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ABSTRACT
In 2017, GitHub was the first online open source platform to show
security alerts to its users. It has since introduced further secu-
rity interventions to help developers improve the security of their
open source software. In this study, we investigate and compare
the effects of these interventions. This offers a valuable empirical
perspective on security interventions in the context of software
development, enriching the predominantly qualitative and survey-
based literature landscape with substantial data-driven insights. We
conduct a time series analysis on security-altering commits cover-
ing the entire history of a large-scale sample of over 50,000 GitHub
repositories to infer the causal effects of the security alert, security
update, and code scanning interventions. Our analysis shows that
while all of GitHub’s security interventions have a significant pos-
itive effect on security, they differ greatly in their effect size. By
comparing the design of each intervention, we identify the building
blocks that worked well and those that did not. We also provide
recommendations on how practitioners can improve the design of
their interventions to enhance their effectiveness.
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1 INTRODUCTION
Code security has emerged as a rapidly growing concern in the
field of usable security research. A major contributing factor to the
production of insecure code by developers is the reuse of vulnera-
ble resources, such as insecure open source code and third-party
libraries [1, 2, 8, 11, 13, 14]. Perhaps surprisingly, even AI assistants
can provide insecure recommendations since they are trained using
insecure source code. The implications of insecure code are signifi-
cant and can lead to severe security breaches, making it crucial to
address this issue.

In response, numerous strategies aimed at assisting developers
in producing secure and functional code have been studied. These
include utilizing security alerts in development environments, code
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libraries, and compilers to a greater extent. Additionally, more
user-focused warning designs that incorporate recommendations,
quick fixes, or code examples within development environments or
directly from open source platforms have been explored [1, 2, 11–
14, 18, 25]. However, despite these extensive research efforts, the
effectiveness of these interventions has primarily been evaluated
in laboratory settings or online research studies, and their practical
impact remains uncertain.

GitHub was the first platform to make practical use of the diverse
insights from prior research by deploying three security interven-
tions in stages. On November 16, 2017, the platform introduced
security alerts for vulnerable dependencies. Two years later, on
May 23, 2019, GitHub announced an additional intervention that
provides automated updates for vulnerable dependencies. GitHub’s
more recent security intervention, which scans code to detect a
wide range of dangerous Common Weakness Enumeration (CWE)
vulnerabilities in popular programming languages, was deployed
on September 30, 2020.

As an open source platform, GitHub provides the research com-
munity with an opportunity to evaluate the impact of scientific
research-based interventions on code security in practice. Sufficient
time has elapsed since GitHub implemented its interventions to
enable the collection of meaningful data for investigating the ef-
fectiveness of these interventions. This presents an opportunity
to identify successful building blocks, as well as any flaws in the
current design that require improvements.

However, a challenge arises in evaluating the effectiveness of
these interventions, as they have already been deployed and GitHub
users have been introduced to the new security innovations. This
makes it difficult to perform randomized experiments, where one
group receives the treatment and another group does not. Such
experiments can only be conducted internally by GitHub.

To provide the research community with a means of assessing
interventions on GitHub, we demonstrate how to apply counterfac-
tual prediction to measure the causal effects of interventions that
have already been deployed. Counterfactual prediction involves
predicting how the dependent variable, i.e., security of reposito-
ries, would have evolved if an intervention that actually happened
had not occurred. The difference between the observed outcome
and the counterfactual prediction represents the causal effect of an
intervention.

We used counterfactual prediction to examine the causal effects
of all three security interventions, which included security alerts
and updates as well as code scanning. Our analysis showed that
all three interventions had positive effects on code security, but
the size of the effects varied significantly. While the deployment of
security alerts and updates was generally successful, resulting in a
relative increase of security updates by more than 149%, the code
scanning intervention was not as impactful, leading to an increase
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of only 2% in the amount of patched vulnerabilities. We compared
the interventions and offered recommendations on how to improve
them based on what worked well and what did not.

We summarize our key contributions and findings as follows:

• We conduct a time series analysis on security-altering com-
mits covering the entire history of a large-scale sample of
51,097 GitHub repositories.

• We infer causal relationships involving security alerts, secu-
rity updates, and code scanning within this dataset.

• The presence of security alerts related to vulnerable depen-
dencies had the most significant positive impact, resulting
in an approximately 149% increase in the number of security
updates manually executed by users.

• Automated security updates for vulnerable dependencies
led to a further enhancement, resulting in an additional 32%
increase in the number of security updates.

• The majority of the security improvements implemented in
response to the interventions remained effective and opera-
tional over time, underscoring the resilience of the reposi-
tories’ functionality in the face of these interventions. This
observation implies that the interventions, as introduced,
did not compromise or disrupt the repositories’ essential
functionality.

• The code scanning intervention had a moderate impact,
leading to a reduction of 2% of CWE-079 vulnerabilities in
JavaScript source code. The observed effects on the reduc-
tion of CWE-020 vulnerabilities in Python source code were
found to be insignificant.

We structure our work as follows: we first discuss related work
in Section 2 and introduce the studied interventions in Section 3.
We present our methodology on sampling and on measuring the
effects of the interventions in Sections 4–6, and present our re-
sults in Section 7. We discuss our work in Sections 8–10, and offer
concluding remarks in Section 11.

2 RELATEDWORK
In the following, we discuss related work with a primary focus on
the GitHub platform.

On June 29, 2021, GitHub announced the Copilot assistant1,
which, based on a large AI language model provides autocomplet-
ing functionality during code development. The feature is primarily
available via a subscription model. Of particular relevance for our
work is a recent research paper by Pearce et al. [27] demonstrating
that in security-relevant code development scenarios, Copilot fre-
quently produces suggestions with vulnerabilities on the Common
Weakness Enumeration list. Research on training an AI language
model to more reliably produce secure code is orthogonal to our re-
search agenda, but such work could lead to other concrete security
interventions on GitHub.

GitHub Actions – released to the public in December 2019 –
allows for the automation of repetitive steps during software de-
velopment on the platform. Kinsman et al. [24] investigated this
tool empirically. Of relevance to our work is that only 13 out of 708

1https://copilot.github.com/

defined actions (in their set of studied repositories) focus on secu-
rity. However, they also demonstrate that the automation offered
by GitHub Actions is received favorably by early adopters.

Angermeier et al. [4] investigated the overall adoption of tools
in enterprise-driven repositories on GitHub that use continuous in-
tegration frameworks. In their sample of 8,423 projects, 765 (6.83%)
showed evidence of security-related tool use; in particular, 169 were
found to use Dependabot, and at least 68 used CodeQL. Within the
investigated sample, the security-related tools were the most fre-
quently used, which further emphasizes the relevance of our work.

Kavaler et al. [23] study tool choice by developers on GitHub in
the context of JavaScript. However, they focus on quality assurance
more broadly, rather than security. In particular, their sample does
not focus on the security interventions studied in our paper. Their
work, however, offers interesting insights regarding tool adoption
decision-making and tool abandonment.

Tan et al. [34] conducted an applied course project focused on
security improvements on GitHub. Students (based on detailed in-
structions) provided suggestions to open source projects on GitHub
to fix identified security issues. Interestingly, 93 of 214 suggestions
were indeed merged by developers, which showcases a general
willingness by GitHub users to adopt unsolicited security advice.

