
iTOP: Automating Counterfeit Object-Oriented Programming
Attacks

Paul Muntean
Technical University of Munich
paul.muntean@sec.in.tum.de

Richard Viehoever
Technical University of Munich

richard.viehoever@tum.de

Zhiqiang Lin
The Ohio State University
zlin@cse.ohio-state.edu

Gang Tan
Penn State University

gtan@psu.edu

Jens Grossklags
Technical University of Munich

jens.grossklags@in.tum.de

Claudia Eckert
Technical University of Munich
claudia.eckert@sec.in.tum.de

ABSTRACT

Exploiting a program requires a security analyst to manipulate data
in program memory with the goal to obtain control over the pro-
gram counter and to escalate privileges. However, this is a tedious
and lengthy process as: (1) the analyst has tomassage program data
such that a logical reliable data passing chain can be established,
and (2) depending on the attacker goal certain in-place fine-grained
protection mechanisms need to be bypassed. Previous work has
proposed various techniques to facilitate exploit development. Un-
fortunately, none of them can be easily used to address the given
challenges. This is due to the fact that data in memory is difficult
to be massaged by an analyst who does not know the peculiarities
of the program as the attack specification is most of the time only
textually available, and not automated at all.

In this paper, we present indirect transfer oriented programming
(iTOP), a framework to automate the construction of control-flow
hijacking attacks in the presence of strong protections including
control flow integrity, data execution prevention, and stack canaries.
Given a vulnerable program, iTOP automatically builds an exploit
payload with a chain of viable gadgets with solved SMT-based mem-
ory constraints. One salient feature of iTOP is that it contains 13
attack primitives powered by a Turing complete payload specifica-
tion language, ESL. It also combines virtual and non-virtual gadgets
using COOP-like dispatchers. As such, when searching for gadget
chains, iTOP can respect, for example, a previously enforced CFI
policy, by using only legitimate control flow transfers. We have
evaluated iTOP with a variety of programs and demonstrated that
it can successfully generate working exploits with the developed
attack primitives.

CCS CONCEPTS

• Security and privacy→ Systems security; Information flow

control; Software security engineering; Software reverse en-

gineering.

KEYWORDS

Machine code, control flow integrity, Clang/LLVM, cyber attacks.

RAID ’21, Oct. 06–08, 2021, San Sebastian, Spain
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in RAID ’21:
International Symposium on Research in Attacks, Intrusions and Defenses, Oct. 06–08,
2021, San Sebastian, Spain, https://doi.org/10.1145/3471621.3471847.

ACM Reference Format:

Paul Muntean, Richard Viehoever, Zhiqiang Lin, Gang Tan, Jens Grossklags,
and Claudia Eckert. 2021. iTOP: Automating Counterfeit Object-Oriented
Programming Attacks. In RAID ’21: International Symposium on Research in
Attacks, Intrusions and Defenses, Oct. 06–08, 2021, San Sebastian, Spain. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3471621.3471847

1 INTRODUCTION

Large software (e.g.,Web browsers) is buggy due to its enormous
complexity. Among all bugs, exploitable bugs (i.e., bugs giving at-
tackers an advantage) are the most dangerous ones. Being able to
understand exploitability of bugs and to triage particularly danger-
ous ones is highly desirable. However, this is often a tedious and
labor-intensive process. Major vendors (e.g., Google [19], Apple [5],
and Microsoft [28]) heavily rely on their bug bounty programs and
highly specialized internal teams (e.g., Google’s Project Zero [20]).
This situation is due to the facts that (1) given an exploitable vul-
nerability, the security analyst has to manually manipulate data in
programmemory in order to pass data around to achieve their goals;
and (2) given the wide deployment of defenses such as control-flow
integrity (CFI) i.e., at binary [31] and source code [33] level, data exe-
cution prevention (DEP) [29], and stack canaries, the analysts needs
to make sure that the exploit can bypass the defenses, e.g., they are
respecting the enforced control-flow graph (CFG) based policies.

While there are considerable efforts going on to automate ex-
ploit generation, every one fills a different niche and only partially
addresses the needs of security analysts. Specifically, AEG [6] was
the first tool to automatically search for an exploitable program
vulnerability [34] and to generate a control-flow hijacking attack.
Revery [49] is an extension of AEG that addressed additional chal-
lenges. However, it can only automatically create return-to-stack
and return-to-libc exploits. Newton [48] is a runtime-based attack
crafting tool which breaks forward-edge CFI during exploit genera-
tion, relying on run-time information such as values in registers and
memory addresses to identify the appropriate gadgets and to stitch
them together. Further, the attacker has to interact during attack
creation within the attack specification language with program
memory constraints, which significantly raises the entry bar for
this tool’s usage. BOPC [24] is a data-only attack generation tool,
which searches the target program’s basic blocks in the CFG for
valid program traces fulfilling the attacker’s goal. While it provides
attack primitives, it does not offer programmable interfaces such as
APIs for payload construction. Further, neither of the data-only nor
control-flow hijacking tools show in their evaluations that these
tools can evade state-or-the-art security defenses. In summary, there

https://orcid.org/0000-0002-2462-7612
https://orcid.org/
https://orcid.org/0000-0001-6527-5994
https://orcid.org/0000-0001-6109-6091
https://orcid.org/0000-0003-1093-1282
https://orcid.org/
https://doi.org/10.1145/3471621.3471847
https://doi.org/10.1145/3471621.3471847

is a need to develop a tool based on static analysis (i.e., without
using runtime information) as most currently existing approaches
are runtime-based. The tool should be programmable, and automat-
ically generate exploits bypassing fine-grained forward-edge CFI
(i.e., context-insensitive CFI) to craft control-flow hijacking attacks.

In this paper, we present Indirect Transfer Oriented Program-
ming (iTOP), a COOP [43] attack construction framework for auto-
matic development of control-flow hijacking attacks. iTOP provides
an extensible, Turing-complete language—in order to be able to en-
code all types of program control flows—called Exploit Specification
Language (ESL). The novelty of ESL consists in the fact that it is not
a monolithic language but rather relies on an extensible API which
can be easily tailored for different types of attacks. ESL is motivated
by the need for a light-weight and extensible language (its compact
grammarwill be introduced later), which lowers the hurdle for entry
for the analyst; it has an extensible API and is based on ANTLR [3],
enabling automated lexer and parser generation out of the box. The
extensible API allows for extending (1) the gadget set by consid-
ering other target types (e.g., basic blocks, non-virtual functions),
and (2) the attack type by adding more attack crafting primitives.

Given a vulnerable program, an ESL attack specification, the
source code of the application, and the modeled deployed CFI de-
fense, iTOP is able to build control-flow hijacking attacks that bypass
CFI. The final result of the iTOP analysis pipeline is a payload file,
which if fed into the vulnerable program buffer, allows to perform
the attack. The key novelty of this work is an end-to-end framework
for crafting control-flow hijacking attacks under strong deployed
CFI policies, improving the precision of prior analysis with a full-
fledged symbolic execution. Also, unlike prior works, it has a novel
gadget search algorithm that can be operated under fine-grained
CFI defenses. At a high level, iTOP also requires the address of an
attacker-controlled buffer as input, the Z3 [30] solver, ANGR [46],
and symbolic execution to generate the attack payload. The gener-
ated payload can bypass state-of-the-art CFI defenses due to found
usable calltargets which were previously identified. iTOP provides
CFI policy modeling, integration, and attack construction guidance
based on the currently selected CFI policy.

There are multiple challenges that are addressed by iTOP in or-
der to automate the exploit generation. In particular, iTOP must
resolve the abstract registers to match the correct registers of the
underlying architecture. Meanwhile, the analysis has to determine
which callsite gadgets are compatible to which calltarget gadgets,
because of COOP attack requirements. Also, identifying whether
a gadget is usable within a gadget chain using symbolic execution
is time-consuming, and we have to improve its performance. In
addition, iTOP has to construct the payload that leads to execution
of the specified ESL program, solve gadget memory overlaps and
resolve pointer destinations. Lastly, the attack has to bypass mod-
ern defenses such as, DEP [29], shadow stack [16], and deployed
fine-grained CFI policies [32]. We have addressed these challenges
and implemented iTOP.

To evaluate iTOP, we have conducted experiments with several
real-world programs, and demonstrated that iTOP can generate
code reuse attack payloads for a set of 13 test payload specifica-
tions. These payloads demonstrate the capabilities of iTOP and
ESL (e.g., loops, conditional branches, memory reads/writes) and
the applicability to real-world attacks (e.g., spawning a shell with

attacker-controlled parameters). As opposed to common belief that
high percentage values (above or around 90%) in the realm of au-
tomated attack construction are the key indicator for tool potential
(or tool quality), we rather think that this is not the most essential
indicator. As such, successful attack crafting depends primarily on
the types of gadgets used, thus it is less significant to have many
attack variations for a single target program when one attack is
sufficient to compromise the whole system.

iTOP is, to our knowledge, the first automated static control-
flow hijacking attack crafting tool that is aware of the deployed
CFI defense. Based on a NodeJS use case, we show that iTOP can
generate attacks even in the presence of strong CFI defenses. In
contrast to other attack crafting tools (e.g., Newton, BOPC, AEG,
Revery), iTOP demonstrates that it can build attacks under strong
real-world CFI defenses. Additionally, note that the applications of
iTOP go beyond an attack framework. We envision iTOP as a tool
for defenders to evaluate the residual attack surface of a program
usable after a defense was deployed, enabling analysts to assess,
for example, whether a certain CFI policy sufficiently protects the
program, and which parts of a program require additional attention
to stop them from enabling attacks.

