

(18]

[19

[21]

[22

(23]

[24

[25]

[26

[27]

[30

(31

(32]

[33

[34

[35

[36

w
=)

WWW ’23, May 1-5, 2023, Austin, TX, USA

Trey Herr, Bruce Schneier, and Christopher Morris. 2017. Taking stock: Estimating
vulnerability rediscovery. White Paper. Belfer Cyber Security Project. https:
//doi.org/10.2139/ssrn.2928758

Emanuele Iannone, Roberta Guadagni, Filomena Ferrucci, Andrea De Lucia, and
Fabio Palomba. 2022. The secret life of software vulnerabilities: A large-scale
empirical study. IEEE Transactions on Software Engineering 49, 1 (2022), 44-63.
https://doi.org/10.1109/TSE.2022.3140868

Andreas Kuehn and Milton Mueller. 2014. Analyzing bug bounty programs: An
institutional perspective on the economics of software vulnerabilities. In 42nd
Research Conference on Communication, Information and Internet Policy (TPRC).
https://doi.org/10.2139/ssrn.2418812

Aron Laszka, Mingyi Zhao, and Jens Grossklags. 2016. Banishing misaligned
incentives for validating reports in bug-bounty platforms. In 21st European
Symposium on Research in Computer Security (ESORICS). 161-178.  https:
//doi.org/10.1007/978-3-319-45741-3_9

Aron Laszka, Mingyi Zhao, Akash Malbari, and Jens Grossklags. 2018. The
rules of engagement for bug bounty programs. In 22nd International Conference
on Financial Cryptography and Data Security (FC). Springer, 138-159. https:
//doi.org/10.1007/978-3-662-58387-6_8

Donatello Luna, Luca Allodi, and Marco Cremonini. 2019. Productivity and
patterns of activity in bug bounty programs: Analysis of HackerOne and Google
vulnerability research. In 14th International Conference on Availability, Reliability
and Security (ARES). Article 67, 10 pages. https://doi.org/10.1145/3339252.3341495
Thomas Maillart, Mingyi Zhao, Jens Grossklags, and John Chuang. 2017. Given
enough eyeballs, all bugs are shallow? Revisiting Eric Raymond with bug bounty
programs. Journal of Cybersecurity 3, 2 (2017), 81-90. https://doi.org/10.1093/
cybsec/tyx008

Suresh S. Malladi and Hemang C. Subramanian. 2019. Bug bounty programs
for cybersecurity: Practices, issues, and recommendations. IEEE Software 37, 1
(2019), 31-39. https://doi.org/10.1109/MS.2018.2880508

Fabio Massacci and Viet Hung Nguyen. 2014. An empirical methodology to eval-
uate vulnerability discovery models. IEEE Transactions on Software Engineering
40, 12 (2014), 1147-1162. https://doi.org/10.1109/TSE.2014.2354037

David McKinney. 2007. Vulnerability bazaar. IEEE Security & Privacy 5, 6 (2007),
69-73. https://doi.org/10.1109/MSP.2007.180

Katie Moussouris and Michael Siegel. 2015. The wolves of Vuln Street: The 1st
dynamic systems model of the 0day market. In Retrieved from RSA Conference
USA. https://cams.mit.edu/wp-content/uploads/2017/12/The-Wolves- of-Vuln-
Street-The- 1st-System-Dynamics-Model- of-the-0day-Market.pdf

Andy Ozment. 2005. The Likelihood of Vulnerability Rediscovery and the Social
Utility of Vulnerability Hunting. In 4th Workshop on the Economics of Information
Security (WEIS). http://infosecon.net/workshop/pdf/10.pdf

Andy Ozment and Stuart Schechter. 2006. Milk or wine: Does software security
improve with age?. In 15th USENIX Security Symposium (USENIX Security). 93—
104. https://www.usenix.org/conference/15th-usenix-security-symposium/milk-
or-wine-does-software-security-improve-age

Eric Rescorla. 2005. Is finding security holes a good idea? IEEE Security & Privacy
3,1(2005), 14-19. https://doi.org/10.1109/MSP.2005.17

Shanto Roy, Nazia Sharmin, Jaime C. Acosta, Christopher Kiekintveld, and Aron
Laszka. 2023. Survey and taxonomy of adversarial reconnaissance techniques.
ACM Computing Surveys 55, 6, Article 112 (2023), 38 pages. https://doi.org/10.
1145/3538704

Bruce Schneier. 2014. Should U.S. hackers fix cybersecurity holes or ex-
ploit them? The Atlantic, Available online at https://www.theatlantic.com/
technology/archive/2014/05/should-hackers-fix-cybersecurity-holes-or-
exploit-them/371197/.