In contrast, Panichella et al. [26] provide interesting insights into
why issues reported to repository owners are marked as “wontfix”.
Close to 50% of wontfix issues are not addressed directly because
they are marked as “already implemented or not needed.” Other
leading reasons are that the reported issues are not relevant or do
not actually constitute a bug. However, in about 11% of the cases
the issues are acknowledged as bugs, but they are considered as
too expensive or difficult to fix etc. In those cases, automatically
provided recommendations could be particularly helpful. In their
sample of wontfix issues, only 0.6% have been specifically labeled
as security-relevant issues.

Several reports investigate the demographics, perceptions and
interests as well as concerns (e.g., regarding problems in the com-
munity such as harassment) of GitHub users, e.g., [16, 17, 33]. The
GitHub Open Source Survey [16, 17], for example, reveals that users
believe open source software to be more secure than proprietary
software (58%) and that they consider security to be extremely
important or very important (86%). However, the survey did not
address (potential or actual) tool usage on GitHub.

The GitHub platform is also regularly used to recruit subjects for
research studies in security [3, 18] or software engineering contexts
[6, 19–21, 28–30, 32, 37] as well as gender and diversity matters
[35, 36].

Taken together, several studies investigate the usage and impact
of tools on GitHub; but none explore security-focused interventions
on GitHub. Given the importance and popularity of GitHub as a
software development platform for open source as well as commer-
cial software, and the fact that GitHub serves as a key innovator in
security-oriented tooling our work addresses an important gap in
practically relevant software engineering and security research.

3 SECURITY INTERVENTIONS
Since 2017, GitHub has consecutively introduced three major se-
curity interventions, namely security alerts, security updates and

https://copilot.github.com/
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code scanning. While the first two interventions scan and update
vulnerable dependencies used by the source code of each repository,
the third intervention scans the source code itself to find security
weaknesses. Below, we provide an overview of the interventions
and explain how they communicate their findings to the user.

Security alerts & updates. On November 16, 2017, GitHub
introduced security alerts. The intervention scanned the reposi-
tory for dependencies that contain Common Vulnerabilities and
Exposures (CVEs) and suggested known fixes from the GitHub com-
munity. Security alerts were enabled by default and were shown
to the administrator of the repository in the dependency graph
settings.

Two years later on May 23, 2019, GitHub acquired Dependabot,
which also provides a feature for security updates. For each vul-
nerable dependency, Dependabot tries to find a secure version and
raises a pull request that automatically updates the dependency to
the minimum version including the patch. This intervention offered
several notification types, which are enabled by default. An email
is sent when a new vulnerability with a critical or high severity is
found. UI alerts are shown in the repository’s file and code views if
Dependabot finds any vulnerable dependencies. Whenever users
push to a repository via command line, a callback displays a warn-
ing if there are any vulnerabilities found. Web notifications are
shown in the user’s inbox when a new vulnerability with a critical
or high severity is found. Security updates were not enabled by
default and had to be activated by users.

Dependabot opens a pull request for a repository in order to
perform the security updates. The user can then decide whether
they want to accept the request by clicking the merge button in the
pull request view. This is the only action that the user is required
to perform. The remaining parts of the intervention run completely
automated.

Note, security alerts and security updates are two different inter-
ventions and are investigated separately in the remainder of this
paper.

Code scanning. On September 30, 2020, GitHub launched code
scanning. The security intervention is powered by CodeQL, a static
code analysis tool, which is able to detect vulnerabilities listed
by the Common Weakness Enumeration (CWE) for a range of
popular programming languages. In contrast to security alerts,
code scanning is not enabled by default. Users need to activate it
in the security view on GitHub. On each push to the repository,
CodeQL triggers a scan of the default branch and any protected
branches. Pull requests targeted against the default branch are
scanned automatically as well. Additionally, a repository is scanned
on a fixed schedule once a week by default. The schedule can be
adjusted by the user.

Code scanning alerts are shown in the repository’s security view.
They highlight vulnerabilities in the code that triggered the alert
and provide annotations such as severity and information on how
to fix the problem. CodeQL additionally provides data flow analysis
that illustrates how data flows through the code. This is supposed to
help users to identify areas of code that leak sensitive information.

4 SECURITY ALERTS AND UPDATES
This section outlines the data, sampling method and metrics that
were used for the causal effect analysis of the security alert and
update interventions.

4.1 Sampling
We compiled a random sample from the complete population of
178,995,108 repositories on GitHub, collected until April 2022. The
sample consists of 100,000 repositories that apply JavaScript or
Python. We decided to focus on these programming languages
due to their popularity (about 27% of pull requests on GitHub;
second quarter 2022). In addition, JavaScript and Python were the
two most commonly used programming languages (according to
percentage of pull and push requests) between 2013 and 2021.2
Within the sample, we were able to identify 41,097 repositories that
utilized at least one dependency with a recorded vulnerability in
their version history. However, it is worth noting that the presence
of such a vulnerability does not necessarily indicate that these
repositories utilized a vulnerable version of the dependency. To
determine whether the used version was indeed vulnerable, we
cross-referenced the publicly available vulnerability list, which is
also utilized by Dependabot, GitHub’s own detection system. This
list also provides additional details about the patched versions and
the severity of the vulnerabilities.

4.2 Metrics
In order to test and compare the effectiveness of the security alerts
and updates we used three different metrics.

Updated vulnerable dependencies. Updated vulnerable depen-
dencies will show how many users have replaced a vulnerable
dependency with an updated version that fixed the vulnerability.
This allows measuring differences in the updating behavior before
and after the intervention.

Revoked updates. This metric captures the amount of vulnera-
ble dependencies that initially have been updated by the user, but
were then replaced by the vulnerable version again. This allows
analyzing whether a security update likely broke the repository, for
instance due to compatibility issues. We think this metric is partic-
ularly important since it measures the usability of the intervention.
According to related work, we would expect a large fraction of
users to ignore security alerts once they experienced that updates
break the functionality of their code (see, for example, observations
by Johnson et al. [22] and Danilova et al. [9]).

Committed vulnerable dependencies. Measuring the amount
of committed vulnerable dependencieswill allow evaluatingwhether
the intervention had educational effects on users. It can indicate
whether users became aware of certain vulnerable dependencies
and whether they started using updated versions in future software
development scenarios.

4.3 Time series data
To apply the metrics outlined in Section 4.2, we generated time
series data by downloading all repositories in our sample. For each
2https://madnight.github.io/githut/
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repository, we scanned through the commits pushed to the active
main branch, and extracted those that altered the npm configuration
file. This file maintains a record of all the JavaScript dependencies
utilized by the repository. We then used this information to con-
struct three time series.

Firstly, the time series of updated vulnerable dependencies con-
tains all commits from all repositories where a previously commit-
ted vulnerable version of a dependency was updated with a version
that does not contain a known vulnerability.

Secondly, the time series of revoked updates contains all com-
mits from all repositories where these updated dependencies were
replaced once again with the previous vulnerable version.

Lastly, the time series of committed vulnerable dependencies
contains all commits from all repositories that added a vulnerable
version of a dependency to the repository.

For each commit in each time series, we record the identified
dependency and its version, the timestamp, and additional metadata
such as the repository URL, commit hash, message, and author.

5 CODE SCANNING
In this section, we present the data, sampling method and metrics
that were used for the causal effect analysis of the code scanning
analysis.