In summary, we make the following contributions:
• Gadget Search andChain Building Framework.We pro-
pose iTOP1, a novel framework that generates gadget chains
and validates their feasibility fully automatically. iTOP trans-
lates an ESL payload into a full-fledged control-flow hijack-
ing attack for the target vulnerable binary and enables the
discovery of viable gadgets and chains though an efficient
search process.
• Attack Specification Abstraction.We propose ESL, a sys-
tem independent attack payload specification language, which
is based on a powerful and extensible library of predefined
gadgets. The API is used to extend the ESL functionalities.
ESL enables the necessary abstraction to scale to large pro-
grams and to be used by an analyst with no previous attack
construction experience.
• Attack Construction under Strong Defenses. We pro-
pose an approach to illustrate that iTOP can run in the pres-
ence of strong defenses such as CFI, DEP, and Clang’s shadow
stack techniques [10]. We also show how much attack sur-
face reduction is required to effectively defend against these
attacks.
• Experimental Results.We evaluated iTOP by showing the
generality of its techniques based on existing vulnerabilities
where manual exploit construction may have been infeasible
or very tedious. With the primitives provided by iTOP, we
can successfully generate a payload to trigger a significant
compromise (a) by first writing an exploit2 for all target
programs, and (b) second by spawning a system shell3.

2 BACKGROUND

Control Flow Bending (CFB). CFB [9] attacks demonstrate that
CRAs are still possible under strong CFI policies. By restricting

1iTOP’s source code on GitHub. https://tinyurl.com/y8bnsk6w
2Video: exploit writing in ESL. https://tinyurl.com/y6cmbvyt
3Video: spawning a system shell exploit. https://tinyurl.com/y6a9gk7c

2

https://tinyurl.com/y8bnsk6w
https://tinyurl.com/y6cmbvyt
https://tinyurl.com/y6a9gk7c

ESL
Attack
Specifi-
cation

LLVM-CFI

1

2

3 4

5

6 7 9

8

10

A

C

D

E F G H I

B

Binary
Front-end

ESL
Front-end

Semantic
Search

Calltarges
Search

Dispatchers
 Search

Gadget
Simulation

Chain
Generation

Chain
Simulation&
Verification

Payload
Generation

CFI
Policies

Binary
Code

A

Payload

1

2

3 4 6 7
9

10

5

8

Binary & ESL
Front-ends

Gadget
Classification

Calltargets and
Dispatcher Search

Gadget
Chaining

Simulation, Verification
& Payload Generation

Front-end Middle-part Back-end

Figure 1: Attack generation pipeline. Black arrows represent data transfers while red arrows indicate analysis backtrack steps.

exploit execution traces within the legitimate CFG, control flow
bending attacks avoid CFI defenses entirely. While the resulting
exploit might not follow a valid non-exploit trace, every step fol-
lows legal control flow transfers. If an attacker modifies a function
pointer to point to a different, yet still legal calltarget, he is per-
forming a CFB attack. In a nutshell, CFB attacks demonstrate that
an attacker, with precise knowledge of valid calltarget sets under
specific CFI policies, can still construct an attack as long as the
target set contains the necessary CRA gadgets.

Counterfeit Object-oriented Programming (COOP). COOP at-
tacks [43] are a CRA technique which exploits C++ virtual function
dispatches to generate an attack. COOP uses a main loop dispatcher
gadget, which may be one of the following: (1) a function iterating
over an array of objects and invoking a virtual function on each
main loop dispatcher, (2) a function going through a linked list of
objects invoking a virtual function for each LinkedList dispatcher,
or (3) a virtual function invoking two virtual functions with two
objects, which is leveraged by building a recursion-based dispatcher.
This is done by having the second object be a pointer to the dis-
patcher itself (Recursion dispatcher). Using these three dispatcher
types, virtual functions are chained together to create an attack.
Lastly, COOP attacks respect backwards return edges (stack disci-
pline), making it immune to shadow stack protection techniques.

3 THREAT MODEL AND ASSUMPTIONS

In this section, we present the defensive assumptions and attacker
capabilities of our threat model (e.g., STRIDE [27]).

Defensive Assumptions.

• Writable ⊕ Executable Memory: The target system ensures that
memory can be either writable or executable, but never both at
the same time through, e.g., DEP [29]. This prevents attackers
from injecting new code or modifying existing code.
• Control Flow Protection: We assume that the vulnerable appli-
cation is protected by state-of-the-art control flow protection
techniques and an efficient shadow stack implementation.
• DEP, ASLR, Stack Canaries (DAS): We assume that DAS [11] are
deployed, correctly configured and active in the target system.

Attacker Capabilities.

• System Configuration: The attacker is aware of the target system
configuration and applied defenses, and she has access to a bi-
nary of the target application that is not re-randomized at short
intervals.
• Vulnerability: The target application suffers from a known mem-
ory corruption vulnerability, which can be leveraged by the at-
tacker to write arbitrary values into writable memory.
• Information Leak (IL): To bypass ASLR, the attacker has access to
an IL, which allows her to read arbitrary values. Note that the IL
primitive is orthogonal to the program vulnerability requirement
and necessary to bypass ASLR. Also note that the IL primitive
can be achieved by using memory management side channels
[21], or using hardware side channels [22, 25], etc.
• Application Entry Point (AEP):We assume that the attacker has ac-
cess to an AEP, which is part of the vulnerability discovery phase.
AEP is a point of failure that might enable a malicious actor (i.e.,
attacker) to break the application and cause damage [40]. Note
that the entry point is not the program main() function. The
discovery of the AEP is orthogonal to our work and can be, for
example, addressed with the plethora of available fuzzing tools or
by using an already known and well-documented vulnerability
tool in the style of Metasploit [26].
• Read Write Operations: We assume that one or more read/write
operations are needed to modify the state of the target binary in
order to initiate the attack. These operations are part of the attack
payload, which together with the attack assembly operations fa-
cilitate successful payload execution. Note that a write operation
does not necessarily need to be proceeded by a read operation.

4 SYSTEM OVERVIEW

Figure 1 provides an overview of iTOP’s attack building pipeline.
Numbers from one to ten denote the different components and
operations of iTOP analysis, and three inputs: the CFI policies,
the program binary, and the ESL attack specification. Further, the
whole iTOP analysis is broken down into five stages for payload
construction. These stages are: binary and ESL front-ends, gad-
get classification, calltargets and dispatchers gadget search, gadget
chaining, as well as simulation, verification and payload generation.

Specifically, as depicted in Figure 1 from left to right, in ❶ the
target program binary is passed into iTOP’s binary front-end. Next,
the address and size of the attacker-controlled buffer is indicated

3

in the ESL attack specification. In ❷ the ESL payload specification
is passed into iTOP’s ESL front-end. A set of CFI policies is then
provided. Each of the provided CFI policies is optional and is used
to filter the results when analyzing the target binary during attack
construction. Further, the target binary is first lifted into PyVEX
intermediate representation (IR) [45] with the help of ANGR [46],
while the ESL payload is translated into our own Python object-
based IR. In ❸ based on the ESL specification a semantic search is
performed. In ❹ iTOP searches for promising caltarget gadgets in
order to build the callsite/calltarget matching pairs sets. In ❺ the
CFI policies for the vulnerable program are modeled. Note that this
step is an optional and iTOP still works without it.

Further, in ❻ iTOP searches for dispatcher gadgets for construct-
ing the matching callsite/calltarget pairs. After this step, in ❼ the
gadgets are simulated in order to verify their functionality. In par-
allel to this step, in 8 the gadget chain is generated. After these
two parallel steps, in ❾ the gadget chain is simulated and verified.
Further, in ❿ the payload is generated if the previous two steps
succeed. If ❾ or ❿ fails, iTOP backtracks (see red arrows) to the pre-
vious step and tries a different gadget chain or gadget combination.
When both of these two steps succeed, the payload is generated
and emitted as a distinct file. Lastly, note that the payload file needs
to be written to the attacker-controlled buffer to initiate the attack.

5 DESIGN AND IMPLEMENTATION

We designed and implemented our automated attack construction
approach inside the iTOP tool, which consists of 10 K Python LoC.

5.1 iTOP Front-ends

In this section, we present iTOP’s front-ends and introduce several
ESL based attack construction examples.

Binary Front-end. iTOP uses theANGR [46] binary analysis frame-
work to lift the target binary into an intermediate representation,
in order to perform control flow analysis and symbolic execution.
To access the binary’s machine code, we use the Capstone [8] bi-
nary analysis framework. DWARF debug information, if present, is
extracted from the binary using pyelftools [1]. Further, the binary
front-end depicted in Figure 1 at step ❶ builds a set of candidate
gadgets, CG . Depending on the calltarget constraints, this set can
contain all functions, all virtual functions, or all functions reach-
able from any dispatcher gadget under the provided CFI policy. If
required, iTOP generates a mapping of files and line numbers to
addresses, a mapping of human readable names to addresses, and
an entry state of the target application.