Daniel Votipka, Rock Stevens, Elissa Redmiles, Jeremy Hu, and Michelle Mazurek.
2018. Hackers vs. testers: A comparison of software vulnerability discovery
processes. In 39th IEEE Symposium on Security and Privacy (S&P). 374-391. https:
//doi.org/10.1109/SP.2018.00003

Thomas Walshe and Andrew Simpson. 2020. An empirical study of bug bounty
programs. In 2nd IEEE International Workshop on Intelligent Bug Fixing (IBF). IEEE,
35-44. https://doi.org/10.1109/IBF50092.2020.9034828

Thomas Walshe and Andrew C. Simpson. 2022. Coordinated vulnerability disclo-
sure programme effectiveness: Issues and recommendations. Computers & Secu-
rity, Article 102936 (2022), 14 pages. https://doi.org/10.1016/j.cose.2022.102936
Mingyi Zhao, Jens Grossklags, and Peng Liu. 2015. An empirical study of web
vulnerability discovery ecosystems. In 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS). 1105-1117. https://doi.org/10.1145/2810103.
2813704

Mingyi Zhao, Aron Laszka, and Jens Grossklags. 2017. Devising effective poli-
cies for bug-bounty platforms and security vulnerability discovery. Journal of
Information Policy 7 (2017), 372—-418. https://doi.org/10.5325/jinfopoli.7.2017.0372


https://doi.org/10.48550/arXiv.2301.04781
https://doi.org/10.1145/3475716.3475783
https://doi.org/10.1145/3475716.3475783
https://www.usenix.org/conference/soups2020/presentation/alomar
https://www.usenix.org/conference/soups2020/presentation/alomar
https://doi.org/10.48550/arXiv.2301.12092
https://doi.org/10.6084/m9.figshare.22056617
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-471.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-471.pdf
http://dx.doi.org/10.1145/2660267.2660320
http://dx.doi.org/10.1145/2660267.2660320
https://doi.org/10.1016/j.cose.2022.102817
https://doi.org/10.1016/j.cose.2022.102817
https://doi.org/10.1145/3357767.3357774
https://doi.org/10.1145/3357767.3357774
https://ssrn.com/abstract=3161758
https://doi.org/10.1007/s10664-022-10179-6
https://doi.org/10.1007/s10664-022-10179-6
https://doi.org/10.48550/arXiv.1905.09352
https://doi.org/10.1145/3366423.3380078
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/finifter
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/finifter
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00017
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00017
https://www.usenix.org/publications/login/apr15/geer
https://doi.org/10.2139/ssrn.2928758
https://doi.org/10.2139/ssrn.2928758
https://doi.org/10.1109/TSE.2022.3140868
https://doi.org/10.2139/ssrn.2418812
https://doi.org/10.1007/978-3-319-45741-3_9
https://doi.org/10.1007/978-3-319-45741-3_9
https://doi.org/10.1007/978-3-662-58387-6_8
https://doi.org/10.1007/978-3-662-58387-6_8
https://doi.org/10.1145/3339252.3341495
https://doi.org/10.1093/cybsec/tyx008
https://doi.org/10.1093/cybsec/tyx008
https://doi.org/10.1109/MS.2018.2880508
https://doi.org/10.1109/TSE.2014.2354037
https://doi.org/10.1109/MSP.2007.180
https://cams.mit.edu/wp-content/uploads/2017/12/The-Wolves-of-Vuln-Street-The-1st-System-Dynamics-Model-of-the-0day-Market.pdf
https://cams.mit.edu/wp-content/uploads/2017/12/The-Wolves-of-Vuln-Street-The-1st-System-Dynamics-Model-of-the-0day-Market.pdf
http://infosecon.net/workshop/pdf/10.pdf
https://www.usenix.org/conference/15th-usenix-security-symposium/milk-or-wine-does-software-security-improve-age
https://www.usenix.org/conference/15th-usenix-security-symposium/milk-or-wine-does-software-security-improve-age
https://doi.org/10.1109/MSP.2005.17
https://doi.org/10.1145/3538704
https://doi.org/10.1145/3538704
https://www.theatlantic.com/technology/archive/2014/05/should-hackers-fix-cybersecurity-holes-or-exploit-them/371197/
https://www.theatlantic.com/technology/archive/2014/05/should-hackers-fix-cybersecurity-holes-or-exploit-them/371197/
https://www.theatlantic.com/technology/archive/2014/05/should-hackers-fix-cybersecurity-holes-or-exploit-them/371197/
https://doi.org/10.1109/SP.2018.00003
https://doi.org/10.1109/SP.2018.00003
https://doi.org/10.1109/IBF50092.2020.9034828
https://doi.org/10.1016/j.cose.2022.102936
https://doi.org/10.1145/2810103.2813704
https://doi.org/10.1145/2810103.2813704
https://doi.org/10.5325/jinfopoli.7.2017.0372

