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ABSTRACT
The development and research of tools for forensically analyzing
Linux memory snapshots have stalled in recent years as they can-
not deal with the high degree of configurability and fail to handle
security advances like structure layout randomization. Existing tools
such as Volatility and Rekall require a pre-generated profile of the
operating system, which is not always available, and can be invali-
dated by the smallest source code or configuration changes in the
kernel.

In this paper, we create a reference model of the control and data
flow of selected representative Linux kernels. Using this model,
ABI properties, and Linux’s own runtime information, we apply
a configuration- and instruction-set-agnostic structural matching
between the referencemodel and the loaded kernel to obtain enough
information to drive all practically relevant forensic analyses.

We implemented our approach in Katana1, and evaluated it
against Volatility. Katana is superior where no perfect profile in-
formation is available. Furthermore, we show correct functionality
on an extensive set of 85 kernels with different configurations and
45 realistic snapshots taken while executing popular Linux distri-
butions or recent versions of Android from version 8.1 to 11. Our
approach translates to other CPU architectures in the Internet-
of-Things (IoT) device domain such as MIPS and ARM64 as we
show by analyzing a TP-Link router and a smart camera. We also
successfully generalize to modified Linux kernels such as Android.

CCS CONCEPTS
• Applied computing→ System forensics; • Security and pri-
vacy→ Operating systems security.
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This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.
RAID 2022, October 26–28, 2022, Limassol, Cyprus
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9704-9/22/10.
https://doi.org/10.1145/3545948.3545980

ACM Reference Format:
Fabian Franzen, Tobias Holl, Manuel Andreas, Julian Kirsch, and Jens
Grossklags. 2022. Katana: Robust, Automated, Binary-Only Forensic Analy-
sis of LinuxMemory Snapshots. In 25th International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2022), October 26–28, 2022, Limas-
sol, Cyprus. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/
3545948.3545980

1 INTRODUCTION
Memory forensics offers unique insights into the internal state
of operating systems and userspace programs. Frameworks such
as Volatility and Rekall have shown that it is possible to extract a
large variety of information from memory dumps and have proven
useful after malware and ransomware infections or to obtain disk
encryption keys during governmental investigations [15].

The starting point for any such investigation is a memory dump
of the target system, which can be easily obtained from virtual ma-
chines. This setting is also known as Virtual Machine Introspection
(VMI). However, deriving semantic meaning from a VMI view of
a virtual machine is a non-trivial challenge, commonly referred
to as the semantic gap problem [3]. To bridge this gap, automated
approaches use information collected over the lifetime of the virtual
machine (e.g., instruction traces [5, 9, 23]) or rely on explicit support
by the guest operating system in order to interpret data they obtain
through a VMI interface [20]. On regular PCs, bare-metal servers,
smartphones, and IoT devices, memory dumps can be extracted by
injecting a driver or module into the running operating system or
by using hardware debugging interfaces such as JTAG.

Traditional tools like Volatility and Rekall Forensics do not han-
dle forensic investigations of Linux adequately and their analyses
have become outdated over time. These tools extract the neces-
sary information about the structure of the OS using debugging
information to form a profile containing the memory location and
layout of crucial OS data structures. However, debugging informa-
tion about the target is not always readily available and in those
cases these tools cannot be used. Especially Linux imposes unique
challenges to a forensic analyst in need of a profile: There is a
plethora of kernel binaries with slightly varying behaviors that
a separate profile needs to be generated for. This is caused by a
myriad of compile-time configurations and the kernel’s support for
different compilers and compiler versions, each pursuing its own
code generation strategy [25]. Consider the current definition of the

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3545948.3545980
https://doi.org/10.1145/3545948.3545980
https://doi.org/10.1145/3545948.3545980


RAID 2022, October 26–28, 2022, Limassol, Cyprus Fabian Franzen, Tobias Holl, Manuel Andreas, Julian Kirsch, and Jens Grossklags

task_struct structure: In Linux 5.8.14, it contains 66 preprocessor
directives influencing the number and position of its members.

In most commercial operating systems, on the other hand, the
limited customizability means that there is often an easy path for
obtaining additional debugging information. For instance, we can
retrieve Windows debugging symbols from the Microsoft symbol
server based on an extractable identifier from a memory dump.

In the Linux context, however, most of this information is still en-
coded in the guest operating system. Even if no explicit support for
forensic tools is present and no debugging information is available,
the code of the system itself still needs to be able to load and unload
drivers or to examine stack frame information for crash reports,
etc. Our own implementation Katana exploits this in a code-based
approach to deduce a profile usable for forensic analysis.

Concurrent to our own work, AutoProfile [19] was proposed
suggesting a similar code-based approach to ours. Furthermore,
LogicMem [21] utilizes a runtime information-based approach. In
contrast to code-based approaches analyzing the code in the .text
segment, only the memory dump of the volatile runtime data of the
operating system is used (e.g., the task list) in a Prolog inference
system to deduct a profile. We will further discuss similarities and
differences in Section 7.

The key contributions of our work are as follows:
• We provide an implementation of code-based profile genera-
tion and release it to the public2. In contrast toAutoProfile,
our implementation, Katana, is based on Ghidra’s interme-
diate representation P-Code and works across architectures.
We evaluate it on x86-64, ARM64 and MIPS.
• Furthermore, we analyze how the created profile generalizes
to the full Linux kernel and modern analysis plugins, while
existing works (like AutoProfile and LogicMem) focus on
a small set of structures for a limited set of partially outdated
Volatility analyses.
• We prove that Memory Extraction can also be done in a
binary-only setting by using a Linux Kernel Module (LKM),
as it was possible by using the LiME LKM in Volatility.
• We perform an extensive evaluation of Katana on 85 self-
compiled kernel builds with different configurations across 7
kernel versions, and perform various real-world analyses on
45 different kernels from common Linux distributions includ-
ing Android. We demonstrate Katana’s cross-architectural
capabilities by analyzing memory dumps of MIPS-based de-
vices (a TP-Link router and a camera), as well as an ARM
memory dump.

2 BACKGROUND
In order tomotivate our design decisions for the analysis framework
Katana, we first discuss two mechanisms used internally by the
Linux kernel to organize the mapping between symbolic names and
virtual addresses. Afterwards, we explain the details of structure
layout randomization; a relatively new (April 20173) security feature
of the Linux kernel. Then, we discuss why the wide variety of
configuration options of the Linux kernel drastically complicates

2Our tools and pre-generated databases for Linux 3.7 – 5.15 are available at
https://github.com/tum-itsec/katana.
3https://www.openwall.com/lists/kernel-hardening/2017/04/06/14

forensic analysis. Finally, we provide a quick introduction to P-Code;
the intermediate representation we built Katana upon.

2.1 Volatility and Rekall
Volatility4 is an open-source framework for memory forensics with
support for all three major operating systems (Windows, MacOS,
and Linux). In our work, we primarily refer to Volatility as a com-
parison, since it is by far the most commonly used tool, even though
it was not designed to work with differing configurations and struc-
ture layout randomization. Volatility supports a large variety of
analysis passes such as listing the currently running processes,
loaded kernel modules, active file descriptors and active network
connections. Additionally, analyses scanning for known rootkit
artifacts and integrity checking are available. Development appears
to have stalled since the most recent stable release of Volatility 2.6
in 2016, resulting in many of the currently existing analyses failing
on recent kernel versions.

In order to function, the Volatility framework relies on a “profile”,
which contains the layout of important kernel structures and the
relative location of vital global variables. The analysis plugins then
utilize this information to locate and parse the kernel’s internal
data structures in the memory dump in order to produce their
reports. On Linux, these profiles are usually generated from the
kernel debugging symbols.

In 2013, Volatility was forked to streamline the codebase. This
fork became the Rekall Forensics5 frameworkmaintained by Google,
but has been abandoned now. While a few analysis plugins might
work differently, Rekall functions in the same way as Volatility.

2.2 Kernel Symbol Table
The symbol table (symtab) contains the virtual addresses of ex-
ported functions and variables that the kernel provides to loadable
kernel modules (LKMs). If an LKM wants to log a message using
the exported printk function, a lookup in the symtab is performed
at module load. As LKMs can be loaded during runtime, complete
information about exported symbols must be available during run-
time, a circumstance used by Katana.

Note that even for kernels compiled with all optional features
disabled6—i.e., even if LKM support is disabled—the kernel still
contains a symbol table. It is essential to Linux’s functioning and
cannot be removed. The exact layout of the kernel symbol table
changed over time, but it remains easily discoverable in a memory
dump. Details can be found in Figure 6 in Appendix A.

2.3 Kallsyms
Kallsyms provides another way to resolve symbol names to virtual
addresses during runtime. The kernel uses it to augment backtraces
with symbol names for KGDB and requires it for Ftrace, Kprobes,
and other modern kernel security features like control flow integrity
checking and live patching. Kallsyms-enabled kernels contain a list
of kernel symbols that is extracted during compilation, compressed,
and saved in the data sections of the generated Linux image.

4https://www.volatilityfoundation.org/releases
5http://www.rekall-forensic.com/
6make tinyconfig
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In contrast to the symtab, the kallsyms mechanism is aware of
the addresses of non-exported kernel functions. If the configuration
option KALLSYMS_ALL is enabled, it even includes names and virtual
addresses of symbols that reside in the data section. As such, the
number of symbols on which kallsyms may provide information is
magnitudes larger than what can be learned from symtab.

Code running in the kernel can access the kallsyms system by
querying one of two exported functions: kallsyms_on_each_symbol
(introduced in 2.6.30; 2009) allows code to iterate over all symbols
that are stored, while kallsyms_lookup_name (introduced in 2.6.4;
2004) does a name-based symbol lookup of the respective address.

This interface has been stable since its introduction, but can be
disabled at compile time as it is an optional feature. Fortunately,
as we will see in Section 4, most systems leave the mechanism
activated, including the symbols in the data section (KALLSYMS_ALL).

2.4 Structure Layout Randomization
Since version 4.13, the Linux kernel has offered structure layout
randomization as an additional security feature. If enabled, the
spatial order of members of structures marked with the attribute
__randomize_layout is shuffled at compilation time. Structures con-
taining only function pointers will always be shuffled, if not ex-
plicitly forbidden by using __no_randomize_layout. The shuffling is
realized as a compiler plugin, which adds an additional optimization
pass to the compilation pipeline. Shuffling is implemented deter-
ministically, based on a 256-bit random seed. This design decision
enables a shuffled kernel to load kernel modules that were compiled
later than the main kernel image, but has the serious drawback that
distributions need to publish the random seed, making security
gains in general-purpose distributions questionable.

2.5 Kernel Configuration
Because Linux targets a wide variety of use cases, it provides a
large number of compile-time switches that can be used to enable,
disable, and modify certain features in the kernel. Each of these
Kconfig variables is available to both the kernel’s custom Kbuild
build system and the source code, where they allow conditional
compilation of certain code fragments or source files (e.g., to con-
figure support for specialized hardware). The same system is used
to select which features are not embedded in the kernel but are
provided through kernel modules, and to configure a large number
of other settings ranging from the relatively benign (e.g., the default
host name) to critically important (e.g., CPU endianness).

This significantly complicates any analysis of the Linux kernel,
because measurements obtained on one configuration may not be
valid on another. Moreover, rare combinations of configuration
options may affect the system in unexpected ways or reveal subtle
bugs [25]. For our purposes, the key differences between different
configurations are the functions that are available for analysis and
the layouts of structures in the kernel: Since many features add
members related to their functionality to core kernel types, many
different configuration switches can independently change the lay-
outs of these types. This creates a vast number of possible structure
layouts even when randomization is disabled. For example, the
presence or absence of the 66 conditionally compiled segments in

the task_struct structure on Linux 5.8.14 depends on 56 different
Kconfig variables.