ESL Front-end. The ESL front-end as depicted in Figure 1 at step❷

creates an intermediate representation consisting of a tree of objects
for the payload using the ANTLR [3] parser generator. For each
statement, unique hash encoding preconditions, effects, and post-
conditions are calculated, enabling the search algorithm to later
recognize repeat gadgets as well as gadgets that were already dis-
covered in different chains. This information, IRpy , is then passed
to the candidate gadget classification module.

Payload Specification in ESL. To ease the process of payload
creation, we built ESL, as presented in Figure 1. ESL allows precise
definition of exploits in a powerful language with fours features: (1)

1 <exploitlang> ::= <imports> <definitions> <main>?
2 <imports> ::= ((<py_import> | <esl_import>) ';')*
3 <py_import> ::= 'IMPORT' <gadget_id> '(' <types>? ')' 'RETURNS'
4 (<type> | 'NONE') 'FROM' <str>
5 <expl_import> ::= 'IMPORT' <str>
6 <definitions> ::= <definition>*
7 <definition> ::= 'DEF' <gadget_id> '(' <arg_ids> ') RETURNS'
8 (<type> | 'NONE') '{' <statements> '}'
9 <arg_ids> ::= <arg_id> (',' <arg_id>)*
10 <main> ::= <gadget_id> '{' <statements> '}'
11 <statements> ::= ((<statement> ';') | (<assert> ';')
12 | (<jump> ';')
13 | (<if_stmt> ';')
14 | (<label> ':'))*
15 <statement> ::= <gadget> | <assignment>
16 <assignment> ::= (<type> <arg_id> '=' (<str> | <int>))
17 | ('reg' <reg_id> '=' <gadget>)
18 <gadget> ::= <gadget_id> '(' <arguments>? ')'
19 <arguments> ::= <argument> (',' <argument>)*
20 <argument> ::= '&'? <arg_id> | <reg_id>
21 <assert> ::= 'ASSERT' <condition>
22 <jump> ::= 'GOTO' <label_id>
23 <if_stmt> ::= 'IF' <condition> 'GOTO' <label_id>
24 <label> ::= <label_id> ;
25 <condition> ::= <reg_id> <cmp_op> (<int> | <reg_id>
26 | <arg_id>
27 | <str>)
28 <cmp_op> ::= '<' | '>' | '==' | '>=' | '<='
29 <types> ::= <type> (',' <type>)*
30 <type> ::= 'string' | 'int' | 'reg'
31 <reg_id> ::= '_r' [0-7]
32 <gadget_id> ::= [A-Z_0-9]+
33 <arg_id> ::= [a-z]+
34 <str> ::= '"' ~('\r' | '\n' | '"')* '"'
35 <int> ::= [0-9]+ | '0x'[0-9a-fA-F]+
36 <label_id> ::= '_'[a-z]+

Listing 1: Extended Backus-Naur form of ESL.

Turing-completeness (control flow via loops and branches); (2) inde-
pendence from target binary and architecture; (3) close mirroring of
actual attack techniques; (4) a set of powerful and extensible Python-
like API for attack construction using primitives and gadgets.

1 /*import a part of the API functionality*/
2 IMPORT MAINLOOP () RETURNS NONE FROM "mainloop.py";
3 IMPORT LINKEDLIST () RETURNS NONE FROM "linkedlist.py";
4 IMPORT RECURSION () RETURNS NONE FROM "loopless.py";
5 IMPORT READ () RETURNS int FROM "read.py";
6 IMPORT LOAD (int) RETURNS int FROM "load.py";
7 IMPORT WRITE (int, int) RETURNS NONE FROM "write.py" ;
8 IMPORT EXECUTE (int, int) RETURNS NONE FROM "execute.py";
9 IMPORT MANIPULATE (reg) RETURNS NONE FROM "manipulate.py";
10 IMPORT INC (reg) RETURNS NONE FROM "inc.py";
11 IMPORT IF_FN () RETURNS NONE FROM "if.py";
12 IMPORT STACKINC () RETURNS NONE FROM "stackinc.py";
13 IMPORT STACKDEC () RETURNS NONE FROM "stackdec.py";
14 /*import available dispatcher gadget types*/
15 IMPORT DISPATCHER () RETURNS NONE FROM "linkedlist.py";
16 IMPORT DISPATCHER () RETURNS NONE FROM "mainloop.py";
17 IMPORT DISPATCHER () RETURNS NONE FROM "loopless.py";
18 /*import read and execute functionality*/
19 IMPORT "esl_scripts/lib_read.esl";
20 IMPORT "esl_scripts/lib_execute.esl";

Listing 2: Extensible lib_coop.esl API.

To illustrate our extensible attack construction APIs4, we provide
an example as shown in Listing 2. Our ESL can be used to import
different high-level Python functions which represent the main API
capabilities. For example, in line 2 we import the MAINLOOP gadget
features. Further, our API is based on our own domain specific lan-
guage (DSL), dubbed ESL. It is easy to use as it is based on a simple
DSL, which does not impose a high burden on the analyst. It is also
flexible as the analyst can anytime go and define new functionality;
4ESL’s extensible API. The names of the imported Python script files indicate the
functionality of each of the imported API functions. https://tinyurl.com/ya9qzgmo

4

https://tinyurl.com/ya9qzgmo

as, for example, in read.py depicted on line 5 in Listing 2. The
RETURN NONE FROM is equivalent to the return none statement in
Python. Note that this main API file will be imported by subsequent
ESL attack construction scripts.

In order to craft an attack, ESL closely resembles how the actual
attack might play out. A single statement corresponds to a sin-
gle gadget, and the statements are linked together by a dispatcher
gadget mechanism (e.g., COOP). This ensures that an analyst can
(1) precisely control the resulting payload’s layout, (2) easily and
intuitively craft new attacks, and (3) precisely evaluate how a coun-
termeasure interacts with a certain attack layout. As mentioned,
ESL offers a Python API containing functions and data structures
that can be used to extend the set of gadgets and attack types.
Within this work, we implemented 3 dispatch mechanisms and 9
gadget types, providing a rich toolbox that suffices to construct
complex and realistic attacks.

1 IMPORT "lib_coop.esl";
2
3 LINKED_LIST_DISPATCH{
4 _loop:
5 reg _r1 = READ();
6 GOTO _loop;
7 }
8

1 IMPORT "lib_coop.esl";
2
3 LINKED_LIST_DISPATCH{
4 int printf = 0x7ffff784e390;
5 str text = "Hello World!\n";
6 IF _r1 != 0x1234 GOTO _end;
7 EXECUTE(printf, &text);
8 _end:
9 }

Listing 3: Left: ESL infinite loop; Right: ESL cond. branch.

To illustrate how complex and realistic attacks can be constructed,
we introduce Listing 3 which shows how a loop and a conditional
control flow payload can be expressed in ESL. First, the payloads im-
port the gadget definitions for the COOP attack types (line 1, both
listings). Then, the dispatch mechanism to be used is defined (line 3,
both listings). The control flow is manipulated using jumps (line 6
left) and conditional statements (line 6, right side) to jump to labels
(line 4 left and 8 right). In line 7 right, a gadget is invoked, leading
to a call to printf with a pointer to the string Hello World! in
the first argument. Line 5 on the left side invokes a READ gadget,
reading a value into a register. This gadget is essentially a filler, as
no empty loops are allowed.

1 IMPORT "lib_coop.esl";
2 DEF SYSTEM(arg) RETURNS NONE {
3 reg _r1 = READ();
4 MANIPULATE(_r1);
5 ASSERT _r1 == 0x7ffff784e390;
6 EXECUTE(_r1, arg);
7 }
8 DEF SYSTEM(arg) RETURNS NONE {
9 int system = 0x7ffff784e390;
10 EXECUTE(system, arg);
11 }
12 MAINLOOP_DISPATCH {
13 string shell = "/bin/sh\x00";
14 SYSTEM(&shell);
15 }

Listing 4: Spawning a system shell in ESL.

To demonstrate how to spawn a system shell, we introduce List-
ing 4 which shows an ESL-based system shell attack specification.
Note that the address 0x7ffff784e390 of system() is a prerequi-
site and was found by the analyst with little manual effort. Note that

in this example, the COOP gadget set is used (see line 1). This pay-
load demonstrates another important feature, namely it defines mul-
tiple equivalent chains. The first chain (line 2 to 7) loads any value
into the second (registers start at zero) argument register (mapped
to a different register depending on target architecture), thenmanip-
ulates that value using arithmetic operations to match the address
of system. The ASSERT in line 5 adds a post-condition to the preced-
ing MANIPULATE gadget: _r1 has to be equal to 0x7ffff784e390
after MANIPULATE is executed for the manipulate to be considered
valid. Note that in case an ASSERT condition is not met then the
flow cannot continue. Also, note that _r1 can be any register. The
second chain (line 8 to 11), in turn, does not prepare any registers.
Further, when generating the payload, iTOP first attempts to gen-
erate a payload using the second shorter chain, and if unsuccessful
the first chain is used. Next, we describe iTOP’s ESL front-end to
understand how ESL specifications are used by iTOP.