WWW °23, May 1-5, 2023, Austin, TX, USA

A ADDITIONAL DATA

Soodeh Atefi, Amutheezan Sivagnanam, Afiya Ayman, Jens Grossklags, and Aron Laszka

Table 7: Mean Patching Time in Days

Chromium Security Severity Days Firefox Security Severity Days
. Critical 28.46 Critical 23.56
Table 3: Number of Reports Per Year Based on Severity Tiigh 3525 Tiigh 5526
Year Opened Chromium Firefox Moderate 47.14 Moderate 133.24
Critical | High | Moderate | Low || Critical | High | Moderate | Low Low 114.09 Low 183.38
2008 3 Chromium Weakness Types Days Firefox Weakness Types Days
2009 5 52 33 46 Race condition 53.27 Race condition 65.90
2010 20 285 98 140 Expired pointer dereference 30.17 Expired pointer dereference 39.78
2011 54 528 134 133 Memory buffer bounds error 49.99 Memory buffer bounds error 42.39
2012 17 729 278 159 391 123 94 29 Improper input validation 74.31 Improper input validation 100.70
2013 20 544 242 154 331 215 92 56 Exposure of sensitive information | 79.57 Exposure of sensitive information 107.61
2014 12 661 496 157 217 226 103 55 Numeric errors 49.44 Numeric errors 25.45
2015 10 675 282 174 170 263 124 63 Permission issues 102.96 Incorrect type conversion or cast 24.75
2016 17 574 560 208 146 287 125 102 Null pointer dereference 94.66 7PKSecurity features 143.80
2017 25 855 726 325 106 427 164 82 Improper access control 60.67 || Permissions-privileges-access controls | 91.82
2018 24 942 772 365 30 236 113 71 Resource management error 28.64 Resource management error 49.55
2019 45 859 807 355 17 235 112 45 f -
Chromium Component Days Firefox Component Days
2020 21 732 481 216 9 175 107 40 Tnt Ts>5Ki 29.32 XPC T 120.77
Is=>Skia X : .
2021 31 900 547 207 0 128 84 39 e e S o Terse
5> . .
2022 8 280 142 78 3 15 32 17 o ernaﬁ court y
Platform 90.85 Networking 72.86
Internals>Plugins>PDF 46.11 Layout 119.37
Internals>Plugins 56.29 JavaScript: GC 48.91
UI>Browser 88.26 JavaScript Engine: JIT 35.70
Table 4: Number of Reports Per Year Based on Releases Ul 8232 JavaScript Engine 52.88
Year Opened Chromium Firefox Blink>JavaScript 13.27 Graphics:. Text 56.55
# of Stable Reports | # of Development Reports || # of Stable Reports | # of D Reports Internals 48.20 Graphics 80.97
2008 1 Blink 51.58 DOM: Core & HTML 51.11
2009 %5 1
2010 361 0 Chromium Language Days Firefox Language Days
2011 524 277 Cer 39.18 C++ 51.21
2012 716 103 302 396
2013 551 96 248 514 JS 34.28 JS 66.47
2014 776 338 270 113 HTML 65.87 HTML 81.90
2015 651 401 334 362 C 31.25 C 52.99
2016 637 538 376 331
o017 it e S5 7 XML 114.00 XML 110.81
TIES 75 ot 81 T Python 73.71 Python 87.57
2019 860 1066 233 209 Java 76.11 Java 189.70
2020 685 512 212 147 CSS 69.44 CSS 33042
2021 435 624 177 117 - -
2022 4 160 IS 29
Table 8: Chi-Squared Test Results
. . . Chromium Internal vs. External Reports p-Value Firefox Internal vs. External Reports pValue
Table 5: Number of Original Vs. Duplicate Reports Per Year Tnpacted Releases <oor Tnpacted Releases —wi
Security-Severity <001 Security Severity <001
Year Opened Chromium Firefox Component 0.0 Component < .001
# of Duplicate Reports | # of Original Reports || # of Duplicate Reports | # of Original Reports Weakness Types <.001 Weakness Types <001
3008 B Language <001 Language <001
2009 7 212 Chromium Internal vs. External Reports (Only Stable) | p-Value || Firefox Internal vs. External Reports (Only Stable) | p-Value
3010 1 =0 Security Severity <001 Security Severity <001
Component 0.0 Component <001
2011 21 o1 Weakness Types <001 Weakness Types <001
2012 330 1278 157 541 Language <01 Language <001
2013 218 1253 154 608 Chromium Rediscoveries p-Value Firefox Rediscoveries p~Value
2014 275 1509 148 535 Impacted Releases <001 Impacted Releases 0.006
2015 320 1243 147 549 Security-Severity <001 Security -Severity <001
2016 310 1642 153 554 Component 00 Component 00
2017 58 2156 21 596 Weakness Types 00 Weakness Types <001
2018 = 3292 92 106 Language 00 Language 00
2019 207 7743 ) 360 Chromium Exploited vs. All Other ilities | p-Value || Firefox Exploited vs. All Other iliti p-Value
3020 13 2061 5 316 Tmpacted Releases <001 Tmpacted Releases 0001
Security-Severity 0.06 Security-Severity 0.006
2021 373 2422 2 268 Component 001 Component <001
2022 109 828 3 71 Weakness Types 0.87 Weakness Types 0.99
Tanguage 0.45 Language 0.97
Chromium Exploited vs. All External Vulnerabilities | p-Value || Firefox Exploited vs. All External Vulnerabilities | p-Value
Tmpacted Releases 001 Tmpacted Releases 001
Security-Severity 001 Security Severity 0003
. . Component Component
Table 6: Number of Reports Per Year Based on The Origins Weakness Types Weakness Types
Language 021 Language
Year Opened Chromium Firefox
# of Internal Reports | # of External Reports || # of Internal Reports | # of External Reports
2008 23 28
2009 146 83
w 5 o Table 8 shows the results of chi-squared tests between different
2012 867 741 502 19 types of vulnerabilities. For some variables, we could not apply
2013 833 638 549 213
2011 1023 761 510 173 tests due to the 0 values (empty cells).
2015 762 801 460 236
2016 915 1037 461 246
2017 1590 1024 555 282
2018 1551 Ti6s 5 T B INTERNAL AND EXTERNAL REPORTS
2019 1908 1241 311 131
220 1039 1338 o 5 IMPACTING STABLE RELEASES
2021 1130 1665 206 88
2022 263 674 5 17 Fig. 8 shows the distribution of weakness types and impacted com-