2.6 P-Code
P-Code is an intermediate representation specifically designed for
reverse engineering applications and is implemented by the popular
software reverse engineering suite Ghidra7.

Processor-specific instructions are lifted to a corresponding se-
quence of P-Code operations. This means that analyses built on top
of P-Code are architecture-agnostic, as long as the lifting process
is implemented for the architecture in question. Currently, Ghidra
has support for a broad range of architectures (the current ver-
sion claims to support 77 architecture variants), including the most
popular ones such as x86-64, MIPS, ARM, Sparc, PowerPC, etc.

Another advantage of P-Code is that it greatly simplifies imple-
mentation of higher-level analysis: The number of different P-Code
operations is limited to around 60, while CISC instruction sets such
as x86-64 are much more complex with somewhere between 1000
and 4000 distinct instructions depending on the method of counting.

Ghidra itself uses P-Code internally to implement many of its
analyses, the most notable being its decompiler.

3 KATANA
In the following, we discuss a new, binary-only, fully automated
approach for performing forensic memory analysis.

3.1 Design Goals
When we built Katana, we placed special emphasis on the provi-
sion of forensic analysis capabilities in a post-mortem, binary-only,
automated, and robust fashion. Below, we briefly explain each of
our design goals.

Post-Mortem Availability In many cases, it is desirable to
monitor a production system that has not previously been prepared
for forensic analysis. To this extent, our analysis approach needs
to be able to operate on a physical memory snapshot containing a
vanilla Linux kernel and user space without the presence of special
debugging information, the respective kernel configuration, or the
System.map file. A snapshot of the architectural state of the CPU
(containing model-specific registers and control registers) can be
present to speed up analysis, but is not strictly required.

Katana supports many different sources of memory snapshots,
whether acquired using physical tools (e.g., JTAG), using hypervisor
support (e.g., to analyze a compromised VM), or directly from the
target system (e.g., /proc/kcore). For situations in which we would
need Katana’s output in order to obtain a memory dump in the first
place (e.g., IoT devices without JTAG ports), we provide a kernel-
mode memory dumping utility (UDM) that can be used without
detailed knowledge about the target system (cf. Section 3.7).

Binary Only All information about the system should be de-
rived from the compiled kernel and the respective data structures.
We do not require the source code or the build toolchain of the ker-
nel at analysis time, even if some custom kernel patches are applied.
Of course, there are some limits to how many changes Katana will
be able to accommodate, but commonly used kernels with such
modifications (e.g., Android) are supported out-of-the-box. This
7https://ghidra-sre.org/
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Figure 1: Design of Katana

eases the analysis of embedded devices such as Wi-Fi routers and
IoT cameras that do not use “standard” off-the-shelf Linux distri-
butions, where manufacturers may be hesitant to provide source
code or debugging information even upon request.

Robust Automated Layout Derivation Katana should be
capable of finding all required data structures on its own, without
the analyst having to provide external information, such as the
kernel version or the layout of core data structures by means of a
profile-like database. This includes information such as the virtual
and physical KASLR bases, as well as the binary layout of ran-
domized kernel structures. This property offers a highly valuable
complement to existing analysis frameworks such as Rekall and
Volatility, as both struggle with the presence of KASLR, structure
layout randomization, or configuration changes that propagate to
the binary layout of the Linux kernel. The necessary maintenance
effort is minimized as Katana adjusts to changes in the kernel
source code and configuration without manual intervention, which
still remains the predominant method in existing tools to solve this
problem [2].

3.2 Overview
Katana operates in four core steps illustrated in Figure 1. Before
analysis ➊, a memory dump must be obtained from a virtual ma-
chine or a bare-metal device (e.g., via our UDM or as ELF-Core file).
➋ We scan the virtual address space for the kernel’s symbol table
to obtain a list of functions and their respective virtual addresses.
➌ Using this list, we invoke the kallsyms_on_each_symbol iterator
function using the popular Unicorn emulator [18] to obtain a more
complete list of symbols provided by the kernel and all loaded mod-
ules. ➍ We match the code within the memory snapshot against a
pre-generated database of accessor functions, which are known to
access or modify specific members of data structures. This matching
step is made architecture and instruction encoding independent
by first lifting the identified function to P-Code and processing
the resulting operation sequence. Suitable candidates for accessor
functions and information about invariant members are generated a
priori using a custom analysis plugin for the GNU C compiler (GCC)
that observes the compilation of a reference kernel. We distribute
pre-generated databases for all kernels between versions 3.7 and
5.15 and some older kernels alongside Katana (depicted as Kernel
DB in Figure 1).

Katana infers the layout of frequently used kernel structures in
a completely automated fashion based on the analysis results of the
GCC plugin. The analysis is remarkably robust in an overwhelming
number of cases, as the most important types are used at various

locations in the kernel resulting in a large number of potential
accessor functions. Should the analysis fail to obtain the structure
layout from any function, it can easily recover using the remaining
functions.

The output of step ➍ is called profile and could be used to drive
different kinds of forensic analysis tasks, e.g., listing all running
processes of a system. Katana has its own set of analysis plug-
ins (➎), but the profile could also be converted to drive analyses
implemented in the Volatility or Rekall frameworks.

3.3 Database Generation
To find the structure members we are interested in, we introduce
the notion of an accessor function. As the name indicates, this is
a kernel function that accesses a certain structure member. Note
that while pure accessor functions, which only have the designated
purpose of returning the value of a certain struct member, are
a rather uncommon programming construct in the Linux kernel,
there are plenty of functions which just access the desired data. For
example, the send_sig_all function in the kernel enumerates all
processes while sending a signal to each process. Katana can make
use of this fact to derive the location of the process list, sidestepping
the actual signaling purpose of the function. As such, a myriad of
functions can serve as accessor functions in the context of our work.
We generate a mapping between accessed structure members and
accessing functions using a GCC compiler plugin.

It is important to note that basing the analysis on the output
of a GCC compiler plugin does not contradict the binary-only de-
sign goal of our work. In fact, the source code analysis needs to
be performed only once on a kernel version reasonably close to
that of the target memory dump and can then be reused for other
memory dumps. Version and configuration mismatches are only
an issue if the code base of the relevant accessor functions changes
significantly. Otherwise, such a mismatch may mean missing out
on additional information that would have been present if changes
are taken into account, or a few of the results of the GCC plugin
becoming invalid. Neither will significantly worsen the analysis
results. We can further improve accuracy by selecting the database
matching to the Linux version, which can be extracted from the
memory dump without the use of accessor functions. We evaluate
the impact of configuration differences in Section 4.

GCC’s plugin system allows inserting arbitrary transformation
and optimization passes between those that are performed by de-
fault. We insert a custom non-modifying compiler pass behind the
einline pass, at which point many short functions that will always
be inlined (e.g., those marked in code with the always_inline at-
tribute) are already inlined. At this stage, GCC represents each
function using an intermediate language called GIMPLE. This rep-
resentation still closely resembles the structure of the original code,
albeit transformed into static single assignment (SSA) form.

We locate accesses of structure members by recursively walking
the operand trees in each of the GIMPLE statements and searching
for COMPONENT_REF (member access) and MEM_REF (dereference) nodes.
The context in which each node appears reveals how the structure
member is used. For example, if the accessed member is passed into
a function call, the function argument will refer to an SSA node.
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Performing a dataflow analysis across the SSA assignments yields
a COMPONENT_REF node that refers to the member in question.

In order to support many different kernel versions with different
required minimum/maximum GCC versions, the plugin supports
any GCC version starting with version 4.8. Using this setup, we
generated databases of structure accesses for Linux kernels starting
at version 2.6.33, although earlier kernels may also be supported.

3.4 Obtaining Kernel Symbols
With any memory snapshot, the first step is to map virtual ad-
dresses to physical memory. If the memory dump already comes
with page table information, or if it contains the location of the
page tables in register data (such as on x86 via the CR3 register),
this is straightforward. Otherwise, we can identify candidate page
tables in memory by their recursive structure, validate them based
on architecture-specific constraints, and find the kernel page table
by choosing the candidate with the largest number of valid ker-
nel memory mappings. Memory dumps created by our toolkit (c.f.
Section 3.7) already contain paging information.

Reading the Kernel Symbol Table Armed with the virtual
to physical mappings, we scan the virtual address range for the
location of the Linux kernel symbol table (.ksymtab; described in
more detail in Appendix A). By using the .ksymtab data, Katana
obtains the locations of exported function starts and global variables
in the memory dump.

Augmenting the Symbol List Using Kallsyms We are now
equipped with the names and addresses of all symbols the Linux
kernel exports using the EXPORT_SYMBOL macro. This list can be
substantially augmented using additional information provided by
the kallsyms mechanism.

The kallsyms_on_each_symbol function has been present in the
kernel since version 2.6.30. It iterates through all symbols known to
the kallsyms mechanism. For each iteration, this function transfers
control to a user-provided callback function. With the informa-
tion contained in the symbol table, Katana is able to find the
location of kallsyms_on_each_symbol in virtual memory and to sub-
sequently invoke it in the context of the memory snapshot. To be
tolerant to implementation changes, such as the presence of the
KALLSYMS_RELATIVE_BASE configuration flag, we execute this func-
tion in the Unicorn CPU emulator. Inside the emulator, we call
kallsyms_on_each_symbol with a prepared callback function as a
parameter. The emulated code will in turn hand control to the call-
back function for every entry present in the kallsyms database. This
allows us to obtain a list of memory locations of all non-static Linux
kernel functions. In the event that KALLSYMS_ALL is enabled, we are
also able to retrieve the addresses of symbols residing in the data
segment of the kernel.

In the unlikely case that kallsyms is fully disabled in the analysis
target, it is necessary to solve the function identification problem
using another approach. On its own, the information derived from
only the symbol table is insufficient to obtain good results. However,
this is not an issue in practice: kallsyms is enabled on all systems
we analyzed (including resource-constrained IoT devices), and a
required dependency for other kernel features (cf. Subsection 2.3).

Because using the kallsyms API allows modules to circumvent
licensing restrictions in the kernel, the kallsyms_on_each_symbol

function is no longer exported (but still available internally) starting
with Linux 5.7. In this case, we recover its location using the related
kprobes API, which is ordinarily used to place arbitrary breakpoints
in kernel code and returns the address where the breakpoint has
been set.

3.5 Structure Layout Reconstruction
In order to reason about the contents of the concrete memory dump,
we have to infer the offsets of structure members by matching the
machine code of the accessor functions with our pregenerated Ker-
nel DB. The matching process uses several properties maintained
during the compilation process: First, each accessor function, when
not inlined, has to obey the respective architecture-dependent Ap-
plication Binary Interface (ABI). Second, certain pointer calcula-
tions, such as the container_of macro, and the use of global vari-
ables result in recognizable instruction patterns.
We derived the following analyses from these observations:

ABI to caller function How arguments are passed to a func-
tion is defined by the ABI8. During analysis, Katana will exploit
this by tainting incoming arguments and tracking every access
that happens relative to a tainted register. In the example depicted
in Figure 2, we track the value of the rdi register (or its P-Code
equivalent). Note that its value is first moved to rbx, whose value is
preserved across function calls (as specified by the ABI). Our taint
analysis would now propagate the tainted property to the assigned
register (i.e., rbx). Then, the actual dereferencing operation happens
in line 5 (➀).