Conditional Shell Spawning. For example, by using the condi-
tional write from Listing 3 (right side) to target the destination
address of the shell-spawning gadget from Listing 4, a payload to
conditionally open a shell can be created. This works if the condi-
tion is satisfied; otherwise it will crash, because the calltarget of the
EXECUTE gadget is overwritten with an invalid destination address
by the conditional gadget. Thus, in total, the resulting payload con-
tains 4 fake objects: (1) the dispatcher gadget, with an array that
points to pointers, (2) the register initialization, (3) the conditional
write, and (4) the call to the attacker-controlled target. Lastly, note
that iTOP needs, in total, 43 minutes to generate the payload for
this example.

5.2 Classifying Candidate Gadgets

In this section, we provide several examples on how to spawn
a shell, initialize an argument register, and perform conditional
memory write operations on real program binaries. Afterwards,
we illustrate how to classify dispatcher gadgets as depicted in Fig-
ure 1 at step ❸, which consists in first obtaining an overview of
the candidate calltarget gadgets as shown in Figure 1 at step ❹,
and CFI Policy Selection depicted at step ❺. Note that using the
fixed memory addresses as depicted in Listing 4 and Listing 5 is
consistent with our threat model assumptions as we assume that
ASLR was bypassed by using an available information leak. Similar
approaches have been followed by [17, 43] as well.

Spawning a Shell Example. To demonstrate how a system shell
is spawned at machine code level, we use Table 5 which shows a
gadget that spawns a system shell [2] by using the Libc system
library. This gadget is less complex than the dispatcher gadget. The
function system opens a shell and it passes to it a char pointer
in the first parameter. The register rdi starts off by pointing into
attacker-controlled memory; as such, the attacker can control both
the target address (line 6) and the value in the first argument reg-
ister (line 8) when the target is called (line 9). iTOP creates a fake
object containing the address of the function system in Libc at
offset 0x38, the address of the string /bin/sh/ at offset 0x40, and
the vptr into the virtual table of node::JSStream at offset 0x0. To
build the payload, this fake object is combined with the fake object
generated for the dispatcher.

5

1 ; rdi contains the this pointer
2 ; of the fake object
3 mov rbx, rdi
4 mov rax, qword ptr [rip+0x19fc9e0]
5 add rax, 0x10
6 mov qword ptr [rbx], rax
7 mov rax, qword ptr [rbx+0x38]
8 test rax, rax
9 je 0x7ffff6dc8f46
10 mov rdi, qword ptr [rbx+0x40]
11 callrax

Listing 5: Gadget node::
JSStream::∼JSStream(), calls

arbitrary functions with an

arbitrary argument in rdi.

1 ; rdi contains the this pointer
2 ; of the fake object
3 mov rcx, qword ptr [rdi + 0x10]

4 mov rax, qword ptr [rdi + 0x30]

5 sub rcx, qword ptr [rdi + 0x8]

6 sar rcx, 1

7 add rcx, qword ptr [rdi + 0x20]

8 mov rdx, rcx

9 sub rdx, rax
10 jb 0x7ffff69210e2
11 ...
12 mov qword ptr [rdi + 0x20], rcx

13 mov rax, qword ptr [rdi + 0x20]

14 mov qword ptr [rdi + 0x10], rax

15 mov qword ptr [rdi + 0x18], rax

16 xor eax, eax
17 ret

Listing 6: Initializing register

rdx with an arbitrary value.

1 ; rdi contains the this pointer
2 ; of the fake object
3 mov rax, qword ptr [rdi + 0x10]

4 mov rcx, qword ptr [rdi + 0x18]
5 sub rcx, rax
6 cmp rcx, rsi
7 jae 0x7ffff6a949c3
8 xor eax, eax
9 ret
10 mov qword ptr [rdx], rax
11 add qword ptr [rdi + 0x10], rsi
12 mov al, 1
13 ret

Listing 7: Gadget used to write

to an arbitrary memory ad-

dress if register rsi is below an

attacker-controlled value.

Initializing an Argument Register. In some cases, no gadget
controlling both target address and argument value is available.
Often, one of the two values has to be passed to the gadget via
an argument register. The Linux/x86-64 ABI convention uses the
registers rdi, rsi, rdx, rcx, R8 and R9 for this purpose. These are
used for integer and memory addresses while the XMM0-7 registers
are used for floating point arguments. Being able to initialize these
registers with arbitrary values makes more candidates usable for
LOADs, WRITEs, and EXECUTEs.

To illustrate how the rdx register can be initialized, we Listing 6
showing how the argument register rdx is initialized using the func-
tion v8::internal::ExternalTwoByteString Utf16Character
Stream::ReadBlock(). Highlighted in green: register changed
from unknown value to value under attacker control. Orange: regis-
ter under attacker control. Red: Attacker loses control over register.
The gadget depicted could be used to initialize rdx. iTOP generates
a fake object set up in a way that the jump instruction at line 10
is always taken. The register rdx is initialized with an attacker-
controlled value in line 7, and in line 8 an attacker-controlled value
is subtracted. Using symbolic execution and the Z3 solver, iTOP
finds appropriate values for the fake object at offsets 0x10, 0x30 and
0x8. Lastly, note that the gadget could also be used to initialize rcx.

Conditional Memory Write. To demonstrate how to write at
an arbitrary address, we present Listing 7 containing a gadget
used to write to an arbitrary address. For conditional memory
writes, iTOP leverages, for example, the function v8::internal::
Value Deseria lizer :: ReadRawBytes(unsigned long, void
const**). For this function to serve as a conditional memory write
to an attacker-controlled target, register rdx has to contain the
desired memory write destination. Using the method outlined in
Section 5.2, rdx can be initialized to hold the desired value. The dis-
patcher gadget does not modify rdx or rsi, and thus the resulting
payload leads to a memory write only if rsi had the desired value
before executing the exploit.

Candidate Gadget Classification. ESL payloads are independent
from the target binary or architecture. Thus, ESL statements have to
be mapped to functions in the actual program. This consists of the
following two steps. First, a pre-filtering step based on matching
instructions is performed in order to make the set of candidates

more manageable and to enable callsite analysis. Secondly, a pre-
cise, symbolic execution-based classification step, as described in
Section 5.5, is performed.

For the first step, iTOP considers all functions in the target binary,
filtering them and assigning potential gadget categories to them
using a semantic approach. While this first analysis is rather per-
missive, frequently marking potential gadgets as usable that cannot
really be used, this step is needed: (1) to allow for elimination of
dispatcher gadgets with incomplete calltarget sets, and (2) to consid-
erably reduce the time needed for simulation and chaining: 50 gad-
gets/sec can be checked using semantics vs. 1 gadget/sec using sym-
bolic execution. Next, we illustrate some candidate gadget examples.

Table 1 presents how functions are filtered and grouped into gad-
get categories. The function’s machine instructions are compared to
a set of Semantic Filter Patterns. An intermediate representation of
the function that closely resembles the machine instructions is gen-
erated using the Capstone engine. The function has to match at least
one of the filters to be considered a potentially usable candidate
gadget. To eliminate functions containing unwanted instructions
that would significantly increase evaluation complexity such as
call or unconstrained jump instructions, we use a general blocklist.
While the blocklist can be modified for individual gadget categories,
we use the same list for all categories not relying on unconstrained
calls or jumps. Further, for each type of gadget, iTOP builds a set
of candidate functions, Fд . A single function can be a candidate for
multiple gadget types. In larger programs, there can be hundreds
of thousands of functions that have to be checked; as a result, per-
formance in this step is more important than precision. Lastly, note
that whether a gadget is actually usable or not is determined in
Section 5.5.

5.3 Searching for Dispatcher Gadgets

In this section, we show how to construct an attack by tricking the
target program into executing the gadgets defined by the attacker in
a specific order. The gadget searching process is depicted in Figure 1
at step ❻. To achieve this, iTOP uses a COOP type dispatch mech-
anism, such as: (1) a loop calling functions from an array of func-
tion pointers, (2) a loop dispatching virtual functions for attacker-
controlled objects, or (3) overwriting return addresses on the stack.
While we also implemented a proof-of-concept dispatch mechanism

6

Table 1: Mapping ESL statements to machine code gadgets. Statement: goal description; ESL Representation: ESL specification;

Semantic Filter: examples of how gadgets are pre-filtered by matching assembler instructions. Constraints: post-conditions

applied to the simulated state of the symbolic execution engine after a gadget has been completely stepped through. reдα :
Target register, C: Constant value, A: Address, R: Register; Example: machine code matching the filter and constraints. The

memory address from where data is read, loaded or written into is depicted in the adjacent Machine Code column examples.