Tables 3 to 6 show annual data.
Table 7 shows how average patching time varies with severity,

weakness type, components, and programming languages.

ponents for internal and external reports in stable releases. As
for weakness types, we find that reports related to Memory buffer
bounds error are the most common among both origins, in both
Chromium and Firefox (Figs. 8a and 8c). In Chromium, the Blink
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(c) Firefox Vulnerabilities by Weakness Types
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Figure 8: Comparison of internal (M) and external (¥) security
reports in stable releases of Chromium and Firefox.

component is most commonly impacted by both internal and exter-
nal reports (Fig. 8b). In Firefox, Javascript Engine is most common
among internal reports, while Dom: Core & HTML is most common
among external ones (Fig. 8d). We also compared internal and exter-
nal reports in terms of severity and programming languages. Most
internal and external reports have high severity in both Chromium
and Firefox. External reports are more common than internal ones
among vulnerabilities with critical severity in both software prod-
ucts. As for programming languages, we find that most reports are
related to C++, regardless of origins, for both Chromium and Firefox.
Pearson’s chi-squared test shows that external and internal reports
(that impact stable releases) follow significantly different distribu-
tions in terms of severity, weakness type, impacted components,
and programming languages in both Chromium and Firefox.
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Figure 9: Comparison of exploited vulnerabilities (W) and all
other vulnerabilities (#) in Chromium and Firefox.

C COMPARISON OF EXPLOITED
VULNERABILITIES

We compare vulnerabilities that are exploited in the wild with all
other vulnerabilities (i.e., vulnerabilities that have not been ex-
ploited). Fig. 9 shows the distributions of weakness types and com-
ponents for exploited vulnerabilities and all other vulnerabilities for
both Chromium and Firefox. The results of Pearson’s chi-squared
test show that exploited vulnerabilities and all other reported vul-
nerabilities follow significantly different distributions in terms of
impacted release channels and components in Chromium. Chi-
squared tests for Firefox show that exploited vulnerabilities and
all other reported vulnerabilities follow significantly different dis-
tributions in terms of impacted release channels, security severity,
and impacted components (weakness types and languages accepted

the null).
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