ABI to callee functions Similarly, calls to non-inlined func-
tions must follow the respective ABI. Therefore, we resolve the
address of every called function (e.g., printk in Figure 2) inside the
function body to its name. If our static analysis of the C code ob-
served that a call to this function contains relevant arguments (i.e.,
a field access), Katana tracks the affected arguments backwards
by following the observed data flow (e.g., across simple assign-
ments). Inside this slice, we find the last indirect memory access,
and consider the displacement used in that instruction as a potential
offset for the target field. For example, we can see this occurring in
Figure 2, when t->pid (➁) is passed to printk.

ABI from callee functions The return value location is
specified by the respective ABI as well. Similar to the way we
tracked accesses to parameters, we track pointers that are being
returned by tainting the memory location that contains the return
value after a successful function call.

ABI from caller function Just as functions that are being
called must return their result in a predetermined location, the
function we are currently analyzing has to as well. If the currently
analyzed function returns a struct member, we will follow the data
flow backwards to identify the last indirect memory access that
affected the return register. In our imaginary function foobar, the
pid member of t is returned (➃). The data flow analysis shows that
the value in eax (the ABI-specified return register) comes from an
access with relative offset 0x3e0.

Access to globals Global variables in the kernel have to be ac-
cessed either relative to the current instruction pointer or through

8For example, on x86-64, the System V ABI mandates that the first six arguments of a
function have to be passed in the registers rdi, rsi, rdx, rcx, r8, and r9.
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Source code:
1 int foobar(struct task_struct *t)
2 {
3 printk(KERN_DEBUG "Hey!\n");
4 if(t->mm ➀ != NULL) {
5 printk(KERN_INFO "PID: %d IPID: %d\n",

t->pid ➁ , init_task ->pid ➂ );
6 }
7 return t->pid ➃ ;
8 }

x86-64 disassembly (Intel syntax):
1 push rbx
2 mov rbx ,rdi
3 mov rdi ,0 xffffffff821fb5d4 # "Hey!"
4 call ffffffff810b9229 # <printk >
5 cmp QWORD PTR [rbx+0x3e0] ➀ ,0x0
6 je out
7 mov esi ,DWORD PTR [rbx+0x490] ➁
8 mov edx ,DWORD PTR [rip+0x131d6fb] ➂ # <init_task +0x490 >
9 mov rdi ,0 xffffffff821fb5dc # "PID: %d..."
10 call ffffffff810b9229 # <printk >
11 out:
12 mov eax ,DWORD PTR [rbx+0x3e0] ➃
13 pop rbx
14 ret

➀ Access via calling function parameter
➁ Access via ABI to callee functions
➂ Access via global properties
➃ Return of a local member
Visible structure offsets
Composed offset

Figure 2: Structure accesses in an example piece of C code, and the result of compiling them to assembly using GCC 9.

the variable’s absolute address. While scanning a function, when-
ever such a reference to the data segment is encountered, we obtain
the closest known symbol location before that address and treat
the difference (within some reasonable limits) as the offset for the
respective field. From the information stored in our database, we
infer which of the fields was accessed. In Figure 2, foobar accesses
the pid member of the global variable init_task (➂). This pattern
also allows us to deduce the locations of some missing globals if
KALLSYMS_ALL is disabled.

The container_ofmacro To implement features such as linked
lists and hashtables, the Linux kernel often uses the container_of

macro to access parent objects containing other objects. For exam-
ple, task_struct objects contain themember tasks of type list_head.
In turn, list_head contains a member next, pointing to the next
object in the list. Typically, one would expect next to directly point
to the following task_struct object, however, it actually points to
the tasks member inside the next task_struct. This allows the ker-
nel to implement code that traverses these lists of type without
depending on the offset of the list_head inside each of the stored
objects. However, to access the actual object referenced by the list,
the pointer to the next list entry needs to be adjusted by that offset,
which is done in kernel sources by using the container_of macro.

We observed that in a large majority of cases, Ghidra will emit an
INT_ADD P-Code operation with a negative immediate as opposed
to a more natural INT_SUB operation with positive immediate.
This Ghidra-specific heuristic is consistent across architectures in
version 10.0.4 of Ghidra upon which we evaluated Katana. As
we observed similar patterns in the underlying machine code, we
believe this pattern will also be present in the lifting behavior of
future versions. During analysis, we collect these unusual arith-
metic operations and attempt to match them with known uses of
the container_ofmacro, which we detect in the AST with our GCC
plugin. Then, the displacement is likely the inverse of the offset of
the member referenced by the container_of macro.

Invariant members All techniques listed so far are driven by
Katana’s ability to identify and exploit ABI features of the machine
code during the invocation of a function. However, there are some

important members, which are accessed only inside a long call
chain of multiple static functions that are inlined into the calling
function. Due to additional compiler optimizations, these functions
are usually not matchable to the original dataflow for Katana.
Instead, these members can be partially recovered by relying on
a database of invariant members, i.e., structures that are not at all
covered by #ifdefs (and therefore do not change with configuration
changes) and are not marked for randomization. We extract these
members using our compiler plugin and use them in our majority
voting process with a double vote, but they can still be overruled
given sufficient contradictory evidence.

Specifics of P-Code and the overall algorithm As men-
tioned earlier, Katana’s structural matching is performed on P-
Code, which we acquire by accessing the Ghidra API. The classic
[reg+offset*mul] instruction pattern on x86-64 seen in Figure 2 is
decomposed into several P-Code instructions. We track P-Code’s
equivalent to registers and memory locations (so-called “varnodes”)
and emulate mathematical calculations on constants in order to
accurately follow the data flow. On every LOAD and STORE operation,
we determine if we can match the accessed object to our database.
Using P-Code also makes our analysis agnostic to compiler specifics,
because the semantics of the lifted representations remain the same
and will also be matched by our algorithm. Further details about
the lifting process can be found in Appendix C.

Our analyses are complicated by the fact that the compiler applies
various optimizations during compilation. The compiler is free to
reorder operations, as long as the data flow permits it, to inline
functions, and to eliminate dead code. We do not match conditions
between the source code and the machine code, meaning that each
time the control flow branches, inaccuracies may be introduced. To
address this, we perform a weighted majority voting on all offsets
recovered for a single struct member. The weights are applied
based on the type of analysis that the offset was recovered from and
reflect correctness probabilities that we empirically obtained from
analyzing the 85 kernels displayed in Table 3. Together with this
majority voting, we will see in Section 4 that these transformations
do not harm our analysis in almost all cases if the field inside
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Algorithm 1: P-Code to source code database matching
𝑆 ← recovered function symbols;
𝐷 ← access database for similar kernel version;
𝑂 ← ∅, mapping of members to offsets;
foreach recovered function 𝑓 ∈ 𝑆 do

𝐴← ∅, ordered set of accesses;
foreach P-Code instruction 𝑖 ∈ 𝑓 do

if 𝑖 is a structure member access on some 𝑜 then
⊲ Recover source or sink 𝑠 and offset 𝛿
𝑠 , 𝛿 ← taint-tracking(𝑜);
𝐴← 𝐴 ∪ {(𝑠, 𝛿)};

end
if 𝑖 is a register access with fixed offset 𝛿 < 0 and
|𝛿 | < |𝛿max | then
𝐴← 𝐴 ∪ {(containerof, −𝛿)};

end
end
foreach P-Code analysis 𝜆 do

𝑅← reference accesses from database 𝐷 (𝑓 , 𝜆);
foreach matching access 𝑎 ∈ 𝜆(𝐴) do

⊲ Fetch type 𝑡 and member𝑚
𝑡 ,𝑚← next(𝑅);
𝑂 (𝑡,𝑚) ← 𝑂 (𝑡,𝑚) ∪ {offset(𝑎)};

end
end

end

the structure is accessed frequently enough. Katana may pick an
incorrect candidate for a struct offset in a single accessor function,
but can correctly vote out the final offset.

A broad overview of our P-Code-to-database matching is de-
picted in Algorithm 1. We sequentially iterate over the P-Code
instruction stream of every recovered function, following direct
branches and analyzing both control flows of conditional branches,
combining their results and removing duplicates. When we en-
counter an instruction that could conceivably be a structure mem-
ber access, we follow our description of the taint tracking informa-
tion both forwards (where the result of the member access passes
to data sinks such as function call arguments) and backwards (to
data sources such as global variables and function parameters) as
described above, and log the sink or source and the recovered off-
set in an ordered list of accesses. Candidate accesses using the
container_of macro are treated similarly, but no taint tracking is
necessary. After obtaining the set of accesses for a function, we
separately consider each of our analysis passes. Reference accesses
from the database (containing type and member information) for
that specific analysis pass are matched one-by-one to the accesses
obtained from P-Code (which contribute the recovered offset).

3.6 Analysis Plugins
In total, Volatility implements 66 different analyses for Linux mem-
ory dumps. However, 14 analyses either do not work correctly as
per Volatility’s own source-code comments (e.g., linux_arp) or work

only on extremely outdated Linux versions. Therefore, creating a
profile for these analyses and executing them would not allow for
a fair evaluation on modern kernels. Instead, we identified and
reimplemented a set of important analyses found in existing work
(e.g., in Ligh et al. [15] and Volatility) and include them directly
into the Katana framework. This design decision also allows us to
enable fallback access patterns for complex analyses and to avoid
using excessive structure accesses where it is not needed to fulfill
the analysis task. These excessive structure accesses tend to happen
in Volatility’s analyses as its profiles are always correct, whereas
for Katana, inaccurate offsets may cause the whole plugin to fail.

We have reimplemented the following analyses in Katana:

• We obtain the current kernel version banner from a symbol.
• We extract the kernel dmesg ringbuffer logging output from
the memory dump. The corresponding Volatility plugin is an
example of an outdated plugin, because the internal struc-
tures have changed in version 5.10 (released in December
2020) and Volatility has not adapted its analysis.
• We derive the list of modules currently loaded in the kernel.
• We obtain a process listing from the snapshot. This includes
both the process names, execution state, and the user ID
with whose permissions the process is running. From there,
we use the memory mappings stored by the kernel to pro-
duce ELF core files containing the virtual address space of
each userspace process. This allows us to match memory
segments in the snapshot to their respective processes. The
resulting core files can then be analyzed using classical re-
verse engineering, debugging, or forensic analysis tools.
• Based on the process list information, we retrieve informa-
tion about environment variables, a list of currently opened
files, and currently open sockets and active network con-
nections akin to the netstat command. Using this informa-
tion, an analyst can quite accurately reconstruct the state of
userspace processes at the time the snapshot was taken.
• We also provide the ability to list all network neighbor tables
including the ARP table. This allows the analyst to recon-
struct a list of IPv4 and IPv6 machines the analysis target
was communicating with at snapshot time.
• An analysis walking through the kernel heap’s set of allo-
cated and formerly allocated objects is included. Of particular
interest is the heap cache containing dentry (directory entry)
objects. We associated each of these objects with correspond-
ing metadata, which allowed us to build a timeline of file
accesses. Volatility’s dentry_cache plugin performs essen-
tially the same analysis, but has not been updated since 2014
and requires a global symbol that was removed with Linux
3.6 (dated September 2012). Therefore, it operates only on
kernels that use the SLAB allocator, while we also support
newer kernels with the now-default SLUB allocator. Further-
more, additional security features (i.e., pointer mangling of
free list pointers) have been developed since then and are,
therefore, not supported.
This plugin is one example requiring the knowledge of many
kernel structures, where our own implementation utilizes
an alternative access strategy if a key structure offset could
not be recovered.
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3.7 Module-based Snapshot Creation
While capturing a memory dump from a virtual machine or via
hardware debugging primitives such as JTAG should generally
be preferred, these approaches are often highly specific to each
device or virtualization environment, and not all devices expose
the necessary interfaces for this kind of access.