Statement ESL Representation Semantic Filter (ex.) Constraints Machine Code

Register Assignment LOAD mov reдα , C reдα == target 1 movzx rsi, 7h

mov reдα , [A ∪ R]
READ mov reдα , [A] reдα == mem[target] 1 mov rsi, DWORD PTR [rdi+8]

Register Modification MANIPULATE inc reдα reдαbef ore != reдα 1 inc rsi

add reдα , C ∪ R
Memory Write WRITE mov [A], C ∪ R mem[A] == target 1 mov [rdi+8] rsi

Call EXECUTE call C ∪ R regs.rip == target 1 call DWORD PTR [rdi]

call [A ∪ R]
Conditional Jump IF (cond) GOTO test R ∪C , R ∪C if cond: regs.rip == target 1 test rsi, r8

2 jnz addr

based on function pointer arrays, the focus in this work is on COOP
and COOP-like attacks (i.e., type (2) above). Further, keep in mind
that within a COOP attack, a dispatcher gadget either iterates over
an array or linked list of objects and calls a virtual function on each
one, or the dispatcher gadget first calls a virtual function and virtu-
ally dispatches itself, calling one virtual function per recursion step.

Mainloops

Dispatchers

All callsites

Figure 2: Different types of dispatcher gadgets.

Thus, CFI techniques can limit the set of calltargets a dispatcher
gadget can reach.To understand the different types of existing dis-
patcher gadgets, we use Figure 2 to show the inclusion relationship
between different dispatcher gadget types. Note that in general
mainloops are a subset of dispatcher gadgets, and dispatcher gad-
gets are a subset of all callsites. As such, mainloops are a subset of
all dispatcher gadgets, fulfilling conditions (1)-(3), while dispatcher
gadgets only fulfill conditions (2)-(3). The set of all callsites is even
less strict; only condition (2) applies. While identifying the set of all
callsites is a simple task, extracting the set of useful dispatcher gad-
gets requires extensive analysis. The more specific the requirements
for a dispatcher gadget are, the less probable it is that a compatible
dispatcher gadget exists. For each dispatcher gadget, the set of avail-
able calltargets is compared against the set of gadgets generated
in the previous step. As a consequence, if the intersection between
the two sets is empty for any gadget required for the attack, the
dispatcher gadget is eliminated.

To illustrate how not only the number of dispatcher gadgets but
also the number of calltargets is influenced by selecting a specific
CFI policy we use Figure 3. It shows a virtual table hierarchy and
how different CFI policies can limit the set of calltargets available to
a dispatcher mainloop gadget that calls the C2::function2(). Note
how virtual tables: C1-C3, and D1 (right side) map to virtual table
hierarchy nodes (see tree nodes in the left side marked with C1-C3,
and D1) depicted in the left side. Black shaded dots represent classes,

Base

C1

C2

C3

D1

C1 vtable
function1()
function2()

C2 vtable
function1()
function2()*
function3()*

D1 vtable
function1()*
function2()
function3()*

C3 vtable
function1()
function2()*
function3()
function4()*

Figure 3: Left: virtual table hierarchy; Right: virtual tables.

left edges between nodes mean inheritance. Bottom children classes
inherit from top father classes. Functions marked with an asterisk
(right) override the parent class’ function, while functions without
are inherited (arrows). For example, when no CFI policy is enforced,
all functions depicted in Figure 3, and other functions including
non-virtual functions, can be reached and called during an attack.
Further, if the virtual table hierarchy/island (Marx CFI policy [39])
is used, all virtual functions depicted in Figure 3 would be valid
calltargets. In constrast, a strong policy such as ShrinkWrap’s [23]
CFI policy allows only to target the functions marked in green by
using fake objects to be invoked by the dispatcher gadget. Further,
note that not every dispatcher gadget is suitable, since it has to
match the specifications required by the attack type. For COOP’s
mainloop dispatcher gadgets, the requirements include: (1) having a
loop containing a (2) virtual function dispatch contained within the
loop, with the loop iterating over (3) an attacker-controlled array of
fake objects that are invoked by the dispatcher gadget. Lastly, also
note that not all calltargets are usable during attack construction.

To demonstrate which calltargets are usable during attack con-
struction for different deployed CFI policies, we use Figure 4, which
shows, from top to bottom, the process of gadget filtering based
on the target set of virtual table entries which in turn is based on
the deployed CFI policy. An arrow depicts virtual table inheritance
direction. Each circle represents a virtual table which has at least
one virtual table entry (a virtual function). Note that the number of
entries grows from top to bottom due to virtual table inheritance.
The top node contains a dispatcher gadget. The other nodes are

7

1

2

3

4 6

4

6 7

4

6

8 9

5

7

Figure 4: From root node (i.e., 1) to bottom nodes the attack

gadget filtering process is described. Nodes can have the

same number (i.e., 4) inside. A number in the node repre-

sents the total number functions that can be called from

that particular class. More specifically, the number repre-

sents the sum of virtual and non-virtual table entries (i.e.,
functions), and the functions inherited along a single inheri-

tance path from the root node down to a particular leaf node.

other types of gadgets. A black circle denotes that it contains at
least one virtual table entry which can serve as gadget. A red circle
indicates there is no virtual table entry which can serve as gadget.
And a blue circle shows a virtual table denoting the end of a virtual
table inheritance path; it may or may not contain a useful gadget.
A green circle shows there is a virtual table gadget which can be
used as gadget but this is not reachable due to a CFI policy in-place;
thus, everything what follows after this node is not reachable, too.

For example, path: 1− 2− 4− 7 represents a valid gadget chain if
the functionality contained in this path is sufficient for an attack to
be performed. This path is a complete gadget chain. The difference
between a complete and partial gadget chain is that the first consti-
tutes a complete attack while the second is not a complete end-to-
end attack. Further, path: 1−2−3−4 is not valid as the virtual table
4 is not usable and also everything which follows in this particular
inheritance path after node 3 is not reachable, too. Path: 1−4−6−8
is a valid chain that reaches the end of a virtual table inheritance
tree path, but everything which follows after node 4 is not reachable.
Lastly, in the path 1−4−5−7 everything which follows after virtual
table 4 is not reachable; thus it cannot be used during attack chain
construction, even though node 7 is useful and node 5 is not useful.
Building Dispatcher Gadget Matching Sets. To understand the
notation used within this paper, we use Table 2 which depicts the

Table 2: Used symbol descriptions.

Symbol Description

IRpy payload representation in Python
IRanдr binary representation in ANGR
Fд set of all working gadgets for all categories
Src source code of target binary
CFI static CFI policies to apply
Ds set of potential dispatcher gadgets
Cs set of potential calltargets per callsite
δs delta set of callsites and reachable gadgets
Ch gadget chain
Obj a list of object layouts that implement the payload

used notation along their descriptions. As such, note that only after
the candidate set has been built, usable dispatcher gadgets can be
identified. The set of calltargets for the dispatcher gadget has to

be compatible with the candidate sets Fд . Further, iTOP identifies
calltargets for each callsite by analyzing the source code Src of the
target binary. This data is then translated into a dispatcher gadget
set Ds , and legal calltarget sets for each dispatcher gadget Cs . The
intersection Cs ∩ Fд between the candidate gadgets and the avail-
able gadgets is called the delta set δs . The delta set contains the
candidates for every gadget type that are still reachable from the
dispatcher gadget with CFI policies in place. If the delta set is empty
for any gadget required to build the attack, the dispatcher gadget
is immediately discarded. A potential dispatcher gadget’s machine
code is then further analyzed to identify whether it is compatible
with the attack type.

Further, we describe the steps needed to find a main loop gadget.
First, a virtual function from the virtual table is called. The virtual
function’s offset is saved and later used during payload generation.
Second, the virtual table address is returned from an array. Third,
the function iterates over the array. Fourth, all the previous instruc-
tions are enclosed in a loop. Fifth, functions with compatible delta
sets that fulfill these conditions are considered usable dispatcher
gadgets. Lastly, in case none are found, the algorithm halts.

5.4 Assembling a Gadget Chain

In this section, we show how a combination of gadgets fulfilling
the attacker’s goals that are available to the dispatcher gadget is
determined. The gadget assembly phase is depicted in Figure 1
and consists of analysis step ❼ and step ❽. ESL allows to define
alternatives for blocks of gadgets, which is leveraged to create mul-
tiple equivalent Ch alternatives, thus increasing the probability of
discovering usable attacks.

Searching forOptimalGadgetChains. Equation 1 presents iTOP’s
chain ranking formula (S = score). The chain ranking is based on
difficulty (Diff.) (i.e., a rating between 0 and 1 that an experienced
analyst can use to estimate the probability that a random function is
actually usable as a gadget of a certain required type), average time
to check a gadget (i.e., obtained from our gadget checking analysis),
and total availability of a gadget (i.e., how often that gadget type
is found within the analyzed program). Given the delta set δs and
the intermediate representation of the payload IRanдr , chains of
gadgets that encode the payload have to be generated.

S(Chain) = min
Gadget∈Chain

|Gadget |
Diff.(Gadget) × Time(Gadget)

(1)

iTOP leverages the alternative chain definition feature of ESL to
generate chain variants, and then orders those by likelihood of suc-
cess. Metrics used to rank chains can include length, mean number
of candidate gadgets, minimum number of candidate gadgets, and
gadget difficulty. Depending on the analyst’s goals, several rank-
ings can make sense. First, a ranking that tries shortest chains will
produce the smallest payload. Second, a ranking based on difficulty
might yield faster results. iTOP leverages information obtained in
the simulation step (see Section 5.5 for more details). In case iTOP
attempts to build a chain and fails, the information obtained is used
to eliminate chains that will fail for similar reasons, and statistics
about usable gadget discovery rates can be used to reorder the chain
ranking.