5.1 Sampling
We drew a random sample of 2.5 million repositories from the pop-
ulation of 178,995,108 repositories hosted on GitHub until April
2022. The random sample only includes repositories that utilize
JavaScript and Python, the two most popular programming lan-
guages on GitHub. These languages have several vulnerabilities
that are listed among the top five most dangerous software weak-
nesses, such as CWE-020 and CWE-79, which we studied in the
analysis of the code scanning intervention.3

To evaluate the effectiveness of code scanning, we focused on
fixing detected instances of CWE-79, the most dangerous JavaScript
vulnerability according to CWE, and CWE-020, one of the most
dangerous Python vulnerabilities. To meet our criteria, our sample
had to include repositories that applied JavaScript and Python,
had code scanning activated, and had at least one commit since
the activation of the intervention. We also limited our sample to
repositories that applied scanning schedules to ensure that CodeQL
was being run on a frequent basis.

We implemented several exclusion criteria to ensure the quality
of our analysis. Firstly, we excluded repositories that were forks.
When analyzing a snapshot of a fork, the results would reflect
the state of the parent repository, which might skew results by
increasing the weight of duplicated code. Secondly, repositories
that contained copies of OWASP Juice Shop4 and WebGoat5 were
also excluded since these repositories serve educational purposes,
some even with intentional security vulnerabilities. Thirdly, we
excluded a strong outlier from the sample. The project fixed 1,200
vulnerabilities more than five years before CodeQL was enabled

3https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
4https://owasp.org/www-project-juice-shop/
5https://owasp.org/www-project-webgoat/

and did not show any further change that could have been attrib-
uted to CodeQL. The outlier strongly influenced the average and,
therefore, distorted the results. By applying these exclusion criteria,
we ensured that the remaining sample was more representative of
actively maintained repositories that use CodeQL on a frequent
basis. Finally, we made sure that our samples did not deactivate
CodeQL at any point during the post-period.

To select the samples, we used the GitHub API to search for
repositories that met certain criteria, such as having previously
activated CodeQL and being actively maintained after the introduc-
tion of the code scanning intervention. Using a search parameter
that allowed us to query for commits made during a specific day,
we searched through all days since the deployment of the code
scanning intervention on GitHub. When we found a commit that
added the CodeQL configuration file to the repository, we added the
repository to the sample. Out of the 2.5 million JavaScript/Python
repositories in total, 37,856 met the criteria. From this sample, we
randomly selected 10,000 repositories for analysis.

We can estimate that this sampling method allowed us to collect
approximately 70% of all JavaScript/Python repositories that used
CodeQL. To estimate this amount, we randomly sampled a further
set of 40,000 repositories that use JavaScript and Python from the
complete GitHub population.

Using Cochran’s formula, we determined that the optimal sample
size for estimating proportions of dichotomous variables is 37,823.
Considering a population of approximately 180 million repositories,
a 99.99% confidence interval with a 1% margin of error, and an
estimated 50% activation rate of CodeQL (note that this percentage
maximizes the required sample size), our sample size of 40,000 is
deemed sufficient.

We observed that only 10 (0.00025%) of these repositories used
CodeQL. Based on this result, we can extrapolate that from the
complete population of 178,995,108 repos, at most 54,348 reposito-
ries would meet the same criteria. Therefore, our collected sample
can be considered 70% of the estimated complete set of repositories
that meet the criteria.

5.2 Metrics
To accurately measure the effectiveness of the code scanning in-
tervention, we analyzed multiple snapshots of the repositories in
our sample and measured the number of detected vulnerabilities
belonging to the CWE-079 and CWE-020 vulnerability classes. By
comparing the number of detected vulnerabilities before and after
the introduction of the intervention, we were able to determine the
extent to which users addressed these vulnerabilities in the source
code of their repositories. This approach enabled us to quantify
the impact of the code scanning intervention on improving code
security.

5.3 Time series data
We utilized the following sampling interval to create a time series
for each repository. Starting 500 days before the repository activated
code scanning, snapshots were taken every 7 days, collecting data
until 200 days after activation of code scanning. To reduce the
amount of source code that needs to be analyzed, we have limited
the length of the time series to 700 days. We are confident that a
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pre-period of 500 days and a post-period of 200 days are sufficient
to identify any causal effects that may exist.

As we created a separate time series for each repository, we
needed to merge and align them into a single time series that could
be analyzed. We aligned the time series using the activation date
of code scanning as the reference point, with timestamps given a
positive or negative time distance to the activation date in days.
However, note that merging time series data resulted in missing
snapshots for some repositories, for which we were unable to report
vulnerability information for particular timestamps during analysis.
To address this, we applied interpolation on each time series to
obtain results for the missing snapshots.

5.4 CodeQL
CodeQL is an open source command line tool6 that supports Python
and JavaScript and comes equipped with a security suite capable of
detecting CWE-0797 and CWE-020 vulnerabilities8. It analyzes the
entire Git repository and performs a scan for the queried vulnera-
bilities. CodeQL’s output is in compliance with the Static Analysis
Results Interchange Format (SARIF)9, returning a list of detected
vulnerabilities alongwith additional information such as their sever-
ity, precision of the scan, file paths, and locations of the code where
the vulnerabilities were found.

We applied CodeQL on each snapshot of every sampled repos-
itory, resulting in a time series of code scanning results for each
repository. To obtain a time series with equally spaced points in
time, we interpolated missing values. This enabled us to aggregate
the repositories’ time series into a single time series by calculating
the average number of detected vulnerabilities per sampling point.
Additionally, since our database stored the type of each detected
vulnerability, such as Xss or ReflectedXss, we were able to create
type-based time series that aggregated results based on a given
vulnerability type.

5.5 Setup
CodeQL was executed on a high-performance computing cluster
that provided 96 nodes with 28 cores each and 56 GB of memory
per node. Each core had two hyperthreads and a nominal frequency
of 2.6 GHz. The cluster was shared with other users and managed
by an independent work load manager. Code scanning jobs were
performed in batches of 250 jobs and processed using a serial queue.
Thanks to the computing cluster’s parallel processing capabilities,
we were able to complete the scanning of all repositories in a rea-
sonable amount of time.

6 COUNTERFACTUAL PREDICTION
This section outlines the methodology we used for estimating the
causal effect of all three interventions.

We perform counterfactual prediction on the collected time se-
ries in order to predict whether the deployed interventions had
a significant causal effect on the measured metrics. This type of
non-experimental approach to causal inference is required since

6https://github.com/github/codeql
7https://github.com/github/codeql/tree/main/javascript/ql/src/Security/CWE-079
8https://github.com/github/codeql/tree/main/python/ql/src/Security/CWE-020
9https://docs.oasis-open.org/sarif/sarif/v2.1.0/cs01/sarif-v2.1.0-cs01.html

the interventions have already been deployed and we cannot per-
form a randomized experiment where a subset of users were not
confronted with the intervention.

Counterfactual prediction is a technique that enables us to esti-
mate the causal effect of an intervention by predicting what would
have happened in the absence of the intervention. To do this, we
use a Bayesian structural time-series model that relies on two types
of time series: a response time series and one or more control time
series [7].10

The response time series is the data that we collected and de-
scribed in the previous Section 4.3. It represents the outcome that
we are interested in, such as the updates, revokes and vulnerable
commits before and after the intervention.