For analyzing Android devices, for example, it has been an es-
tablished practice to insert a kernel module to dump the system
memory from within the same privilege domain as the operating
system. One frequently used solution that takes this approach is
the LiME toolkit [15, p. 580].

However, building a kernel module generally requires access to
the kernel headers, the kernel configuration, and the seed used in
structure layout randomization, none of which are available in a
binary-only analysis setting. Unfortunately, it is also not feasible to
precompile LiME for the different kernels one may encounter: Linux
kernel modules are generally compatible only with the specific
version of the kernel for which they were compiled.

To allow also for memory snapshot acquisition in a binary-only
setting, the Katana framework includes a module that adapts dy-
namically to the targeted kernel version. The snapshotting pro-
cesses is described in the following. First, a custom loader and the
LKM are compiled for the target architecture (currently x86-64,
ARM64, and 32-bit MIPS systems are supported). Second, the loader
and the LKM are transferred to the analysis target. Afterward, the
loader will analyze the existing kernel modules on the system and
alter the .modinfo section of the LKM accordingly, parameterize
the LKM with the exact Linux version, and issue the insmod sys-
tem call to insert the LKM. The LKM is designed to avoid direct
accesses to structure members that are influenced by kernel con-
figuration options, because their offsets are still unknown at this
point in time. Where APIs have changed over the years, we use the
injected kernel version information to choose between alternative
implementations.

In a last step, our module sends a full memory dump of any
supported system to a server on the local network, including the
full page table of the CPU on which the memory dump is taken. The
server can then carry out the snapshot analysis steps of Katana.
Our kernel module is loadable on any Linux kernel since version
2.6.18 (dated September 2006) and enables us to obtain memory
snapshots in situations where other tools may not be usable. These
situations could arise when the device does not allow direct physical
exfiltration, e.g., with an Android phone or a bare-metal server. Such
devices usually do not offer debugging interfaces like JTAG.

4 LAB EVALUATION: COMPARISON TO
VOLATILITY

For the first part of our evaluation, we create lab conditions (i.e., ker-
nels with debug symbols for ground truth) such that we can quanti-
tatively evaluate the performance of Katana. In consequence, this
experiment illustrates the magnitude of the impact of varying ker-
nel structures in practice compared to profiles created heuristically
by Katana.

To conduct this experiment, we first assess the accuracy of the
structure layouts recovered by Katana in the presence of different
randomized kernel configurations, and compare the results with
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Figure 3: Working Volatility analysis plugins using Volatility
and Katana offsets

the fields required by Volatility for its various analyses. We utilize
Volatility’s own analyses here for a fair comparison, but exclude 14
analyses that do not work correctly (see Section 3.6).

Experiment Setup To evaluate our automated structure lay-
out recovery, we analyzed 85 different builds of 7 kernel versions
and compared the recovered member offsets with the debugging
symbols for these kernels. More specifically, to cover a large range
of kernel versions, we chose to evaluate Katana on five current
long-term support versions, an older, now unsupported, LTS ver-
sion, and a recent stable kernel version. For each kernel version,
we generate a reference database for Katana based on that kernel
version’s default configuration (defconfig). Afterwards, we compile
additional variants of each kernel version with modified configura-
tions, and examine how well the reference database generalizes to
the changes.

To generate test kernels, we make use of Kbuild’s randconfig op-
tion, which randomizes the features that are enabled in the kernel.
While some of these kernels may not be bootable, this produces
a set of unbiased configurations, in which features and their cor-
responding data structures differ from the reference kernel. Using
this process, we generate 10 different configurations of varying size
on each of the 7 kernel versions we investigated. Support for x86-64
with SMP multithreading, printk, and kernel module support is
forcibly enabled on all kernels. Where supported, we generate two
kernels with the default configuration and structure layout ran-
domization enabled. Furthermore, we save ground truth structure
layout information for all kernels. In order to avoid booting each of
the 85 kernels — after all, some of them might not even be bootable
— we let Katana extract structure offsets from the .text sections
of the unbooted kernel images.

We identify the structures and members required by Volatility’s
analyses by inspecting their implementation. For these members,
we compare the structure offsets that Katana extracted from the
kernel images against the ground truth information. Since Volatility
uses the offsets of the reference profile to power the 52 analysis
plugins, we have to consider a single differing offset in the target
kernel as leading to analysis failure.

Results Across the 70 different kernels with randomized con-
figurations, we correctly recover between 65.4% and 79.3% (average:
73.58%) of all members identified by the reference database. This
also includes fields used only internally by drivers or other spe-
cialized code that may not even be active on the target system and
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Figure 4: Fraction of correctly recovered structure member
offsets using Katana (all kernel structures)

that would usually be irrelevant for forensic analysis. However, it
would be incorrect to exclude these members from the statistical
evaluation ahead of time, because they may become interesting for
future analyses, and a manual review of all members is impossible.
On average, wrong offsets are recovered by Katana for 15.14% of
members (8.1% – 20.8%), and no value can be recovered for the
remaining 11.28% of members (6.4% – 16.9%).

Due to the structure differences introduced by the configuration
changes, Volatility is able to successfully perform only 9 to 15 of the
52 analyses (median: 10), while Katana correctly recovers enough
offsets to perform between 19 and 44 analyses (median: 34.5).

If structure layout randomization is enabled, Katana’s perfor-
mance improves further: We now correctly recover an average of
86.46% of known offsets. Again, Katana significantly outperforms
Volatility; we manage to run between 25 and 36 analyses (median:
34), while Volatility can only perform exactly 15 on each of the 8
tested kernels.

On the reference kernels for each version, Volatility (with perfect
debugging information) is able to run all 52 analyses. Katana cor-
rectly recovers the offsets of 85.17% of known members on average,
and can perform between 34 and 43 of the 52 analyses. Figures 3 and
4 summarize these results; details can be found in Table 3, including
the total number of members to which offset recovery relates9.

In general, we can see that, when ground truth information is not
available, Katana outperforms Volatility with regard to the num-
ber of correctly performed analyses. Often, Katana can still exe-
cute central analyses including listing processes (linux_pslist, sup-
ported 41x by Katana, but by Volatility only in the 7 reference ker-
nels) and environment (linux_psenv, 68x vs. 7x), network connec-
tions (linux_netstat, 66x vs. 7x), and module listings (linux_lsmod
78x vs. 42x). Where Katana fails to perform Volatility’s analy-
ses, this is most frequently caused by the architectural differences
between the two: Volatility generally opts to require more struc-
ture members than strictly necessary for the analysis. For example,
the linux_check_syscall plugin verifies the integrity of the system
call table, but needs to recover a file from memory in order to do
so, even though both syscall numbers and the target pointers are
known ahead-of-time. In total, 11 of the plugins perform integrity
checking with the goal of detecting the presence of malware (e.g.,
linux_check_inline_kernel), which requires a particularly large

9Note that since kernels with structure layout randomization contain un-randomized
debugging information, we instead report the number of members as observed by our
GCC plugin during compilation, which for Linux 4.19 and 4.14 differs significantly
from the set of members reported by debugging information.

number of members. Since analyses are all-or-nothing, i.e., a single
misidentified member leads to analysis failure, there is a significant
threshold effect: slight differences in recovery can lead to large dif-
ferences in the number of successfully performed analyses. This can
be observed, e.g., in the kernels with structure layout randomization
for kernels 5.8.14 and 5.4.70.

5 REAL-WORLD EVALUATION
To evaluate Katana in real-world usage scenarios, we cannot rely
on the availability of ground-truth information. Instead, we exe-
cuted all of our implemented analyses (see Section 3.6) on a set of
test systems and manually validated the correctness of the output.
The set contains a variety of popular Linux distributions, snapshots
from non-x86 architectures, a VM infected with malware, and off-
the-shelf IoT devices. Our results are described in the following
sections.

5.1 Linux Distributions and Variants
To obtain a comprehensive overview of common Linux kernel con-
figurations, we collected a broad variety of popular Linux distri-
butions and variants including Android, with 45 kernels ranging
from version 3.9.5 (June 2013) to 5.11.16 (May 2021). We generate
snapshots of fully booted QEMU virtual machines using QEMU’s
dump-guest-memory command and analyzed them with all analysis
plugins we implemented.

We found that the kallsyms feature is enabled on all of the dis-
tributions and release versions examined, and that KALLSYMS_ALL
(adding global variables and non-exported functions to the set of
symbols available through kallsyms) is enabled on all systems ex-
cept for Debian Jessie and Android 9.

We were able to successfully recover the kernel version banner,
dmesg ringbuffer contents, and the fullmodule listing on all memory
dumps except for Android 11, where we mis-predicted an offset. In
all other cases, Katana recovered the offsets for the module struct,
and the address of the internal linkage symbol modules successfully.
On the other three Android snapshots, Katana correctly recovered
the offsets in the module struct, but no modules were loaded.

Our more complex analyses were able to automatically produce
task listings and core dumps for the userspace processes as well as
the list of open file descriptors for all 45 images. We verified that
the generated core dumps matched the memory maps reported by
the /proc entry for that process on the virtual machines themselves.

Enumerating the processes’ environment variables succeeded
on all but two images (where empty environment strings were
reported). Network-related analyses appeared to be more fragile:
listing the ARP table and network connection information both
succeeded in 35 of the images. Our analysis of the kernel cache
to discover a history of file accesses succeeded on all but seven
images taken from standard Linux distributions, but failed on all
taken from Android systems.

A listing of themembers used by our analysis passes can be found
in Appendix B. Furthermore, a detailed listing of all Linux systems
showing which of our analyses work can be found in Table 2.
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5.2 IoT Devices
Katana is specifically designed to also support forensic analysis
of IoT devices. IoT devices are by nature restricted to binary-only
approaches, since many vendors do not publish debugging symbols,
build configurations, or modifications to the kernel source. We
therefore evaluate Katana on two MIPS-based physical devices
and one ARM64-based VM (results are also included in Table 2).
All analyses were performed cross-architecture against a database
generated on x86-64.

Katana was able to perform all of our analyses except the file
access history on the memory dump from an ARM64 VM running
Linux 4.1910. On a TP-Link TL-WR740N router and a Tapo C200
smart camera, Katana managed to recover all data necessary to
correctly extract both system (modules, dmesg log, etc.) and pro-
cess information (including environment variables and open file
descriptors). Missing offsets for some rarely used members pre-
vented us from running some of the more complex analyses (e.g.,
the file access history). The router contains a MIPS 32-bit big endian
processor running an extremely outdated Linux 2.6.31; the camera
runs Linux 3.10 on a little-endian MIPS 32-bit chip. We attached
to both devices using UART and produced memory dumps using
Katana’s custom dumper.

5.3 Real-World Malware Analysis
In order to prove Katana’s practical utility in a realistic post-
compromise scenario (malware infection with persistence), we de-
ployed a sample11 of the RedXORmalware [13], whichwe randomly
selected from VirusShare, on an isolated virtual machine (Ubuntu
18.04, Linux 4.15) and analyzed a memory snapshot using Katana.
We were able to successfully recover the malware (and its process
image) from the list of processes. From the memory dump, Katana
also obtained a timeline of file accesses and the list of files currently
open at the time the snapshot was taken (revealing the source of the
infection and its persistence mechanism), and observed that there
were no currently open network connections or sockets. Our results
(obtained in a post-mortem setting) closely matched those obtained
both by malware analysis frameworks using live introspection, and
manual analysis [13]. Detailed results can be found in Appendix D.