8

SHELL();

EXECUTE(system, &binsh);

SHELL(); SHELL();

_r1 = LOADVAL(&binsh);

EXECUTE(system, _r1);

_r1 = LOADVAL(system);

EXECUTE(system, &binsh);

_r1 = LOAD();

ASSERT _r1 == &binsh;

_r1 = LOAD();

MANIPULATE(_r1);

ASSERT _r1 == &binsh;

EXECUTE(system, &binsh);

EXECUTE(system, _r1);

EXECUTE(system, _r1);

_r1 = LOAD();

ASSERT _r1 == &binsh;

_r1 = LOAD();

MANIPULATE(_r1);

ASSERT _r1 == &binsh;

ESL Payload Generated ChainsESL LibrariesESL Alternatives

Figure 5: iTOP’s gadget chain alternative building. Black box: gadgets for this statement exist. Blue box: no further gadgets ex-

ist. After a blue box follows always a red arrow indicating that the analysis cannot continue. For e.g., for SHELL(), 3 alternatives
(count arrows) are specified in the payload definition. For LOADVAL(&binsh), 2 alternatives are predefined in the ESL library.

To further understand how attack chains are specified by an an-
alyst, we use Figure 5 which shows how, for the goal of spawning
a shell, 3 different alternatives (count number of arrows starting
from SHELL()) can be specified by the analyst. The last 2 chains,
in turn, use the LOADVAL(...) function, for which 2 alternatives
are already predefined in the ESL libraries. Thus, note that the ESL
standard library provides a wide array of alternatives for register
initialization and execution of arbitrary functions. As such, differ-
ent chains for spawning a shell can be generated. Further, Figure 5
depicts 2 alternatives for SHELL()which use the same function: _r1
= LOADVAL(system);. Since this block is fully independent from
the surrounding blocks, valid subchains or the information that no
such chain exists can be reused and only has to be calculated once.
This way, even when hundreds of chains are possible, the search
space and thus runtime stays manageable.

5.5 Simulation and Payload Generation

In this section, we show how each gadget chain is simulated using
ANGR [46] in order to check whether it fulfills all constraints re-
quired by the gadget definition and whether it is compatible with
the gadgets contained so far in the chain. The gadget simulation
and payload generation phases are depicted in Figure 1 and consist
of analysis step ❾ and step ❿.

Figure 5 depicts this process. More specifically, dispatcher gadget
EXECUTE(system, &binsh), the first gadget in category
one (ESL Alternatives), cannot be linked (i.e., one red arrow
goes out) to any gadget in category 2 (ESL Libraries), and is thus
unusable. This can happen, for example, when gadgets can only
initialize registers with certain ranges of values, with the second
gadget requiring the value to be outside the range. In contrast,
the second candidate for gadget one, _r1 = LOADVAL(&binsh),
can be linked (i.e., two black arrows go out), and a valid chain is
found. If there are no suitable gadget combinations for a chain, iTOP
backtracks and and a different gadget chain will be used instead.

Gadget Chain Simulation. To understand how each gadget chain
is constructed and simulated, we use Algorithm 1 which depicts,
based on ANGR’s symbolic execution, how a chain of gadgets and
its dispatcher gadget are combined and simulated. For example,
after a gadget has been simulated (line 6), constraints are added to

Algorithm 1: Extend gadget chain (rec_chain)
chain : list of gadget types in the order they should be called in
candidates :mapping of gadget types to candidate gadgets
state :prog. state just before the virt. func. dispatch
Result: a chain of compatible gadgets

1 begin

2 gadget← pop first element of chain
3 targets← candidates.lookup(gadget)
4 for function ∈ targets do
5 state: call function
6 state: simulate until return to dispatcher gadget
7 state: add gadget constaints
8 if state is feasible then
9 state: simulate until callsite is reached again

10 if chain = ∅ then
11 return function

12 else

13 tmp← rec_chain(rest_of_chain, candidates, state)
14 if tmp , ∅ then
15 return function + tmp

16 return ∅

the simulation as described in the constraints column of Table 1
(line 7). If, at any point, the simulation state becomes unsatisfiable,
the simulation backtracks and tries a different gadget candidate.

Further, in case iTOP discovers no satisfiable chain which can
be built, it backtracks and generates a different chain. If, however,
the simulation state is still satisfiable after all gadgets have been
called, a compatible exploit has been discovered and a payload is
generated. Note that during simulation, iTOP generates a set of
memory constraints CM for the buffer.

Generating the Attack Payload. The steps to find a valid gadget
chain are as follows. After the simulation phase, a valid chain is
found; next a payload can be generated. Since payload generation
depends on details such as attack type (e.g., COOP requires addi-
tional logic for object overlapping) and payload specifics (loops
and conditionals require additional logic), the precise approach can

9

differ depending on the payload, but the overall approach stays the
same. For example, iTOP leverages the set of constraintsCM as well
as the combination of gadgets in the valid chain to generate a mem-
ory layout for the target buffer that will lead to the execution flow
as defined in the ESL definition. Thus, when implementing a new
attack type using ESL’s Python-based API, the payload generation
logic can be modified to target the new attack.

The valid memory layout (i.e., list of object layouts Obj) is then
saved into a file for further usage by the analyst. Optionally, iTOP
can continue the search to discover more payloads. The total num-
ber of payloads found can help in evaluating the quality of a defense
mechanism, and alternative payloads could help in circumventing
blocklists and pattern-based defense systems.

6 EVALUATION

In this section, we address the following research questions (RQs).
• RQ1: How can iTOP be used to construct control-flow hijack-
ing attacks? (Section 6.1)
• RQ2: How much protection do static CFI policies offer after
deployment? (Section 6.2)
• RQ3: How much attack surface reduction is needed to ef-
fectively protect from control-flow hijacking attacks? (Sec-
tion 6.3)
• RQ4: How vulnerable are programs with no CFI protection
in-place to control-flow hijacking attacks? (Section 6.4)

Target Programs. For our detailed evaluation, we focus on NodeJS
(v. 8.9.1, C/C++ code, compiled as library) [37]. For our broader eval-
uation, we target Nginx [35] (v. 1.13.7, C code), Apache Httpd [4] (v.
2.2.24, C code), LibTorrent [14] (v. 1.1.0, C code), Redis [41] (v. 2.6.14,
C code), Firefox [13] (v. 36.0a1, C/C++ code) and Chrome [18] (v.33
C/C++ code).

Table 3: The CFI policies used in this work do not impose

any runtime write constrains and are context-insensitive.

CFI Policy Solutions Description

IFCC/MCFI [36, 47] function parameter source types
Safe IFCC/MCFI [36, 47] function parameter safe source types
ShrinkWrap/IVT [23] strict program sub-hierarchy
VTV [7, 47] program sub-hierarchy
VTint [52] all program virtual tables
Marx/VCI [12, 39] impose the virtual table hierarchy

Experimental Setup. The evaluations were performed on a sys-
tem with Intel i5-2500k CPU (3.30 GHz), 16 GB RAM, and running
the Linux Mint 18.3 operating system. The CFI policies used in
these experiments are presented in Table 3. Note that the created
exploits were executed by enabling a CFI policy, which consist in
removing the calltargets that would be not available after such a
CFI defense is deployed. Lastly, all programs were compiled with
Clang/LLVM -O2 compiler optimization flag.
Gadget Search Timeout. Note that we used a timeout of 6 hours
(1/4 of a day) in our gadget search algorithm. Once this time limit
was reached the search was terminated. While exploit generation
is a 1-time process and from a practical point of view, an approach
that requires even multiple days of computation could still be use-
ful (since manually generating a complex exploit for a real-world

CFI-hardened binary can also take a significant amount of time). In
this work, we opted to keep a common and plausible timeout level
for comparison purposes, which can be extended in future work.

Table 4: The ESL payloads. Each payload produces chains

containing N statements. Symbol meaning: ✓: payload con-

tains loop/conditional statements, ✗= not available gadget.

Payload Description N Loops cond
regset Load argument register with constants 1-2 ✗ ✗

memrd Read value from address to register 1 ✗ ✗

memwrt Write value from register to address 1 ✗ ✗

regadd Add values from two registers 3 ✗ ✗

printf Write to stdout 1-5 ✗ ✗

shell Spawn a shell 1-5 ✗ ✗

iloop Cause an infinite loop 1 ✓ ✗

cond Conditionally write to address 2 ✗ ✓

for Loop with exit conditions 4-6 ✓ ✓

cshell Spawn a shell only if value at address 3-11 ✗ ✓

count Print all integers from 0 - 100 5-8 ✓ ✓

mprt Call mprotect with user controlled args 1-9 ✗ ✗

env Read an environment variable 1-5 ✗ ✗

To understand ESL’s 13 attack primitives, we use Table 4, which
depicts the 13 ESL payload scenarios for which different payloads
were generated. We developed these 13 primitives by studying re-
lated work and by investigating the most used and useful minimal
set of program primitiveness needed in order to be able to express
all kinds of program behaviors. The goal of ESL primitives was to
include payloads which: (1) demonstrate basic features of iTOP, (2)
have complex control flow, and (3) are realistic payloads usable for
real-world attacks.