The control time series, on the other hand, are covariates that
we use to help explain the variation in the response time series. For
instance, we might use the weather conditions, day of the week, or
other relevant factors that could impact the response time series.

The Bayesian structural time-series model is trained on the re-
sponse time series from the pre-intervention period, as well as the
control time series. The model learns how to explain the response
time series as a function of the control time series.

Once the model is trained, we can use it to predict what would
have happened in the post-intervention period if the intervention
had never occurred. We call this prediction the “synthetic control”,
as it represents a hypothetical scenario where the intervention was
not implemented. To make this prediction, we input the control
time series from the post-intervention period into the model.

The difference between the synthetic control and the actual
response time series in the post-intervention period gives us an
estimate of the causal effect of the intervention.

6.1 Control time series
To create the control time series for the security alert and update
intervention, we focused on dependencies that were not present in
GitHub’s vulnerability list and have not been known to be vulnera-
ble. This time series comprises only those commits that altered such
non-vulnerable dependencies. We chose this control time series
because we expected it to exhibit some correlation with the three
observed time series in the pre-intervention period. By selecting
dependencies that are not listed as vulnerable, we aim to capture
the underlying patterns that are not related to security issues. This
approach helps us to better isolate the causal effect of the inter-
ventions on the response time series. The control time series was
created from a set of 40,000 repositories.

The control time series for the code scanning intervention com-
prised 10,000 repositories utilizing JavaScript or Python without
CodeQL activation. It tracked the number of commits per time
interval that modified Python or JavaScript files.

6.2 Necessary condition
To ensure that the control time series used in our analysis were
appropriately matched with the response time series during the
pre-intervention period, we conducted correlation tests on both
sets of time series. We detrended and conducted Pearson tests on

10Please refer to the research paper by Brodersen et al. [7] to find more details about
the architecture and evaluation of the model.
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(a) Security alert intervention (b) Security update intervention

Figure 1: Observed and predicted time series of updated vulnerable dependencies per month. The vertical dashed line indicates
the day of the deployment of the intervention. The left plot shows the effect of the alert intervention and the right plot the
additional update intervention.

all pairs of response and control time series, and found that they
all exhibited statistically significant correlations (𝑝 < 0.05). This
established their suitability for the causal inference framework.

6.3 Assumptions
Non-experimental causal inference requires strong assumptions
for the control time series in order to be able to draw valid conclu-
sions [5]. In particular, the following assumptions must hold:

Assumption 1: The control time series is not affected by the inter-
vention.

This is important because if the control time series is influenced
by the intervention, we might mistakenly conclude the existence
of an effect or we might under- or overestimate the true effect.

Fortunately, our control time series is unlikely to be affected
by the intervention. This is because the intervention only targets
dependencies that are present in the vulnerability list, which should
not have any impact on the number of commits for dependencies
that are not in the list.

Assumption 2: The relationship between the control time series
and the response time series established during the pre-intervention
period remains stable throughout the post-intervention period.

If the correlation between the two time series changes in the
post-period, the predicted synthetic control time series may not be
accurate.

However, both the control time series and the response time
series are measuring the same underlying phenomenon, namely,
changes in dependency updates over time. Therefore, it is logical
to assume that any relationship established between the two time
series during the pre-intervention period would remain stable in
the post-intervention period.

We applied the Python package causal_impact for the analysis
and the causal impact visualizations.11

7 RESULTS
7.1 Security alerts and updates
The purpose of this section is to present the results of the causal
inference analysis conducted to investigate the impact of security
alerts and updates on the use of vulnerable dependencies in GitHub
projects. To this end, we collected time series data on updated vul-
nerable dependencies, revoked updates, and committed vulnerable
dependencies, which are visualized in Figures 1 through 3. These
plots illustrate the response time series and the time series pre-
dicted by the model, as well as their difference, and highlight the
cumulative impact of the interventions. The results for the secu-
rity alert and update interventions are shown in the left and right
subplots, respectively. In each subplot, the response time series
for updates, revokes, and vulnerable commits are represented by a
black line labeled ‘endog’. The predicted time series generated by
the model is illustrated by the dashed red line labeled ‘model’. To
facilitate analysis, we have separated both time series into two pe-
riods: pre-intervention and post-intervention, which are indicated
by a vertical dashed line.

Updated vulnerable dependencies pre security alerts. Fig-
ure 1 depicts the time series of updated vulnerable dependencies,
with the left plot representing the security alert intervention and
the right plot showing the additional effect of the security update
intervention.

Before the introduction of the security alerts, the upper-left plot
(observation vs. prediction) shows that updates were performed
11https://github.com/tcassou/causal_impact

https://github.com/tcassou/causal_impact
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rarely, with the daily number of updates hovering around zero
to fifty per day. This is illustrated by the response time series,
displayed as the black line labeled ‘endog´ in the upper-left plot.
The response time series shows a consistent, slight upward trend
with occasional spikes, which flattens out until the introduction of
the intervention, indicated by the dashed vertical line. The marginal
upward trend observed in the pre-period of the intervention can
be attributed to the natural growth in the number of repositories
over time, which can result in an increase in any type of commits.
The model accurately captures the trend of the response time series
during the pre-period, as shown by the red dashed line labeled
‘model’ up until the day the intervention was introduced.

Updated vulnerable dependencies post security alerts. After
the introduction of the security alerts, the response time series
shows a marked increase in the number of committed updates per
day. Overall, we observed a total of 2,806 updates during the post-
intervention period. However, the model predicted that the daily
updates would remain relatively constant and flat throughout the
entire post-period in the absence of the alert intervention, similar
to the pre-period. Specifically, the model predicted only 1,126 up-
dates, with a 95% confidence interval of [66, 2186]. By subtracting
this prediction from the observed number of updates, we estimated
the causal effect of the alerts on the total amount of updates. The
effect was substantial, leading to a 149.0% increase in the amount
of updates, with a 95% confidence interval of [243.1%, 55.0%]. The
probability of obtaining such an effect by chance is very low, with
a Bayesian one-sided tail-area probability of 𝑝 = 0.019, indicating
that the causal effect is statistically significant. These findings sug-
gest that the alerts had a strong positive impact on the amount of
updates made, resulting in a significant increase in the overall level
of security.

To recap, we found a surprisingly large effect of security alerts
with an increase of 149% updates on average. While prior work
has shown that security alerts are generally effective, they tend
to have a relatively small effect size. The positive effect could be
caused by the thorough alert design GitHub has applied. First of all,
GitHub offers different notification types for security alerts. Users
are notified by email, command line interface (on push events),
and on GitHub by default. Moreover, alerts include CVSS metrics,
which allow users to better evaluate the risk. For instance, it allows
users to understand that confidential data can be stolen remotely by
performing a relatively easy attack that does not require any privi-
leges or user interaction. Finally, GitHub’s security alerts provide
actionable recommendations on how to fix detected issues. These
include a list of patched versions of the vulnerable dependencies.
Previous work has shown that informing users about potential risks
and attack vectors, while simultaneously recommending actions
that provide a way out of the warning situation, improve the ef-
fectiveness of warnings [31]. However, users still had to find and
install the recommended versions themselves. This is an additional
burden, which might have contributed to users not performing an
update. Unfortunately, GitHub does not provide a recommended
action in case a patched version is unavailable.