5.4 Performance
We evaluated Katana’s performance on the real-world snapshots
from Section 5.1. Overall, Katana performs fast enough to be used
on a daily basis by an analyst. We exclude the IoT device snapshots
from the data below due to their significantly smaller size.

Database Generation During our evaluation, we did not ob-
serve a noticeable impact of our GCC plugin on kernel compilation
times. This means that creating the database of accessor functions
is approximately as fast as normal defconfig kernel build (about five
minutes on our hardware, depending on the kernel version), and
can be performed using multiple cores. We used an AMD Ryzen
2950X with 32GB of RAM and compiled the kernel with eight par-
allel threads (-j8). During normal analysis, this database will be

10At the time of evaluation, QEMU did not implement dumping memory of ARM64
guests, so we deferred to using Katana’s memory dumper instead (Appendix 3.7).
11SHA256: 4f159f6a745752e3211ca1146830c86075fd8f5db60f704605a57db904dc
f5c5
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Figure 5: Performance on differently sized memory snap-
shots

precomputed in almost all cases; we will distribute databases for
kernels 3.7 through 5.12 alongside Katana.

Layout Reconstruction Locating the symbol table took be-
tween 32 and 193 seconds depending on the symbol table layout,
for an average of 72 seconds. Emulating kallsyms takes between 1.5
and 6.1 seconds; the impact on end-to-end performance is negligi-
ble. Recovering the structure layout using Ghidra takes the largest
amount of time. On average, processing any of the 45 non-IoT snap-
shots listed in Table 2 took 883 seconds, with values between 10.5
and 18.5 minutes.

Analyses The time taken for further analysis is generally neg-
ligible. All analyses, except those for which userspace paging needs
to be reconstructed (environment variables, and process core dump
creation), finished within six seconds on all 45 non-IoT snapshots.
This matches the speed of comparable Volatility analyses. The file
access history had both the highest average and maximum run-
time, at 2.4 and 6.2 seconds, respectively. The performance impact
of recreating userspace paging greatly depends on the amount of
memory that needs to be mapped and its page table layout. For ex-
ample, extracting 4.5GB of core files across 107 processes from the
Android 10 snapshot took 169s, while memory dumps with fewer
processes were much faster (on average, 32 seconds for 470MB of
output).

Impact of Snapshot Size The size of the memory dump itself
does not significantly affect the end-to-end analysis time. This is
due to the fact that the analysis is strongly affected by what data
is in the snapshot, rather than how much. Figure 5 compares the
average performance of each of the layout reconstruction steps
for otherwise identical memory dumps of different sizes (averaged
over multiple dumps). We see that the overall performance is essen-
tially independent of the size of the snapshot. This is expected for
kallsyms emulation and later steps (the size of the input to these
steps is bounded by the specifics of the kernel in question, rather
than the amount of kernel data). The symbol table search does scale
with memory size, but only slightly — more time is spent validating
matches than actually scanning the memory.

6 DISCUSSION
Using P-Code allowsKatana to target a wide range of devices when
an appropriate P-Code implementation is available. We showed
its effectiveness for analyzing targets such as Linux distributions
(cf. Section 5.1) and IoT devices (cf. Section 5.2). Even a mismatch
between the architecture of the generated database of accessor
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functions and the running kernel still allowed Katana to provide
valuable forensic information. In case Katana produces false pos-
itives, an analyst should easily be able to tell them apart from
accurate information. During our evaluation, we only encountered
results that could be misinterpreted as a false negative once: the
empty module list on Android kernels.

6.1 Design Decisions and their Impact
In previous iterations of Katana, we based our analysis implemen-
tation on the Capstone disassembler and its metadata. During the
transition to P-Code, we observed a general increase in accuracy
of our analyses when compared to the assembly-based approach.
Ghidra’s ability to derive higher-level meaning from machine code
during the lifting process (a feature heavily relied upon by Ghidra’s
decompiler) greatly improved the quality of our results, and we
profited from out-of-the-box support for multiple architectures.

Preserving additional information on invariant members and in-
jecting it into the majority vote provides a significant improvement
in the recovery rate compared to only using accessor functions. In
essence, this combines the Volatility approach of assuming offsets
never change (which we can guarantee in the case of invariant
members as long as the kernel was not modified) with the acces-
sor function approach (which allows us to overrule the former
in case our assumptions are not correct). This maintains most of
the flexibility of the latter while still benefiting from ground-truth
information.

We decided to re-implement some of Volatility’s analyses with
Katana in order to update the analyses to work with recent ker-
nels and to reduce dependence on technically optional structure
members. Volatility can assume these are always known because
of perfect profiles, but this makes it significantly more difficult for
Katana to fully drive Volatility’s analyses in cases where almost
all, but not all members are recovered correctly.

Instead of relying on ABI characteristics for matching, another
naïve approachwould be to utilize BinDiff to perform an instruction-
to-instruction matching at binary level and match the changed
offsets to structure members. However, this is particularly sensi-
tive to changes in optimization level or compiler version and to
larger code changes (e.g., #ifdefs). We found that even if we let
BinDiff utilize kallsyms information for function identification, a
precise instruction-to-instruction matching cannot be performed
in the majority of cases (e.g., Figure 9), and mapping instructions
to structure members remains a difficult task. Even with debugging
information available, DWARF can only map address ranges to line
ranges, which is a too coarse to identify individual accesses.

6.2 Rootkit Resilience
Finally, we discuss our ideas in the context of Direct Kernel Struc-
ture Manipulation (DKSM) [1]. This usually necessitates a lengthy
discourse on the presence of rootkits and the implications for the
trustworthiness of any results obtained from an infected system.
We acknowledge that Katana could be circumvented by attackers
who manipulate the data structures, with potentially disastrous
implications for the analysis results. However, we would like to
point out that a DKSM attack not only has to change the desired
core data structure of the operating system, but also every single

accessor function operating on such structures to maintain system
stability. This is a challenging task for an attacker, especially be-
cause updating the kernel code means that Katanawill also receive
the updated information from the newly generated code. The only
way for an attacker to adapt would be to carefully rearrange the
basic blocks of the functions inspected by our approach in a way
that disassembly logic becomes oblivious to the member locations
within structures. This is a non-trivial task, even for an advanced
attacker.

Other approaches such as LogicMem [21] are much easier to
fool. LogicMem starts its analysis by scanning the memory for
the string "swapper/0" to find the first process in the task list. A
rootkit with full access to kernel memory might create a fake task
list and rename the "swapper/0" process afterwards. While it is
possible to create a second kernel image in memory containing
wrong offsets, it is not easily possible to hide the .text segment of
the operating kernel. In such a case, Katana can detect that two
conflicting kernels are placed in memory and warn the analyst.

As Katana’s ideas rely solely on the structure of the .text seg-
ment of the kernel, the structure layout derivation is not affected by
attacks like Direct Kernel Object Manipulation (DKOM). Of course,
analysis passes that access manipulated objects may still be im-
peded by DKOM, but not to a greater extent than other tools that
analyze memory.

6.3 Real World Impact
We showed that Katana can perform vital analyses of Volatility
on most major Linux distributions, even without the presence of
debugging symbols or in the presence of distributor patches. While
the Volatility Foundation maintains a repository of pre-generated
profiles for most major Linux distributions, this repository has
become outdated and can, by design, not include every custom
kernel built for IoT devices. If no ready-to-use profile is available,
an analyst might consider switching to Katana in order to avoid
the lengthy process of creating a Volatility profile. Moreover, those
profiles can be generated only for kernels where debugging infor-
mation is published, which is not the case for distributions with
self-compiled kernels (e.g., Gentoo), rolling release distributions
where the kernel quickly becomes outdated (e.g., Arch Linux) or
IoT devices where manufactures are hesitant to provide access to
build toolchains, kernel configurations, and source code. Here, a
binary-only analysis is the only viable option.

Katana can also be used to generate profiles suitable for Volatil-
ity in order to allow reusing existing analyses. However, Volatility’s
codebase is barely maintained and stuck on Python 2. Its Python 3
successor, Volatility 3, does not yet support many Linux analyses.
Other binary analysis frameworks like Avatar2 [17] could also be
enriched with forensic information. Taken together, we believe
Katana closes an important gap in obtaining forensic information
on Linux.

7 RELATEDWORK
Our closest competitor is AutoProfile [19], which evolved as con-
current research to our own. It is also based on code-based analysis
extracting structure offsets from the kernel’s code segment. While
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the overall derivation approach is similar, there are important differ-
ences. First, we base our analysis on Ghidra’s P-Code intermediate
representation whereasAutoProfile’s taint engine is deeply based
on x86-64 and currently only supports this architecture. The lead
author stated to us on request that even though extending Auto-
Profile to other architectures would be possible, it would require a
substantial amount of engineering effort. Furthermore, we showed
Katana’s capabilities to perform analysis cross-platform, i.e. to
analyze a MIPS-based IoT device with a x86 profile, which is not
possible at all with AutoProfile. Second, we do not rely on the
repeated use of an SMT solver in the final processing step to resolve
conflicting structure offsets. Repeated solving of an SMT problem
containing constraints for all structures in the kernel will take a
substantial amount of time. We assume this to be the key reason for
our much quicker analysis (AutoProfile claims an analysis time
of 8 hours for a 2 GB memory dump vs 20min in case of Katana).

LogicMem [21] solely analyzes the volatile runtime data of the
Linux operating system and focuses on finding the task list inside
the memory dump. This limits the number of analyses that can be
performed to structures that are related to the task_struct structure
definition. Particularly, an analysis on heap objects of the kernel is
not possible. In contrast to Katana, generating the inference rules
for every structure involves manual work. Furthermore, LogicMem
is unable to handle structure layout randomization.

Besides these two recent proposals, a multitude of methods for
monitoring the state of virtual machines (VMs) using the hypervi-
sor have been suggested. These approaches are typically grouped
into Guest Assisted, Debugger Assisted, Compiler Assisted, Binary
Analysis, and Manual [2]. In the following, for every group, we
highlight a few selected approaches.

Manual Approach Despite the fact that manual analysis is
a tedious task, it is still chosen by a majority of academic foren-
sic analysis projects [2]. Manual approaches rely on the human
to solve the semantic gap problem and as such are naturally not
scalable. VMscope [11] intercepts all CPU instructions executed on
the VM. If an instruction performing a system call is encountered,
the corresponding handler is executed. These handlers were imple-
mented manually for every supported system call, each of which
derives semantic meaning from the respective system call operation.
RAMPARSER [10] attempts to recover key fields of a specific set
of kernel structs. These key fields are recovered by reverse engi-
neering certain manually picked functions that access or modify
them. Additionally, heuristics that are specific to the respective
kernel struct are employed to further deduce offsets to key struct
fields. This has been shown to work well, but requires substantial
manual effort for each specific struct and field that needs to be
recovered. Other manually assisted approaches like Panorama [27]
and Ekkys [7] rely on manual reconstruction of important kernel
abstractions like processes or files.

In contrast to the previously named tools, there are also signature-
based tools that perform the memory snapshot analysis in a bottom-
up way, i.e., the analysis does not start from a known global pointer.
Instead, a brute-force scan of all available memory is performed in
order to detect interesting kernel structures. This memory scanning
technique allows detection of kernel objects that have intentionally
been hidden by malware, for example, by disconnecting it from
the global object graph. However, all signature based detection

tools generate their signatures from known kernel structure layouts
[6, 14]. Most likely this is done to keep the false positive rate low.

Debugger Assisted Approach Besides Volatility and Rekall,
which have already been discussed, also libVMI12 can be put into
this category with the same drawbacks.HookMap [26] leverages the
System.map file to obtain the position of kernel symbols. However,
the System.map file severely limits possibilities of analysis as no
knowledge of the layout of kernel structs is contained.