6.1 Case Study: NodeJS

In this section, we analyze iTOP’s payload building capabilities on
NodeJS. We chose NodeJS because it is a popular, widely used ap-
plication containing both C and C++ code that is frequently used
as a library in other applications. We focus on three representative
payloads to demonstrate the core features of iTOP: spawning a shell,
controlling argument registers, and finally conditionally writing a
value into memory. We then combine these payloads to a complex
payload to manipulate the control flow.

Table 5: Performance results for payload generation.

Payload Time Chains Payloads

shell 10:53 31 10+
iloop 02:29 1 10+
cond 21:56 1 10+

To highlight the results obtained for different payloads when us-
ing NodeJS, we use Table 5 which shows the time needed to perform
the analysis, number of chains and number of payloads generated.
Time indicates the time needed to generate the first payload in
minutes and seconds (mm:ss) format, Chains: number of candidate
chains, Payloads: number of different payloads (capped at 10). We
recorded two demo videos: (1)5 spawning a system shell with no CFI
5Video: spawning a system shell with no CFI policy used: https://tinyurl.com/yyvxncqj

10

https://tinyurl.com/yyvxncqj

policy in-place, and (2)6 spawning a system shell based on NodeJS
under the VTint CFI policy in-place. These demonstrate iTOP’s
attack building capabilities with and without CFI protection active.

6.2 Assessing CFI Policies against NodeJs

In this section, we show under which CFI policies iTOP is still able
to generate exploits. Note that static CFI policies can considerably
reduce the attack surface of a binary, significantly complicating at-
tack generation. Using callsite/calltarget mappings, we can evaluate
which CFI policies are effective attack deterrents.

Table 6: Payload generation under six CFI policies.

P
ay
lo
ad

N
o
C
FI

IF
C
C

IF
C
C
-s
af
e

V
T
in
t

V
T
V

M
ar
x

SW

regset ✓ 00:11:50 ✓ 00:34:36 ✓ 00:40:22 ✓ 00:29:31 ✓ 02:51:19 ✓ 03:35:42 ✓ 04:24:22
memrd ✓ 00:41:22 ✓ 01:11:21 ✓ 01:22:04 ✗ ✓ 02:44:18 ✓ 02:31:07 ✗

memwrt ✓ 00:03:47 ✓ 00:37:52 ✓ 00:41:12 ✗ ✓ 01:10:08 ✓ 02:12:03 ✓ 01:07:05
regadd ✓ 00:20:24 ✓ 00:40:12 ✓ 00:43:44 ✓ 00:05:18 ✗ ✗ ✗

printf ✓ 00:11:32 ✓ 01:35:56 ✓ 01:46:12 ✓ 00:31:29 ✓ 00:37:10 ✓ 00:46:12 ✓ 01:06:04
shell ✓ 00:10:53 ✓ 01:45:54 ✓ 02:00:11 ✓ 00:30:10 ✓ 02:21:44 ✗ ✗

iloop ✓ 00:02:29 ✓ 00:37:43 ✓ 00:41:48 ✓ 00:01:35 ✗ ✗ ✓ 00:43:47
cond ✓ 00:21:56 ✗ ✗ ✗ ✓ 03:25:39 ✓ 02:49:04 ✓ 05:43:14
for ✓ 00:33:30 � � ✗ ✓ 04:25:04 ✓ 03:03:10 ✓ 04:45:27
cshell ✓ 00:43:14 � � ✗ ✓ 00:54:19 ✓ 00:48:44 ✓ 00:53:41
count ✓ 00:27:47 ✓ 00:55:23 � ✗ ✗ ✓ 02:12:05 ✓ 03:23:11
mprt ✓ 00:37:00 ✓ 00:57:32 ✓ 01:25:23 � ✗ ✓ 01:15:35 ✓ 00:55:23
env ✓ 00:11:20 ✓ 01:30:25 ✓ 01:44:35 ✓ 00:33:47 ✓ 01:32:28 ✓ 01:49:27 ✓ 02:55:23

To highlight the capabilities of iTOPw.r.t. payload generation un-
der fine-grained CFI policies, we employ Table 6 which depicts the
payload generation results for NodeJS by running iTOPwith each of
the 6 CFI defenses. We used the payloads presented in Table 4 with
different CFI policies in-place. SW: ShrinkWrap, ✓ denotes one or
more payloads were successfully generated, while a ✗ indicates
that no valid payload was found. Behind the ✓ symbol the total
time needed for the generation of the payload is given (hh:mm:ss
format). The reasons for failure: �= timeout; or ✗ = required gadget
is not available. We observed that there is an overlap of gadgets
that are usable depending on the used defense. In the future, we
want to investigate if these gadgets exhibit specific characteristics
that make them particularly difficult to harden in order to gain
insight into how to harden/improve existing defenses. Note that
with these 6 CFI policies we still can successfully generate exploits
in 77% (60 out a total of 78 of the cases whereas with no CFI policy
deployed the exploit construction succeeds in 100% of the cases
(see the second column of Table 6).

A higher success rate is, of course, possible by using a larger
timeout. We support this statement with our experimental obser-
vations, which confirm that the payload generation success rate
improves by increasing the imposed analysis timeout. Further, with-
out applying any policy, all payloads could be generated. In case
no payload was generated, this was mainly due to the fact that the
required gadgets were not available. Further note that, in case iTOP
times out, a valid payload might still exist, while, when a required
gadget is not available, no payload exists.

Important to note is that IFCC and IFCC-safe (introduced by
Tice et al. [47]) are policies enforcing correct parameter counts for
calltargets. We found that most payloads could still be built under
these CFI policies, since both arbitrary memory reads/writes and
6Video: spawning a system shell, VTint [52] in-place: https://tinyurl.com/yyrso75k

calling of arbitrary functions are still possible. VTint allows only
calltargets in any virtual table, eliminating all non-virtual calltar-
gets. While VTint offers more protection than IFCC, some realistic
payloads could not be eliminated, and spawning a shell remains pos-
sible. The VTV, Marx and ShrinkWrap policies enforce class hierar-
chies, allowing almost exclusively intended calltargets to be reached
from a dispatcher. iTOP could not generate a payload under VTV in
4 cases, Marx in 3 cases and ShrinkWrap in 3 cases given the preset
time limit as these are very strong CFI policies. Note that this is not
a strong limitation of our approach and we think that on other pro-
grams and by increasing the timeout new attacks can be generated.

6.3 Stopping Attacks: NodeJS Case Study

In this section, we investigate attack probabilities under various
calltarget reduction and gadget usability scenarios.

PA(fr ed) = 1 − (1 − PG)(|F |∗fr ed) (2)

To understand how we calculated the attack probability, we
use Equation 2 to calculate the probability PA of whether an attack
exists under the assumption of independence. This is a reasonable
assumption as all CFI defenses target calltargets that can be only
functions. The attack surface reduction factor fr ed refers to the
reduction of calltargets for the dispatcher with the highest remain-
ing calltarget count. Using the values from the analysis of NodeJS
and gadget usability probability of PG = 0.001, we determine that
a 85% attack surface reduction has a 50% probability of stopping
attacks, and 99.98% reduction resulting in a less than 1% probability
of an attack still existing. This does not prove that the defenses are
bullet-proof but rather that the attack crafting likelihood is greatly
reduced. This estimation matches our evaluation results: for IFCC,
a policy providing 85% attack surface reduction, two payload gen-
eration timed out, while for ShrinkWrap, a policy providing 99.4%
reduction, in 3 cases no payloads were generated.

Figure 6: Probability of attack PA with attack surface fr ed .

To show how the attack probabilities vary depending on the
probability of gadget usability we introduce Figure 6 which shows
the estimated probability of an attack still being possible w.r.t. attack
surface reduction for different values of PG . We can estimate how

11

https://tinyurl.com/yyrso75k

Table 7: Results for several vulnerable programs. Time: Time needed to load the binary and to analyze all its dispatchers.

Dispatchers: Number of usable dispatchers found per category. Gadgets: Number of candidate gadgets found for each category;

ML: Mainloop dispatcher gadget, LS: LinkedList dispatcher gadget, REC: Recursive dispatcher gadget.

Vulnerable Application Time COOP Gadget Gadgets
Program Vulnerability Functions (m:s) ML LS REC READ LOAD WRITE EXECUTE

Nginx CVE-2013-2028 1,192 00:13 0 3 3 256 176 107 743
Apache Httpd CVE-2006-3747 1,917 00:08 0 0 3 399 210 66 730
LibTorrent library 2,002 00:11 0 0 27 340 272 55 1,123
Redis CVE-2018-11218 1,996 00:12 0 0 2 647 266 137 1,511
NodeJS CVE-2014-5256 41,189 03:27 7 24 1,025 11,249 6,730 3,804 23,309
Chromium CVE-2017-7000 145,206 11:53 25 67 1,137 33,515 17,009 16,100 89,956
Firefox CVE-2018-5150 201,741 10:36 1 59 1,653 120,702 57,936 43,649 118,764

Table 8: ESL payloads applied to a variety of programs. ✓: iTOP generated one or more payloads; no payload was be generated,

due to (a) �: timeout or (b) ✗: gadget was not available. Note that within this experiment no CFI policy was used, as we wanted

to find out how iTOP performs under real-world scenarios where most of the time programs are not protected by CFI policies.