Updated vulnerable dependencies pre security updates. In
Figure 1, we present the plots on the right side that depict the
impact of the update intervention that was implemented at a later

stage. The upper-right plot displays the response time series of
updates represented by the black line labeled ‘endog’, while the
predicted time series generated by the model is illustrated by the
dashed red line labeled ‘model’. Both time series were separated
into two periods: pre- and post-intervention, indicated by a vertical
dashed line.

Prior to the update intervention, the impact of the alert inter-
vention can still be observed as its post-period ends just before the
update intervention. During this period, we observed a decrease in
the effect of the alert intervention, with the number of updates per
month showing a slight downward trend.

Updated vulnerable dependencies post security updates. Im-
mediately after the update was deployed, the number of updates per
month showed a sharp increase, averaging 138 updates per month.
Interestingly, ourmodel predicted that the number of updates would
continue to stagnate, estimating an average of 105 updates per
month in the absence of intervention (95% CI: [36, 174]). This repre-
sents an increase of updates of 31.7% (95% CI: [97.3%,−33.9%]). The
causal effect is statistically significant (Bayesian one-sided tail-area
probability 𝑝 = 0.001).

Based on our analysis, it appears that the security alerts inter-
vention was more effective, resulting in a 149% increase in updates
per month. However, it is important to consider that the update
intervention was built on top of the security alerts and implemented
much later in time. This means that the impact of the security alerts
was already present in the data when the update intervention was
introduced. The model accounts for this by predicting that the num-
ber of updates per month would be 105 if the update intervention
had not occurred, which is similar to the amount observed during
the post-period of the security alerts intervention. In conclusion, the
update intervention improved upon the security alerts intervention
by an additional 31.7%.

We also need to take into account the relatively shorter post-
period of the update intervention. Therefore, the effect of the inter-
vention could become much more significant over time. As shown
in the bottom-right plot in Figure 1, the cumulative impact of the
update intervention has a steeper increase compared to security
alerts as shown in the bottom-left plot. This indicates that more
updates occurred during the first few months after the update inter-
vention was implemented. These additional improvements of the
update intervention are reasonable as automating security updates
reduces the burden on users. Given the higher frequency of updates
during the post-period of the update intervention, we expect it to
become even more effective than security alerts.

Revoked updates pre and post security alerts. The upper-left
plot in Figure 2 shows a very subtle upward trend in the amount
of revokes per month in the pre-period of the security alert inter-
vention. This trend can be explained by the increasing amount of
repositories that were created on GitHub.

However, during the post-period of the security alert interven-
tion, we observed a downward trend in the average number of
revoked updates. On average, 15 updates were revoked each month,
which is lower than the expected 24 updates that would have
been revoked in the absence of the intervention (95% CI: [−8, 56]).
This corresponds to a 34.8% reduction in revoked updates (95% CI:
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(a) Security alert intervention (b) Security update intervention

Figure 2: Observed and predicted time series of revoked updates per month. The vertical dashed line indicates the day of the
deployment of the intervention. The left plot shows the effect of the alert intervention and the right plot the additional update
intervention.

[98.6%,−168.1%]). The causal effect is not statistically significant
(Bayesian one-sided tail-area probability 𝑝 = 0.071).

Considering the effect of the update intervention shown in the
right plot, we see a slightly stronger decrease in the amount of
revokes in the post-period. Here, only four updates were revoked
each month on average, while the model predicted an average of 13
revokes if no intervention happened (95% CI: [−15, 43]). This is a
decrease of 66.3%. However, the causal effect is again not statistically
significant (Bayesian one-sided tail-area probability 𝑝 = 0.177).

While the interventions aimed to increase security updates, the
effectiveness would be undermined if a significant number of up-
dates were unusable and revoked. This could be due to updates that
introduce issues such as broken code or compilation errors.

Surprisingly, we found that both interventions, security alerts
and updates, had similarly high levels of usability, as evidenced by
a reduction in revokes during the post-intervention period. This
finding was unexpected, as we had anticipated a potential increase
in revokes due to the higher volume of updates generated by the
interventions. Nevertheless, the effect was not statistically signifi-
cant. Note that a significant decrease in revokes was not necessarily
required for the interventions to be considered successful since the
pre-intervention rate of revokes was already relatively low. How-
ever, the absence of an increase in revokes is crucial to the success
of the interventions, as any increase may lead users to disable the
interventions entirely.

Vulnerable dependencies committed pre security alerts. The
upper-left plot in Figure 3 depicts an exponential increase in the
number of committed vulnerable dependencies, as indicated by the
black line labelled ‘endog’, from January 2014 to March 2016. This
trend is attributed to the exponential growth of GitHub in the size
of newly created repositories. However, immediately following the

deployment of the security alert intervention, we observe a shift in
the pattern towards a gradual decrease. The vertical dashed line in
the plot indicates the timing of the security alert intervention. The
red dashed line represents the prediction of the Bayesian time series
model. The predicted time series in the post-period represents the
synthetic control.

Vulnerable dependencies committed post security alerts.
During the post-period, an average of 264 vulnerable dependencies
were committed per month, while the counterfactual prediction
estimated a value of 304 vulnerable dependencies per month in
the absence of the alert intervention (95% CI: [76, 533]). This cor-
responds to a causal effect estimate of around -40 (-13.4%) on the
amount of committed vulnerabilities per month. Although the ef-
fect was statistically significant, the effect size was relatively small
(Bayesian one-sided tail-area probability 𝑝 = 0.004).

The impact of security alerts on educating users to install fewer
vulnerable dependencies was found to be small. Despite GitHub’s
detailed information on detected vulnerabilities, including critical-
ity score, affected and patched version, and labels, users were not
likely to remember this information or look it up to avoid installing
vulnerable dependencies again. As a result, users relied more on
the intervention to notify them when they installed a vulnerable
version so they could update it later.

Vulnerable dependencies committed post security updates.
The right plot in Figure 3 depicts the effect of the update inter-
vention, which was deployed later. We observe a slightly stronger
decreasing trend in committed vulnerable dependencies. During
the post-period, on average, 42 vulnerable dependencies were com-
mitted per month, whereas the counterfactual prediction expected
a value of 147 (95% CI: [-43, 337]). The update intervention caused
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(a) Security alert intervention (b) Security update intervention

Figure 3: Observed and predicted time series of committed vulnerable dependencies per month. The vertical dashed line
indicates the day of the deployment of the intervention. The left plot shows the effect of the alert intervention and the right
plot the additional update intervention.

a 71% decrease in committed vulnerabilities per month. Although
the effect size is considerable, the causal effect was not statistically
significant (Bayesian one-sided tail-area probability 𝑝 = 0.065).

The larger decrease in the number of committed vulnerable
dependencies during the post-period of the update intervention
can be explained by overlapping effects with the security alert
intervention. It is worth noting that the update intervention runs
on top of the security alert intervention. Therefore, the decrease
observed in the update intervention may be partially due to the
increasing educational effects of the security alert intervention.

Variance among severity. We analyzed whether the interven-
tions had different effects on vulnerable dependencies of different
severity levels, specifically for critical, high, moderate, and low
severity. The results showed that both interventions, i.e., security
alerts and updates, were particularly effective in reducing vulnera-
bilities with critical and high severity, while their effect was less
pronounced for low severity issues. This suggests that users are
more responsive to vulnerabilities with higher severity levels, pos-
sibly due to the perceived greater potential impact of such vulnera-
bilities. It is possible that users rely on the given CVSS criticality
scores and metrics to determine the appropriate action to take for
each vulnerability.