Binary Analysis Approach Binary analysis approaches do
not rely on any external information like debugging symbols and
instead operate only on the raw binary image. RAMAnalyzer [28]
starts out the analysis by scanning the binary image for a specific
crash information string, which is generated early on in the Linux
Kernel boot process. This string contains the position of certain
symbols that enable recovery of the page global directory. Access to
kallsyms then allows recovery of exported and unexported kernel
symbols. To conduct analysis on the recovered symbols, structure
layouts are identified in a fashion similar to RAMPARSER [10]. In
contrast to RAMAnalyzer, Katana automatically recovers a wide
variety of structure fields and, therefore, eases development of
future analyses, which might require a completely new set of fields.

BinDiff [29] andDiaphora [12] are frameworks that aim to match
functions between different versions of the same binary. They do
not recover structure layouts by themselves. ORIGEN [8] uses Bin-
Diff ’s binary-to-binary matching in order to translate layout in-
formation between kernels. To identify structure accesses (“offset
revealing instructions”) in the reference kernel, they rely on a com-
bination of static and dynamic analysis (including tracing dynamic
allocations of the target types). Then, ORIGEN obtains a one-to-one
instruction matching using BinDiff, and attempts to recover the off-
sets from the equivalent instruction in the target kernel. However,
the large number of different structures makes a manual tagging
approach of all potentially interesting types an infeasible task, and
obtaining full coverage in live execution is even more difficult: E.g.,
consider a rare access that only happens under specific hardware
conditions — ORIGEN’s dynamic analysis cannot find the access
and, in turn, will not be able to recover the offset. Furthermore,
ORIGEN’s evaluation on the kernel is limited to the task_struct;
adding further types seems to require tedious manual work.

Compiler Assisted Approach InSight [24] constructs a map
of kernel objects by starting with global objects and following the
pointer members of each object. However, many code paths in the
Linux kernel cast pointers to a different type or perform various
other operations to them before actually accessing the pointed to
memory. To avoid analysis faults caused by this dynamic behavior,
InSight performs static code analysis on the kernel source code in
order to infer the dynamic behavior of pointer members.

SigGraph [16] utilizes a custom compiler pass to infer the graph
structure formed by pointers between different kernel objects of
interest. By performing a brute-force scan over the entire memory,
it is possible to find instances of the targeted data structures.

Guest Assisted Approach Guest-assisted approaches gen-
erally require access to the running system, such that either a
program can be installed on the guest or the OS itself can be modi-
fied. Therefore, these approaches are not suitable for a post-mortem

12http://libvmi.com/

http://libvmi.com/
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analysis setup. Virtuoso [5], VMST [9], and Hybrid-Bridge [23] try to
solve the semantic gap problem by converting an in-guest analysis
program to an out-of-guest analysis program, by recording one
or many instruction/memory access traces of the overall system.
This usually does not allow post-mortem analysis. TZB [4] and
PoKeR [22] similarly record memory accesses for forensic analysis
from the hypervisor.

8 CONCLUSION
We presented Katana, a tool for Linux forensics. It derives symbol
information of the running Linux system from the symtab and ex-
tends them with the symbol information made available through
the kallsyms feature. From there, Katana is able to partially recon-
struct the memory layout of central operating system structures in
a fully automated way so that essential analyses of Volatility can
be conducted. Our database generation is based on the concept of
accessor functions, whose disassembly leaks information about the
memory layout of kernel structs.

Furthermore, we are the first who conducted a large study on how
code-based profile generation approaches perform for all structures
in the Linux kernel using a set of modern analysis plugins on an
extensive set of 85 different kernels. Another important result of
our research is that forensic profiles can generalize from a default
kernel configuration to other kernel configurations (like those used
by most major distributions) and CPU architectures sufficiently
well in order to perform common forensic analysis tasks.

We conclude that the combination of aggregate symbol informa-
tion and structure layout derivation from compiled machine code
is a promising approach for building robust, automated and binary-
only analysis tools. Katana, which we release to the public, serves
as a prototype implementation of our vision to enhance practical
Linux forensics, and hopefully sparks further research ideas.

ACKNOWLEDGMENTS
We would like to thank Fabio Pagani and Marius Muench for the
inspiring discussions on our research. Furthermore, we would like
to thank the numerous reviewers for their valuable feedback.

REFERENCES
[1] Sina Bahram, Xuxian Jiang, Zhi Wang, Mike Grace, Jinku Li, Deepa Srinivasan,

Junghwan Rhee, and Dongyan Xu. 2010. DKSM: Subverting virtual machine in-
trospection for fun and profit. In 2010 29th IEEE Symposium on Reliable Distributed
Systems. IEEE, 82–91.

[2] Erick Bauman, Gbadebo Ayoade, and Zhiqiang Lin. 2015. A survey on hypervisor-
based monitoring: Approaches, applications, and evolutions. ACM Computing
Surveys (CSUR) 48, 1 (2015), 10.

[3] Peter Chen and Brian Noble. 2001. When virtual is better than real. In Eighth
Workshop on Hot Topics in Operating Systems. IEEE, 133–138.

[4] Brendan Dolan-Gavitt, Tim Leek, Josh Hodosh, and Wenke Lee. 2013. Tappan
Zee (north) bridge: Mining memory accesses for introspection. In 2013 ACM
SIGSAC Conference on Computer & Communications Security. ACM, 839–850.

[5] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke
Lee. 2011. Virtuoso: Narrowing the semantic gap in virtual machine introspection.
In 2011 IEEE Symposium on Security and Privacy. IEEE, 297–312.

[6] Brendan Dolan-Gavitt, Abhinav Srivastava, Patrick Traynor, and Jonathon Giffin.
2009. Robust signatures for kernel data structures. In Proceedings of the 16th ACM
Conference on Computer and Communications Security. 566–577.

[7] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng Yin, and Dawn Song. 2007.
Dynamic spyware analysis. In Proceedings of the 2007 USENIX Annual Conference
(USENIX ATC). USENIX Association, 233–246.

[8] Qian Feng, Aravind Prakash, Minghua Wang, Curtis Carmony, and Heng Yin.
2016. Origen: Automatic extraction of offset-revealing instructions for cross-
version memory analysis. In Proceedings of the 11th ACM on Asia Conference on

Computer and Communications Security. 11–22.
[9] Yangchun Fu and Zhiqiang Lin. 2012. Space traveling across VM: Automatically

bridging the semantic gap in virtual machine introspection via online kernel data
redirection. In 2012 IEEE Symposium on Security and Privacy. IEEE, 586–600.

[10] Richard Golden, Andrew Case, and Lodovico Marziale. 2010. Dynamic Recreation
of Kernel Data Structures for Live Forensics. Digital Investigation 7 (2010), 32–40.

[11] Xuxian Jiang and Xinyuan Wang. 2007. “Out-of-the-box” Monitoring of VM-
based High-Interaction Honeypots. In International Workshop on Recent Advances
in Intrusion Detection. Springer, 198–218.

[12] Joxean Koret. 2015-2021. Diaphora: A Free and Open Source Program Diffing
Tool. http://diaphora.re/. Accessed: 2021-06-08.

[13] Joakim Kennedy and Avigayil Mechtinger. 2020. New Linux Back-
door RedXOR Likely Operated by Chinese Nation-State Actor. https:
//www.intezer.com/blog/malware-analysis/new-linux-backdoor-redxor-likely-
operated-by-chinese-nation-state-actor/.

[14] Bin Liang, Wei You, Wenchang Shi, and Zhaohui Liang. 2011. Detecting stealthy
malware with inter-structure and imported signatures. In Proceedings of the
6th ACM Symposium on Information, Computer and Communications Security.
217–227.

[15] Michael Hale Ligh, Andrew Case, Jamie Levy, and Aaron Walters. 2014. The art
of memory forensics: Detecting malware and threats in Windows, Linux, and Mac
memory. John Wiley & Sons.

[16] Zhiqiang Lin, Junghwan Rhee, Xiangyu Zhang, Dongyan Xu, and Xuxian Jiang.
2011. SigGraph: Brute Force Scanning of Kernel Data Structure Instances Using
Graph-based Signatures. In Network and Distributed System Security Symposium
(NDSS).

[17] Marius Muench, Dario Nisi, Aurélien Francillon, and Davide Balzarotti. 2018.
Avatar2: A multi-target orchestration platform. In Proc. Workshop Binary Anal.
Res. (Colocated NDSS Symp.). 1–11.

[18] Anh Quynh Nguyen and Hoang Vu Dang. 2015. Unicorn: Next generation CPU
emulator framework. BlackHat USA (2015).

[19] Fabio Pagani and Davide Balzarotti. 2021. AutoProfile: Towards Automated
Profile Generation for Memory Analysis. ACM Transactions on Privacy and
Security 25, 1 (2021), 1–26.

[20] Jonas Pfoh, Christian Schneider, and Claudia Eckert. 2009. A formal model for
virtual machine introspection. In 1st ACM Workshop on Virtual Machine Security
(VMSec). ACM Press.

[21] Zhenxiao Qi, Yu Qu, and Heng Yin. 2022. LogicMem: Automatic Profile Gener-
ation for Binary-Only Memory Forensics via Logic Inference. In Network and
Distributed System Security Symposium (NDSS).

[22] Ryan Riley, Xuxian Jiang, and Dongyan Xu. 2009. Multi-aspect profiling of kernel
rootkit behavior. In 4th ACM European Conference on Computer Systems. ACM,
47–60.

[23] Alireza Saberi, Yangchun Fu, and Zhiqiang Lin. 2014. Hybrid-bridge: Efficiently
bridging the semantic gap in virtual machine introspection via decoupled execu-
tion and training memorization. In Proceedings of the 21st Annual Network and
Distributed System Security Symposium (NDSS’14).

[24] Christian Schneider, Jonas Pfoh, and Claudia Eckert. 2012. Bridging the semantic
gap through static code analysis. 2012 European Workshop on Systems Security
(EuroSec) (2012).

[25] Reinhard Tartler, Christian Dietrich, Julio Sincero, Wolfgang Schröder-Preikschat,
and Daniel Lohmann. 2014. Static Analysis of Variability in System Software:
The 90,000 #ifdefs Issue. In 2014 USENIX Annual Technical Conference (USENIX
ATC). USENIX Association, 421–432.

[26] Zhi Wang, Xuxian Jiang, Weidong Cui, and Xinyuan Wang. 2008. Countering
persistent kernel rootkits through systematic hook discovery. In International
Workshop on Recent Advances in Intrusion Detection. Springer, 21–38.

[27] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
2007. Panorama: Capturing system-wide information flow for malware detec-
tion and analysis. In Proceedings of the 14th ACM Conference on Computer &
Communications Security. 116–127.

[28] Shuhui Zhang, XiangxuMeng, and LianhaiWang. 2016. An adaptive approach for
Linux memory analysis based on kernel code reconstruction. EURASIP Journal
on Information Security 2016, 1 (2016), 14.