7.2 Code Scanning
CodeQL found at least one vulnerability in 1,842 repositories, i.e.,
18.42% of the examined 10,000 projects. Note that for 1,059 projects
CodeQL was not able to perform an analysis due to occurring errors.
We excluded them from further analysis. We report time series
data of detected CWE-079 vulnerabilities in JavaScript and CWE-
020 vulnerabilities in Python. While our analysis mainly focused
on JavaScript and CWE-079, we additionally investigated Python

and CWE-020 in order to investigate whether we observe different
effects depending on programming language and vulnerability class.
In total, we analyzed 437,485 repository snapshots for the CWE-079
detection in JavaScript and 54,040 snapshots for CWE-020 detection
in Python.

Vulnerability accumulation & decline. The upper left plots
in Figure 4 and Figure 5 show the time series as introduced in
Section 4.3. They show the average number of vulnerabilities found
in a repository on the y-axis and the days to activation of CodeQL
in the x-axis. Day zero—marked by the dashed grey line—indicates
the day where each repository activated CodeQL. The plot shows
that repositories accumulate vulnerabilities over time. We assumed
that the amount of vulnerabilities increased gradually because of
the increasing size of the code base of these repositories. The local
regression in the lower right plot in Figure 4 (the blue line indicates
the moving average) shows that the average number of problems
found indeed increases with the size of the code base. However, the
large scatter also means that this effect should not be overstated.

Since the activation of CodeQL, the average number of CWE-079
and CWE-020 has decreased as shown in the upper right plots in
Figure 4 and Figure 5. The dashed blue line indicates how the model
would have expected the time series to look like, if the intervention
would not have happened. The steep decline of vulnerabilities right
after the intervention suggests a novelty effect. Users might have
had an increased motivation to follow CodeQL warnings and to fix
the code on account of the newness of the intervention. Both time
series have a small spike right after the drop and then flatten out
having an overall negative trend as shown by the local regression in
the lower left plot in Figure 4 and Figure 5. We applied the Python
package causal_impact to analyze whether this downward trend
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Figure 4: The upper-left plot shows the time series of the daily commited average amount of CWE-079. The dashed vertical line
indicates activation of CodeQL. The dashed blue line in the upper-right plot shows the counter factual prediction of the time
series in the post-period. The lower-left plot shows the local regression of the time series, while the lower-right plot shows the
relation between detected CWE-079 and amount of JavaScript code indicated by the blue line.

was caused by the code scanning intervention and whether the
effect was significant.

Seasonal effects. Figures 4 and 5 depict notable fluctuations in
the frequency of detected problems for both CWE types. Following
an initial decline immediately after the intervention, a subsequent
trend emerges wherein the count of detected problems experiences
a resurgence after a span of several days, only to exhibit a subse-
quent decline once more.

One possible explanation for these fluctuations is that CodeQL
predominantly operated on a fixed-schedule plan, leading to the
accumulation of vulnerabilities over time before they were iden-
tified and addressed. Consequently, following the initial decrease,
there was an increase in the number of detected problems after
the intervention. These seasonal effects (periodical fluctuations in
the number of detected problems) account for the stagnant trend
evident in both figures. However, it is important to note that the
overall trend after the intervention exhibits a negative trajectory.

We propose that the identification of seasonal effects (periodi-
cal fluctuations in the number of detected problems) serves as a

supporting factor indicating that CodeQL is the causal interven-
tion. This assertion is strengthened by the fact that CodeQL is
implemented on a fixed schedule.

Causal effect on CWE-079. The upper right plot in Figure 4
covers the time period from 500 days prior to activation and 200
days after activation of CodeQL. The black line shows the mea-
sured time series of detected vulnerabilities, while the blue dashed
line shows the time series—the synthetic control—predicted by the
model. The area highlighted in blue shows the 95% confidence
interval. During the post-period, CodeQL detected an average of
1.81 vulnerabilities. Without the intervention, however, we would
have expected an average value of 1.85, (95% CI: [1.82, 1.87]). This
means that maintainers of a repository fixed an average of 0.039
vulnerabilities (95% CI: [0.011, 0.067]) that CodeQL alerted them
about. This corresponds to a 2% reduction in vulnerabilities, with a
95% confidence interval of [1%, 4%]. The posterior probability of a
causal effect of CodeQL is 99.2%. The Bayesian one-sided tail-area
probability of observing this effect by chance is 𝑝 = 0.008.

When creating a new repository the code scanning intervention
is not active per default. We have identified a rather small amount
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Figure 5: The upper-left plot shows the time series of the daily commited average amount of CWE-020. The dashed vertical line
indicates activation of CodeQL. The dashed blue line in the upper-right plot shows the counter factual prediction of the time
series in the post-period. The lower-left plot shows the local regression of the time series, while the lower-right plot shows the
cumulative impact of the code scanning intervention on the mean of commited CWE-020 per day and its confidence interval.

of repositories where the intervention was activated by the user.
For these repositories, the effect size was moderate with a reduction
of 2% of detected vulnerabilities. A large fraction of users did not
seem to have paid attention to the warnings or might have missed
them. In response, we investigated the communication design of
detected problems. We found that there might be issues with the
design of the security indicators; they are very small and not easily
visible in the main menu of the repository (see left screenshot
in Figure 8). Moreover, users have to follow a long path in order
to find the specific results of the code scan (see right screenshot
in Figure 8). Even though they also provide recommendations on
how to fix the identified issues, these only appear after clicking an
expand button whose description does not suggest the availability
of recommendations. In contrast to the update intervention for
vulnerable dependencies the recommendations do not provide quick
fixes.

We found that most users that patched vulnerabilities found by
CodeQL tend to patch more than 95% of the problems. We assume
these users to be very security-aware and therefore to have higher

willingness to pay attention to the CodeQL security indicators,
findings and recommendations than average users.

Variance among CWE-079 types. The largest observed signif-
icant effect of CodeQL was on fixing DOM Text Reinterpreted as
HTML (XSS through DOM). The average amount of vulnerabilities
decreased by three per cent (95% interval: [2%, 5%], 𝑝 < 0.001).
However, the downward trend right after the intervention seems to
stagnate. This suggests that an alert about a security vulnerability
that is not immediately fixed is likely to be ignored even in the
longer term. At the same time, however, the stagnation also con-
trasts with the previous observation that problems accumulate over
time. Thus, CodeQL presumably has educational effects that pre-
vent problems from being added to the code base in the first place.
Interestingly, 44% of the repositories that followed the warnings
tend to do this thoroughly as they removed 95% of the problems.
However, a large fraction of repositories (71.7%) seemed to ignore
the warnings or missed them as they did not fix any of the detected
problems.
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We saw a similar significant effect on Unsafe jQuery Plugin as
there is a decrease of about 4% in identified problems (95% interval:
[2%, 6%], 𝑝 =< 0.01). 78.9% of repositories did not patch any of
the reported problems, while about 5% removed 95% of the issues
and 5.5% at least improved some of the code. However, we also
identified 10.6% of the repositories where performance decreased.
These repositories had more vulnerabilities after the intervention
than before.