[29] Zynamics. 2021. Bindiff. https://www.zynamics.com/bindiff.html. Accessed:
2021-06-08.

http://diaphora.re/
https://www.intezer.com/blog/malware-analysis/new-linux-backdoor-redxor-likely-operated-by-chinese-nation-state-actor/
https://www.intezer.com/blog/malware-analysis/new-linux-backdoor-redxor-likely-operated-by-chinese-nation-state-actor/
https://www.intezer.com/blog/malware-analysis/new-linux-backdoor-redxor-likely-operated-by-chinese-nation-state-actor/
https://www.zynamics.com/bindiff.html


RAID 2022, October 26–28, 2022, Limassol, Cyprus Fabian Franzen, Tobias Holl, Manuel Andreas, Julian Kirsch, and Jens Grossklags

ff123123 134ea15 ff12310a

ff123123 134ea15

ffffffffff123123 ffffffff8134ea15

kallsyms_on_each_symbol\x00

0xffffffff8134ea15 printk:
0xffffffff8134ea15 sub rsp, 58h
0xffffffff8134ea19 lea rax, [rsp+60h]
0xffffffff8134ea1e mov [rsp+28h], rsi

.

.

.

0xffffffff8134ea58 add rsp, 58h

0xffffffff8134ea5c retn

. . .

.ksymtab
(since 5.4)

.ksymtab
(4.19 – 5.3)
.ksymtab
(until 4.18)

.kstrtab

.text

&printk = &d + d
d

namespace

Figure 6: Structure of the symbol table on x86-64

A SYMBOL TABLE LAYOUT
The symtab is separated into two sections compiled into the kernel
ELF file. The first section (.kstrtab or .ksymtab_strings) contains
the ASCII representation of the names of all symbols separated by a
zero byte (optionally compressing strings with matching prefixes).
A second section (.ksymtab) contains pointers to the symbol names
and their actual locations in memory. Figure 6 shows the structure
of the symbol table across kernel versions. For space efficiency,
on some 64-bit kernels starting with Linux 4.19, 8-byte absolute
references inside .ksymtab were replaced by 4-byte relative virtual
addresses: this encoding scheme replaces an absolute value a with
the relative distance d between the target and the storage location
of d. Since Linux 5.4, symbols are additionally organized in name-
spaces to optionally limit symbol visibility within subsystems13.
This feature requires an additional 4-byte relative virtual address
pointing to the name of the namespace to which the symbol belongs.
During analysis, we scan for all possible variants.

B ANALYSIS PASSES
Table 1 lists the members of which we need to reconstruct the off-
sets for the first few of the analyses described in Section 5. Extract-
ing any task-based information additionally requires the init_task

symbol (available via the symtab), the module list requires the
kallsyms-only modules variable (remember that data symbols are
only available in presence of the KALLSYMS_ALL configuration op-
tion). The Linux version banner and Dmesg log only require global
variables but no structure members.

C P-CODE LIFTING
In the following, we will give a more detailed example of how
x86-64 assembly maps to P-Code. For this, we depicted a simple
imaginary kernel function pcode in Figure 7 that accesses a member
of its parameter and stores it in a local variable. Afterwards, the

13https://lkml.org/lkml/2018/7/16/566

Analysis Data type Member

Modules
list_head next
module list
module name

Task listing

cred uid
list_head next
mm_struct pgd
task_struct comm
task_struct cred
task_struct mm or active_mm
task_struct pid
task_struct state
task_struct tasks

Open files

dentry d_name
dentry d_parent
fdtable max_fds
fdtable fd
file f_path
files_struct fdt
fs_struct root
list_head next
mount mnt (Linux ≥ 3.3)
path dentry
path mnt
qstr name
task_struct comm
task_struct files
task_struct fs
task_struct pid
task_struct tasks
vfsmount mnt_mountpoint (Linux ≥ 3.3)

Environment

list_head next
mm_struct pgd
mm_struct env_start
mm_struct env_end (optional)
task_struct comm
task_struct mm or active_mm
task_struct pid
task_struct tasks

Table 1: Structure members used for the first few of the anal-
yses described in Section 5

address of mmap_sem inside the local variables object is passed to the
function down_read. When the first parameter access occurs, it is
performed by a simple mov instruction with relative displacement
to the register rdi.

In P-Code, values including registers and memory locations are
both represented by varnodes: triples consisting of the relevant
address space (RAM, registers, constants, and temporary values),
an offset, and a size. Operations transform one or more input varn-
odes into an (optional) output varnode given an opcode such as
INT_ADD that dictates the semantics of the operation. Here, the
mapping between varnodes and x86-64 registers is displayed in the

https://lkml.org/lkml/2018/7/16/566
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Source code:

1 int pcode(struct task_struct *t)
2 {
3 struct mm_struct* mm = t->mm;
4 down_read (&mm ->mmap_sem);
5 return 0;
6 }

x86-64 disassembly:

1 sub rsp , 0x8
2 mov rdi , QWORD PTR [rdi + 0x380]
3 add rdi , 0x38
4 call 0xffffffff810b9229
5 xor eax , eax
6 add rsp , 0x8
7 ret

P-Code operations:

1 (reg , 0x20 , 8) INT_SUB (reg , 0x20 , 8), (const , 0x8, 8)
2 (uniq , 0x30 , 8) INT_ADD (reg , 0x38 , 8), (const , 0x380, 8)
3 (uniq , 0x38 , 8) LOAD (const , 0x1b1 , 4), (unique , 0x30 , 8)
4 (reg , 0x38 , 8) COPY (unique , 0x38 , 8)
5 (reg , 0x200 , 1) INT_CARRY (reg , 0x38 , 8), (const , 0x38 , 8)
6 (reg , 0x20b , 1) INT_SCARRY (reg , 0x38 , 8), (const , 0x38 , 8)
7 (reg , 0x38 , 8) INT_ADD (reg , 0x38 , 8), (const , 0x38, 8)
8 (reg , 0x207 , 1) INT_SLESS (reg , 0x38 , 8), (const , 0x0, 8)
9 (reg , 0x206 , 1) INT_EQUAL (reg , 0x38 , 8), (const , 0x0, 8)
10 (reg , 0x20 , 8) INT_SUB (reg , 0x20 , 8), (const , 0x8, 8)
11 (------------) STORE (const , 0x1b1 , 8), (reg , 0x20 , 8),

(const , 0xffffffff810b7320 , 8)
12 (------------) CALL (ram , 0xffffffff810b9229 , 8)
13 (reg , 0x200 , 1) COPY (const , 0x0, 1)
14 (reg , 0x20b , 1) COPY (const , 0x0, 1)
15 (reg , 0x0, 4) INT_XOR (reg , 0x0, 4), (reg , 0x0, 4)
16 (reg , 0x0, 8) INT_ZEXT (reg , 0x0, 4)
17 (reg , 0x207 , 1) INT_SLESS (reg , 0x0, 4), (const , 0x0, 4)
18 (reg , 0x206 , 1) INT_EQUAL (reg , 0x0, 4), (const , 0x0, 4)
19 (reg , 0x200 , 1) INT_CARRY (reg , 0x20 , 8), (const , 0x8, 8)
20 (reg , 0x20b , 1) INT_SCARRY (reg , 0x20 , 8), (const , 0x8, 8)
21 (reg , 0x20 , 8) INT_ADD (reg , 0x20 , 8), (const , 0x8, 8)
22 (reg , 0x207 , 1) INT_SLESS (reg , 0x20 , 8), (const , 0x0, 8)
23 (reg , 0x206 , 1) INT_EQUAL (reg , 0x20 , 8), (const , 0x0, 8)
24 (reg , 0x288 , 8) LOAD (const , 0x1b1 , 8), (reg , 0x20 , 8)
25 (reg , 0x20 , 8) INT_ADD (reg , 0x20 , 8), (const , 0x8, 8)
26 (------------) RETURN (reg , 0x288 , 8)

Varnode x86-64 register

(reg, 0x20, 8) rsp
(reg, 0x38, 8) rdi
(reg, 0x0, 4) rax

Figure 7: Example of the mapping between x86-64 and P-Code operations.

table in Figure 7. In the corresponding P-Code operations, we can
see that the relative displacement is carried out by an INT_ADD
operation that stores the result in a temporary varnode. Then, the
actual dereference happens in the LOAD operation, with the re-
sult ending up in another temporary varnode. Finally, the acquired
value is copied to the varnode representing rdi. As a result, in order
to find the member offset we are looking for, we simply need to
search for an INT_ADD operation carried out on the varnode used
in the LOAD operation.

Now, imagine our GCC plugin reported that the first parameter
to a call to down_read was identified as a member access. When we
encounter a CALL P-Code operation, we can map the input address
back to its symbol and realize that down_read was called. Next, we
will ask Ghidra for the varnode representing the first parameter
in a function call as mandated by the calling convention. Having
figured out the varnode of interest, we can now trace backwards to
the first P-Code operation writing to this varnode. Quickly, we will
arrive at the INT_ADD operation and can identify that the second
input varnode represents the immediate offset 0x38.

D MALWARE ANALYSIS RESULTS
In this section, we will present the analysis results obtained from
a RedXOR-infected machine (Subsection 5.3) in more detail, and
examine how they compare to data obtained from a live sandbox14
and manual analysis (cf. [13]).
14https://www.virustotal.com/gui/file/4f159f6a745752e3211ca1146830c8
6075fd8f5db60f704605a57db904dcf5c5/behavior

Process memory We used Katana to recover the userspace mem-
ory mappings of the malware process. While the human-readable
part of the output (Figure 8a) only reveals the process PID, name,
and UID, we can use the recovered memory layout to dump the
memory contents of the process to disk. Analyzing the resulting
file in a reverse engineering tool like IDA Pro or Ghidra reveals
the malware’s functionality. To our knowledge, the sample is not
packed or obfuscated, so reverse engineering the sample directly is
possible. However, in a forensic post-mortem setting, we may not
have access to the sample until we extract it from the snapshot.
Open files Listing the open file descriptors (Figure 8b) reveals that
the target process was started from a terminal (standard input is
bound to /dev/pts/0), but that it redirected its output to /dev/null.
It maintains an open reference to /var/tmp/.2a4D53 as file descriptor
3 — which is consistent with both the automated analysis report
and the manually reverse-engineered description of the backdoor’s
behavior.
File access history To discover other files accessed by the mal-
ware that are not currently open, we recover dentry objects from
the allocator’s memory cache (see Section 5), and create a timeline
of accesses ordered by the access time (extracted from the entry’s
inode if it was present, and shown in Figure 8c). Besides the afore-
mentioned temporary file, we observe the malware’s accesses to
its persistence mechanism in /etc/rc*.d, where it masquerades
as a polkit service [13]. In entries accessed by RedXOR, the UID
and GID appear corrupted; they take the correct values of 0 (for
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PID: 2859 (4f159f6a745752e ) State: 0x1 MM 0xffff92bb80f4c200 UID 0x00
Task struct @ 0xffff92bbb61c2e00 CR3 (0xffff92bb57392000 0x17392000)

(a) Extracted process metadata: PID, UID, name, memory mapping, and the root of the page table of the process.

2859 (4f159f6a745752e ) [0]: /pts/0
2859 (4f159f6a745752e ) [1]: /dev/null
2859 (4f159f6a745752e ) [2]: /dev/null
2859 (4f159f6a745752e ) [3]: /var/tmp/.2a4D53
2859 (4f159f6a745752e ) [4]: /dev/null

(b) Open file descriptors of the RedXOR process.

Timestamp Size Flags UID GID Inode Path
Fri Jun 04 2021 18:33:42 53901 m... 0 1314742961 2015032758 1320912 /var/tmp/.po1kitd-update-k
Sun Jun 06 2021 18:48:15 53901 .a.b 0 1314742961 2015032758 1320912 /var/tmp/.po1kitd-update-k

26 ma.b 0 1314742961 2015032758 263584 /etc/rc2.d/S99po1kitd-update
26 ma.b 0 1314742961 2015032758 263671 /etc/rc3.d/S99po1kitd-update
26 ma.b 0 1314742961 2015032758 263672 /etc/rc4.d/S99po1kitd-update
0 ma.b 0 1314742961 2015032758 525379 /var/tmp/.2a4D53

(c) File access history (note the corrupted UID and GID).

Figure 8: Excerpts of Katana’s output analyzing a machine infected with the RedXOR malware.

root) and 1000 (for the default user) for the other entries. To con-
serve space, we only show the entries related to RedXOR here, but
other user activity (related to package updates and extracting the
malware sample) is visible as well.
Network connections Live analysis suggests that — at least ini-
tially — only a single DNS resolution takes place. On our virtual
machine setup, DNS lookup uses a local resolver stub, which shows
up on the list of network connections (next to mDNS discovery,

DHCP, and the CUPS printer server). However, the snapshot did
not capture the shortlived DNS query, because the socket is closed
immediately once the DNS server responds.

Katana is also able to correctly recover the process’ environment
variables and other system information (e.g., the ARP table), though
they do not appear to contain any additional indicators of malware
infection.
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Ubuntu 21.04 5.11 10.3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓

Ubuntu 20.10 5.8 10.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓

Ubuntu 20.04 5.8 9.3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Ubuntu 19.10 5.3 9.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Ubuntu 19.04 5.0 8.3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ubuntu 18.10 4.18 8.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Ubuntu 18.04 4.15 7.3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ubuntu 17.10 4.13 7.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ubuntu 17.04 4.10 6.3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ubuntu 16.10 4.8 6.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ubuntu 16.04 4.4 5.4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ubuntu 15.10 4.2 5.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ubuntu 15.04 3.19 4.9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ubuntu 14.10 3.16 4.9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ubuntu 14.04 3.13 4.8 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ p

Ubuntu 13.10 3.11 4.8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 6 ✓

Debian 11 5.10 10.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Debian 10 4.19 8.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Debian 9 4.9 6.3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Debian 8 3.16 4.9 ✓ a ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

CentOS 8 4.18 8.3 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓

CentOS 7 3.10 4.8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 6 ✓

Fedora 31 5.3 9.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Fedora 30 5.0 9.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fedora 29 4.18 8.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Fedora 28 4.16 8.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fedora 27 4.13 7.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fedora 26 4.11 7.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ p

Fedora 25 4.8 6.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fedora 24 4.5 6.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fedora 23 4.2 5.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fedora 22 4.0 5.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fedora 21 3.17 4.9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fedora 20 3.11 4.8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 6 ✓

Fedora 19 3.9 4.8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 6✗ n
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OpenSuse 15.0 4.12 7.3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ n

OpenSuse 42.1 4.1 4.8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ n

Arch 21-05-01 5.11 10.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Arch 20-02-01 5.5 9.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ d ✗

Arch 19-04-02 5.0 8.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Arch 19-02-01 4.20 8.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ p

Android 8.1 3.18 4.9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 6 ✗

Android 9 4.4 4.9 ✓ a ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ u ✗

Android 10 4.14 9.0 c ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ u ✗

Android 11 5.4 12.0 c ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗

Debian 10 (ARM64) 4.19 10.2.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

WR740N (MIPS32) 2.6.31 4.3 ✓ a ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

Tapo C200 (MIPS32el) 3.10 4.8 ✓ a ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

c Android kernel compiled using Clang instead of GCC
a Kallsyms is enabled, but no KALLSYMS_ALL
6 IPv6 disabled in the target system
d Recovery leads to incorrect destination addresses only
u Analysis is unable to recover UNIX sockets
p Recovery cannot find SLUB’s per-CPU caches of partially filled slabs
n Recovery fails due to a missing offset for SLAB’s kmem_cache->num

Table 2: Katana used on multiple Linux memory snapshots
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Figure 9: BinDiff fails to map the access at ➊ to the equivalent access at ➋, instead claiming the instruction was removed.
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Ref. 1 2 3 4 5 6 7 8 9 10 R1 R2

5.8.14
Number of members 57560 13053 15139 17831 17206 26504 37480 38341 59736 55701 40570 56651 56651
Profile coverage (%) 100.0 86.2 82.6 74.5 73.2 57.2 61.9 48.4 46.3 49.3 50.9 99.5 99.5
Correct / Wrong (%)
− Overall 84.8 / 9.5 73.5 / 11.2 74.3 / 11.6 65.4 / 20.4 66.2 / 18.6 68.2 / 18.8 72.3 / 19.0 70.3 / 18.9 73.3 / 19.7 74.1 / 19.4 72.7 / 18.1 86.1 / 8.1 86.1 / 8.1
− Required by Volatility 80.9 / 6.4 77.3 / 8.5 78.0 / 8.5 75.9 / 9.9 70.3 / 9.4 75.2 / 7.3 78.7 / 9.2 71.5 / 8.8 77.3 / 9.2 81.6 / 7.8 76.6 / 9.2 79.0 / 9.4 81.9 / 7.2

Katana (analyses) 43 38 38 36 40 41 38 38 38 38 38 25 34
Volatility (analyses) 52 15 15 10 9 10 10 9 10 10 10 15 15

5.4.70
Number of members 55783 12534 15088 18593 18986 25118 34954 28084 33007 68099 73932 55912 55912
Profile coverage (%) 100.0 99.9 92.7 90.2 84.8 82.8 61.8 66.8 65.4 50.4 45.7 99.5 99.5
Correct / Wrong (%)
− Overall 84.9 / 9.6 74.7 / 8.4 72.8 / 11.5 77.4 / 8.5 70.2 / 15.3 79.3 / 9.4 73.3 / 16.4 72.9 / 14.3 72.5 / 16.0 71.8 / 20.8 73.6 / 17.6 86.2 / 8.0 86.1 / 8.1
− Required by Volatility 79.5 / 7.5 75.3 / 8.9 76.0 / 8.2 76.7 / 7.5 77.4 / 6.2 72.9 / 7.1 76.4 / 7.9 78.3 / 7.7 73.3 / 5.5 81.5 / 7.5 70.7 / 7.9 79.7 / 9.1 80.4 / 7.7

Katana (analyses) 42 41 41 42 43 44 41 41 42 33 42 25 36
Volatility (analyses) 52 15 14 15 10 9 10 10 10 10 9 15 15

4.19.150
Number of members 53305 11907 13662 15591 19105 21505 34953 19766 20933 38619 57069 64239 64239
Profile coverage (%) 100.0 99.9 96.2 85.4 85.7 76.6 65.8 83.0 81.9 57.4 53.7 100.0 100.0
Correct / Wrong (%)
− Overall 84.4 / 9.1 76.3 / 8.3 66.9 / 18.3 76.9 / 8.3 70.4 / 16.0 77.4 / 11.1 73.5 / 16.8 70.0 / 17.1 71.3 / 15.6 70.6 / 19.3 74.5 / 18.0 86.5 / 7.0 86.5 / 7.0
− Required by Volatility 86.3 / 4.1 83.6 / 7.5 80.8 / 10.3 79.3 / 8.1 81.5 / 6.8 87.0 / 5.5 80.8 / 10.3 78.1 / 7.3 77.4 / 7.5 76.7 / 9.6 84.2 / 8.2 73.3 / 6.2 73.3 / 6.2

Katana (analyses) 35 35 28 41 29 41 29 30 33 29 30 34 34
Volatility (analyses) 52 15 10 15 10 15 10 13 10 9 10 15 15

4.14.200
Number of members 50852 11604 14345 14053 17953 14116 30092 26208 44598 32069 71410 60379 60379
Profile coverage (%) 100.0 99.9 94.2 92.8 76.5 86.7 67.5 69.3 61.6 63.0 43.2 100.0 100.0
Correct / Wrong (%)
− Overall 85.0 / 9.8 77.2 / 8.2 78.0 / 8.7 78.1 / 8.1 77.2 / 9.1 67.8 / 17.0 74.6 / 16.0 73.5 / 17.2 75.2 / 17.8 70.0 / 19.6 72.2 / 19.7 87.1 / 7.7 87.1 / 7.7
− Required by Volatility 84.2 / 7.9 80.4 / 8.8 80.4 / 8.8 81.8 / 8.1 81.8 / 5.4 72.9 / 11.8 78.9 / 10.6 80.3 / 10.6 80.9 / 13.2 72.3 / 12.8 77.0 / 12.5 77.6 / 9.9 77.6 / 9.9

Katana (analyses) 35 37 37 43 38 32 30 23 28 20 24 34 34
Volatility (analyses) 52 15 15 15 15 14 9 10 10 10 10 15 15

4.9.238
Number of members 48029 11278 11715 15081 16326 19487 26984 26324 29047 41700 42290
Profile coverage (%) 100.0 99.9 99.3 90.1 87.7 82.4 72.8 68.9 60.8 57.5 58.0
Correct / Wrong (%)
− Overall 85.4 / 9.8 76.6 / 9.4 76.1 / 9.8 77.8 / 9.9 72.3 / 16.4 72.9 / 16.3 72.9 / 17.8 71.6 / 18.4 73.3 / 17.2 73.9 / 18.9 76.4 / 15.1

St
ru
ct
ur
e
la
yo

ut
ra
nd

om
iz
at
io
n
no

ts
up

po
rte

d− Required by Volatility 87.6 / 5.2 83.2 / 6.0 83.9 / 5.4 83.2 / 6.0 78.5 / 10.7 82.0 / 8.6 81.2 / 9.4 80.5 / 10.7 82.8 / 9.0 79.7 / 12.6 81.9 / 9.4
Katana (analyses) 37 36 36 36 28 28 28 24 33 19 27
Volatility (analyses) 52 15 15 15 10 10 10 10 14 10 10

4.4.238
Number of members 45633 10842 12416 12708 12091 13093 21366 24967 46264 47216 30369
Profile coverage (%) 100.0 99.9 99.3 91.9 94.9 92.1 80.9 65.1 46.8 53.7 60.9
Correct / Wrong (%)
− Overall 86.0 / 9.8 77.2 / 9.9 78.2 / 11.4 77.4 / 10.1 70.6 / 16.7 71.4 / 16.6 73.4 / 17.8 73.6 / 17.8 73.6 / 18.9 76.0 / 17.6 72.0 / 19.7
− Required by Volatility 88.4 / 4.5 84.1 / 5.3 85.4 / 5.3 85.4 / 4.6 73.8 / 9.7 75.2 / 8.3 78.8 / 9.9 77.5 / 13.2 78.6 / 11.0 77.9 / 10.3 80.7 / 12.4

Katana (analyses) 38 37 36 38 26 30 26 23 26 27 25
Volatility (analyses) 52 15 15 15 10 10 10 10 9 10 10

3.10.108
Number of members 39518 8285 9323 10123 13084 13953 18697 22406 28845 18267 21546
Profile coverage (%) 100.0 99.9 93.5 89.2 87.2 78.1 69.4 69.8 59.8 62.7 53.6
Correct / Wrong (%)
− Overall 85.7 / 9.7 75.5 / 10.8 76.1 / 10.4 76.1 / 11.1 76.0 / 13.4 73.2 / 16.6 71.9 / 18.2 74.0 / 18.7 74.6 / 17.7 72.3 / 16.9 73.5 / 16.3
− Required by Volatility 91.4 / 4.9 86.1 / 5.1 86.1 / 5.1 86.7 / 5.1 88.6 / 4.4 80.9 / 9.2 82.3 / 8.9 84.6 / 9.9 87.7 / 8.0 86.1 / 8.9 80.3 / 9.2

Katana (analyses) 34 37 37 37 34 28 27 25 29 33 27
Volatility (analyses) 52 15 15 15 14 10 13 10 13 10 10

Table 3: Performance of Volatility and Katana in the presence of kernel configuration variations
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