We identified a significant effect on Reflected XSS very similar to
Unsafe jQuery Plugin—but with a bigger effect size—as the average
amount of problems was reduced by about 6%.

We saw counter-intuitive results for Unsafe HTML Constructed
From Library Input, Client-Side Cross-Site Scripting, and XSS through
Exception. Here, the intervention had a significant negative causal
effect on the reduction of detected problems. For Client-Side Cross-
Site Scripting, we found two outliers in the sample that were respon-
sible for this result. One repository committed 24 vulnerabilities,
while the other one committed 127 vulnerabilities within a single
day right after activating CodelQL. After manually checking the
committed vulnerabilities, we found that those were introduced on
purpose to test CodeQL’s detection accuracy. As correctly predicted
by causal_impact, the intervention caused those repositories to
add more vulnerabilities.

Stored XSS was only present in 11 repositories. Therefore, the
sample was too small to perform any meaningful statistical analysis.
However, we identified one repository that patched all 20 identified
vulnerabilities, which had accumulated over a period of three years
shortly after the repository activated CodeQL.

Causal effect on CWE-020. During the post-intervention pe-
riod, we observe a decrease of 2.3% in the average amount of vul-
nerabilities per repository. The 95% interval of this percentage is
[-6%, +2%]. The probability of obtaining this effect by chance is 𝑝 =
0.144. This means the effect may be spurious and would generally
not be considered statistically significant.

Even though the intervention appears to have caused a positive
effect, this effect is not statistically significant when considering
the entire post-intervention period as a whole. Individual days or
shorter stretches within the intervention period may of course still
have had a significant effect, as indicated whenever the upper limit
of the confidence interval of the impact time series (lower-right
plot in Figure 5) was below zero. The apparent effect could be the
result of random fluctuations that are unrelated to the intervention.
This is often the case when the intervention period is very long and
includes much of the time when the effect has already worn off. It
can also be the case when the intervention period is too short to
distinguish the signal from the noise. The statistical insignificance
of the intervention could also be explained by the very small amount
of detected vulnerabilities per repository.

Variance among CWE-020 types. CWE-020 contains different
vulnerability types, i. e., Incomplete regular expression for hostnames,
Incomplete URL substring sanitization, and Overly permissive regular
expression range. We observed different effects on each of these
vulnerabilities.

We observed a statistical significant impact on Incomplete regular
expression for hostnames (Bayesian one-sided tail-area probability
𝑝 = 0.001) during the first 200 days of the post-period. The identified

causal effect of the intervention led to a decrease of 44% in the
average amount of vulnerabilities per repository. Considering the
complete post-period we actually observe an increase of 5% which
is not statistically significant.

The observed fluctuations during the post-period can be ex-
plained by novelty effects where the intervention is heavily applied
in the beginning of the post-period, while its use declines over
time. The time series shows a steep decline right after the introduc-
tion of the intervention. However, after 150 days it increased up to
pre-intervention level.

The intervention had a significant causal effect on Incomplete
URL substring sanitization within the first 200 days of the post-
period (Bayesian one-sided tail-area probability 𝑝 = 0.002), as the
average amount per repository decreased by about 18% (95% inter-
val is [-27%, -8%]). Considering the complete post-period, the effect
became a bit stronger with an overall increase of 19% (𝑝 = 0.001).

This vulnerability type was the one where the intervention had
the largest significant causal effect in comparison to all other vul-
nerability types in CWE-079 and CWE-020; perhaps due to the low
complexity in patching the vulnerability. For instance, in compar-
ison to Incomplete regular expression for hostnames, a developer
merely has to write down a whitelist of domains, which can be seen
as much easier than fixing a regular expression. Even though we
observed fluctuations in the post-period, they were very small and
the time series maintained its downward trend. Such fluctuations
can be explained by seasonal effects occurring due to scheduled
repository scanning. E.g., when using a monthly scan schedule, vul-
nerabilities can accumulate over time until they are being detected
and patched.

We did not observe any significant effects on Overly permissive
regular expression range even though we see a reduction of 1%
over the whole post-period. This can as well be explained due
to the complexity of a patch. It requires the developer to define
unambiguous regular expressions, which can be seen as a much
harder task than patching Incomplete URL substring sanitization or
Incomplete regular expression for hostnames.

Variance among repositories. The effectiveness of CodeQL
varies greatly across different repositories, and its impact on vul-
nerability reduction depends on several factors. For instance, out
of the sample considered for this study, only 15.9% of repositories
with vulnerabilities were improved by CodeQL, while 67.6% did
not improve and 16.4% actually worsened. 262 repositories added
new security vulnerabilities during the post-activation period. It is
worth noting that on average, the repositories improved in reducing
vulnerabilities.

The reasons for the varied effectiveness of CodeQL could be
due to several factors. For instance, the development team may
have been active during the post-activation period, and they could
have introduced many changes to the code base that increased the
likelihood of new vulnerabilities being added. Additionally, the acti-
vation of CodeQL could have given a false sense of security, leading
to users not paying enough attention to the security indicators.
This could explain the relatively high number of repositories where
no change was observed. False positives could also contribute to
the habituation effect, where users become used to alerts and do
not pay enough attention to future alerts.
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Variance among scan frequency and triggers: In our study,
we found that the majority of repositories (8,543) used the default
weekly scan frequency, while only a small percentage (398) applied
customized frequencies. Interestingly, we observed that reposito-
ries using the default configuration had a significant reduction in
vulnerabilities after the CodeQL intervention, while those with cus-
tom configurations showed large fluctuations and even an increase
in problems. However, due to the small sample size of repositories
with customized configurations, causal_impact was not able to
identify a significant effect.

It is worth noting that CodeQL scans every push to specified
branches by default, but a small percentage (1.7%) of repositories
in our sample decided to change this setting. These repositories
had 6% fewer problems on average in the post-period than reposi-
tories using the default setting, but this effect was not statistically
significant.

Similarly, only 1.8% of repositories deviated from the default
setting of having pull requests trigger CodeQL scans. These reposi-
tories had 5% fewer problems on average in the post-period than
repositories using the default setting, but again, the effect was not
statistically significant.

Variance among popularities. The popularity of a repository
on GitHub can be indicated by the number of stars it has received.
In our sample, 7,432 projects had 10 or fewer stars, while 1,509
repositories had more than 10 stars. For repositories with more
than 10 stars, we found that the causal effect was not statistically
significant (𝑝 = 0.59). However, for projects with 10 or fewer stars,
the intervention has led to a significant improvement of 3% (95%
confidence interval: [1%, 4%], 𝑝 = 0.001).

8 CONFOUNDERS
Our causal analysis is based on observational data, which differs
from randomized data in that it can be susceptible to confound-
ing due to the presence of unobserved variables and their interac-
tions. This raises concerns about the potential influence of these
confounding factors on the measured effects. For instance, other
factors such as security training or tools unrelated to GitHub’s
interventions could have caused the observed effects. Additionally,
external sources like blog posts, news sites, or mainstream media
that raise awareness of vulnerabilities might also play a role.

In the following discussion, we thoroughly examine the plausi-
bility of these confounding effects and assess their potential impact
on our findings.

Methodicalmitigation. In our analysis, we employed a Bayesian
model, specifically causal_impact, to evaluate the incremental im-
pact of the intervention during the post-period. As depicted in
Figure 1, the cumulative impact of the security alerts exhibits a
consistent and linear upward trend, indicating a sustained and
accumulating effect over time. The enduring impact of the inter-
vention suggests that one-time interventions, such as blog posts or
news articles, are unlikely to be responsible for the observed cu-
mulative effect, which is in agreement with findings by Fiebig et al.
that such interventions lack lasting influence after the intervention
period [10].

For the code scanning intervention, we utilized a control time
series, which naturally helps in identifying confounding factors,
to compare with the observed time series. The control time series
measured the same variables as the observed time series but did
not undergo the code scanning intervention. Hence, confounding
events that might have influenced the observed time series would
likely be present in the control time series as well. The absence of
similar effects in the control time series supports the conclusion
that the intervention caused the observed effects.

Security training and independent tools. We consider con-
founding interventions, such as an increase of security training
or use of independent security tools that are not integrated into
GitHub, to be less plausible. These confounding factors would
have had to occur concurrently with the security interventions
on GitHub, impacting the same set of users. The probability of
multiple independent events coinciding with each of the three in-
tervention dates diminishes the likelihood of such occurrences.

Third-party dependency checkers. Snyk exhibits substantial
resemblance to GitHub’s security update intervention with over
175 thousand installations on GitHub (in August 2023), signifying
its widespread adoption nowadays.12 However, its introduction oc-
curred only approximately six months after the release of GitHub’s
intervention. Consequently, the possibility arises that Snyk’s pres-
ence could have influenced the results toward the end of the six
month time window after the introduction of GitHub’s interven-
tion. Notably, the most substantial impact of GitHub’s intervention
was observed in the initial months when Snyk had not yet become
available.

Third-party code scanners. Offering an alternative approach
to CodeQL, GitHub allows integration of third-party code scanners
into workflows, with a selection of 70 diverse scanners currently
available (in August 2023).We assessed the prevalence of third-party
code scanner integration within the 37,856 repositories that used
CodeQL, by systematically reviewing the repositories’ workflow
directories, specifically targeting YAML files indicative of third-
party scanner adoption. A subset of 168 repositories (0.4%) was
identified as having chosen to employ supplementary third-party
scanners alongside their utilization of CodeQL. Given the relatively
modest frequency of this co-adoption, it is reasonable to infer that
the incorporation of these additional tools did not significantly
confound the overall research outcome.

9 LIMITATIONS
In contrast to the security alert intervention, the default activation
of security updates and code scanning was not in effect. This dispar-
ity could potentially introduce a bias in the sampled repositories,
favoring those whose users exhibit a higher degree of concern for
security matters.

Our study focused on code scanning within repositories utiliz-
ing scheduled scan plans, possibly omitting users who exclusively
initiated CodeQL scans through push or pull events.

Furthermore, there exists a possibility of interaction effects be-
tween updates for dependencies that are not vulnerable and updates

12Install counts as provided on GitHub marketplace: https://github.com/marketplace.

https://github.com/marketplace
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triggered specifically for vulnerable dependencies. In scenarios
where users are prompted to update certain dependencies within
their repositories, a tendencymight arise to update all dependencies
simultaneously. Moreover, the security updates for some dependen-
cies could necessitate concurrent updates to other interconnected
libraries. However, should we acknowledge the presence of these
interaction effects within the control time series, it follows that our
analysis might have actually underestimated the true effect, rather
than overestimating it.

10 DISCUSSION
Based on the results of our study, we can offer suggestions for tool
and intervention creators, as well as educators, to take advantage of
GitHub’s approach. Additionally, we will provide insights into how
GitHub could further improve the design of their interventions.

Default interventions. Enabling the security alert intervention
by default appears to have played a significant role in the effective-
ness of the interventions. As previous research in both behavioral
science and code security has demonstrated, safe defaults can be
highly effective [13]. This suggests that applying the principle of
safe defaults to the code scanning intervention could further im-
prove its impact.

Seamless interventions. The interventions were seamlessly
integrated into the software development process and Git envi-
ronment to minimize disturbance to users. Security alerts were
integrated into developer tools such as the command line inter-
face, and the update intervention was automated, allowing users
to accept the update with a single button push. The code scanning
intervention was implemented through automated scanning events
and trigger code scanning by push or pull commands. GitHub care-
fully customized the interventions to suit the needs of software
developers, taking advantage of existing tools, which had already
been widely accepted by users.

User recommendations. Each intervention provides recommen-
dations on how to mitigate detected security issues. We have shown
positive effects on the update behavior of vulnerable dependencies
through security alerts and update interventions. Automated patch-
ing routines should be included in the code analysis intervention to
improve its effectiveness. CodeQL’s recommendations could offer
source code examples that help or can be reused to fix identified
issues. Potentially helpful code examples can be identified by search-
ing for similar vulnerable code on GitHub that has been patched
by other users. This approach has been shown to be very effective
in the context of programming advice platforms [14].

Patch generation. The identified vulnerable source code and
its updated counter examples in our dataset can be used to fine-
tune large language models (LLMs) for automated patch generation.
Fried et al. have recently developed an LLM that can perform in-
filling tasks on source code [15]. This model can learn from given
example pairs how to fill masked parts of the source code. In this
case, the vulnerable part of the source code would be masked, and
the task of the model would be to fill it with the patched counter-
part. Such a model could be used to suggest automated patches in

a pull request, similar to the security update intervention, saving
developers time and effort.

11 CONCLUSION
Our observations about GitHub’s interventions align with several
findings that have been seen in prior research. For instance, secu-
rity alerts do have an effect on security (149.0% gain in manual
security updates), but are even more effective if they provide a
seamless way out of the warning situation (additional 31.7% gain
in automated security updates). However, GitHub did not consis-
tently apply these findings to all of their interventions since the
code scanning intervention only provides alerts and is not active
per default. Moreover, these alerts are difficult to recognize and
detailed information about the found issues is not easily accessi-
ble. We assume that these inconsistencies in the design have led
to a much smaller impact of the code scanning intervention (2%
gain in patched vulnerabilities). However, since the code scanning
intervention is rather new and GitHub used a staged approach to
improve their prior security interventions, we might see likewise
improvements in the code scanning feature in the future.
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A APPENDIX: SUPPORTING FIGURES
We present the UI and user journey for each intervention in Fig-
ures 6, 7 and 8.

https://opensourcesurvey.org/2017/
https://opensourcesurvey.org/2017/
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Figure 6: UI and user journey of the security alert intervention
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Figure 7: UI and user journey of the security update intervention

Figure 8: The left screenshot shows GitHub’s security indicator if CodeQL found a vulnerability in the source code of the
project. The right screenshot shows the web page path the user has to follow to view the code scanning results.


	Abstract
	1 Introduction
	2 Related Work
	3 Security Interventions
	4 Security alerts and updates
	4.1 Sampling
	4.2 Metrics
	4.3 Time series data

	5 Code Scanning
	5.1 Sampling
	5.2 Metrics
	5.3 Time series data
	5.4 CodeQL
	5.5 Setup

	6 Counterfactual Prediction
	6.1 Control time series
	6.2 Necessary condition
	6.3 Assumptions

	7 Results
	7.1 Security alerts and updates
	7.2 Code Scanning

	8 Confounders
	9 Limitations
	10 Discussion
	11 Conclusion
	Acknowledgments
	References
	A Appendix: Supporting Figures