Program regset memrd memwrt regadd printf shell iloop cond for cshell count mprt env
Nginx ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ � ✓

Apache Httpd ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ � ✓

LibTorrent ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Redis ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ � ✓

NodeJS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Chromium ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Firefox ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

much attack surface reduction a CFI policy has to provide to effec-
tively prevent CRA. The data gathered by iTOP indicates that, with
no CFI policy applied, 25 functions out of the 41,189 targets were us-
able to call arbitrary functions with arbitrary values in the first argu-
ment register, without depending on any prior register initialization.
With, for example, the IFCC CFI policy deployed, 7 out of the 5,588
were usable out of the box, while with the VTint policy 4 out of 5,852
functions were usable. While these figures fluctuate and strongly
depend on the applied policy, the ratio of usable gadgets to all calltar-
gets usually ends up between 0.2% and 0.05%. Reducing the number
of usable gadgets to zero stops all attacks on the target application,
as no valid gadget chain can be built without any gadget available.

Lastly, to reproduce how we derived Equation 2 used in this
section note that by using the previously mentioned information,
a probability of 0.0005 ≤ PG ≤ 0.002 of a usable gadget exist-
ing is estimated, which, combined with the number of calltargets,
|F | = 41, 189, and the attack surface reduction factor, fr ed .

6.4 General Results

In this section, rather then looking for successful exploitation under
different CFI policies, we want to find out the time and number of
gadgets needed to generate different payloads when using iTOP as
these are the first steps towards successful exploit generation. Note
that the aim of this section is not to confirm/show that exploits
can be built for known vulnerable programs but rather to present
a fully new and automated way to generate new exploits based on
existing documented vulnerable programs. To achieve this goal, we

evaluated iTOP by targeting six widely used programs. Most of the
evaluated programs contain a CVE corresponding to an arbitrary
memory write, fulfilling the requirements specified in our threat
model. Lastly, note that we had access to a program information
leakage which provided us with an arbitrary read as required in
our threat model.

To illustrate how many COOP gadgets and ESL primitives were
found for different vulnerable programs we use Table 7 which de-
picts the results for each of the six target applications. Further, Ta-
ble 7 includes the total number of potential target functions the ap-
plication contains and detailed statistics on the availability of each
gadget and dispatcher type. Note that the LibTorrent program is
the only program without a CVE listed as it is a library used in a
variety of other potentially vulnerable applications. Further, note
that generating the candidate dispatcher and gadget sets is a time-
consuming process, but the results can be reused to generate multi-
ple attacks. iTOP caches these results to a file and reloads them for
further searches, eliminating the startup overhead listed in Table 7.

In order to show how successful iTOP is in generating exploits
based on the ESL’s 13 attack primitives we use Table 8 which depicts
the attempts of iTOP to generate an exploits for the payloads listed
in Table 4 for each vulnerable application. Thus, iTOP was able, for
example, to generate a payload in 60/91 cases (66% success rate,
60/91). Note that the most interesting payload to an attacker, shell,
could be generated in seven out of seven cases. When excluding all
payloads which rely on control flow manipulation, iTOP generated
payloads in 44 out of 56 cases (79%). The main reasons for the failing
cases are either timeouts or the specific gadget is not available.

12

Along the successful and unsuccessfully attempts to generate
exploits for the ESL’s 13 primitives, Table 8 also shows that applica-
tions with larger target-sets yield significantly higher success rates,
because the variety of functions is much higher and thus the prob-
ability to find a function exactly matching the constraints is higher.
Payloads including conditionals and loops require a LINKEDLIST-
type dispatcher to function, because the control flow is modified by
rewriting the next item fields in linked lists. While other approaches
to dynamically alter exploit control flow are possible, we focus on
this approach because it can easily generate Turing complete ex-
ploits. Further, most of the C programs did not contain any usable
LINKEDLIST dispatchers, while all of the C++ programs did. In some
cases, iTOPwas unable to find a payload. Generally, there are several
possible reasons for this. First, there are no valid dispatcher blocks.
Second, gadgets required to build the payload are not available to the
dispatcher. Lastly, the constraints on the payload are unsatisfiable.

Lastly, in order to better understand the failing attempts Table 8
lists the exact reasons for failure. As such, in most cases, a required
gadget was missing, such as an arbitrary memory write gadget. In
other cases, when generating the complex mprt payload, the search
timed out as in column 13—from left to right—in Table 8 for the
programs Nginx, Apache Httpd, and Redis.

7 DISCUSSION

Symbolic Execution. Symbolic execution is a powerful approach
for payload generation as it allows for automated exploration of the
program control flow graph, precisely program state reasoning, and
automatic generation of the payload. However, it is greatly limited
by the size of the target binary. Further, by for example using basic
block constraints summaries, similarly to BOPC [24], this could en-
able a better analysis of combinations of gadgets, at the cost of even
more runtime performance increase, making them infeasible for
large binaries. However, an alternative approach based on pattern
recognition instead of symbolic execution would lead to significant
speedup, sacrificing the capabilities to identify complex, branching,
but still usable gadgets.
iTOP’s Analysis Generality. In this work, we focus on COOP-
like attacks, similarly to [48], but we envisage iTOP to be used for
crafting other types of attacks as well. In contrast to Newton, for
example, iTOP is currently limited to static CFI defenses but can
be extended to work with dynamic CFI defenses. In this work, we
decided to mainly address the expressiveness of our attack specifi-
cation language (ESL) and thus focusing only on static CFI defenses.
Further, in order for iTOP to craft other attack types, the calltargets
(i.e., gadgets) used within an attack have to be reconsidered such
that consecutive instructions (i.e., gadgets) can be targeted by the
indirect control flow transfers used to assemble the gadget chain.
In order to achieve this, the first step is to use an analysis that
first classifies these gadgets and then creates a map with all their
locations in memory.
Tool Potential. As opposed to a common belief that high percent-
ages in the realm of automated attack construction is an indicator
for tool potential we rather think that this is not the most essential
indicator for tool potential, as attack success depends on the types
of gadgets used and it is less significant to have for example 1000
possible attack variations for a single target program but rather

one attack is sufficient to perform the attack. Further, in real attack
creation scenarios, the situation is more simplified as all available
tools are used to craft the attack. Note that only one of these tools
has to be successful.
Gadget Evaluation. Due to intrinsic limitations of symbolic exe-
cution: reads from, writes to, and jumps to unconstrained addresses
cannot reliably be evaluated, as these would lead to state explosion
issues. We addressed this within iTOP by constraining reads and
writes to point to predefined addresses. This solution is far from
being perfect, and some usable gadgets might be missed. Further,
reads and writes to symbolic file descriptors and I/O in general is
also hard to model using symbolic execution, as there is no way
to predict which files are present and what these contain during
the actual execution of the target program. iTOP addresses this
by skipping all functions containing I/O, possibly missing gadgets.
Also large gadgets (size > 1k bytes), gadgets containing many calls
to other functions, and gadgets that would require symbolic objects
larger than 128 bytes to be simulated are currently skipped to avoid
increased runtime overhead.
COOP Attacks. iTOP generates COOP and COOP-like attacks,
which do not violate the program stack discipline, thus eliminating
the need to bypass shadow stack techniques. Further, we showed
that COOP attacks are flexible enough to work around CFI con-
straints, and powerful enough to implement complex control flows.
Lastly, as long as no fully precise class hierarchy based CFI policy
is enforced our attacks are feasible in a majority of cases.

8 LIMITATIONS AND FUTUREWORK

Gadget Discovery Time. For large binaries such as web browsers,
iTOP needs a large amount of time to be spent in order to generate
a payload due to the number of gadgets that have to be evaluated.
In future work, by developing a more precise gadget discovery
framework for COOP, COOP-like or arbitrary attacks that can
pre-calculate the set of usable gadgets for a target binary it could
provide significant help for attack building frameworks, reducing
their domain purely to finding gadget chains.
Gadget Search Granularity. iTOP analyzes one function at a time
and maps one ESL statement to one gadget. In some cases, multiple
ESL statements can be mapped using only one gadget, or multiple
gadgets could be combined to fulfill the requirements defined by one
ESL statement. While both of these issues can be mitigated by our
gadget chaining algorithm, an analyst has to manually specify all
alternatives required, which requires precise knowledge of iTOP’s
limitations. In future work, by making iTOP inherently aware of
such shortcuts, we could improve its gadget generation and analysis
capabilities as more attacks could be constructed.
Attack Probabilities Formula. To carry out the attack we need
a suitable gadget of each type. These types of gadgets do not have
necessarily the same frequencies. It might be that, say, 5% of the
functions is suitable as a dispatcher, 20% to write %rdi, and 1% to
execute a function. Now we need one of each for a particular attack.
W.r.t. this point Equation 2 might be too simple, as it does not con-
sider the differences in probabilities. Moreover, a CFI defense does
not remove the different gadget types at the same rate. A target of
an indirect call would be relatively likely to be a callback or virtual

13

function, and we cannot assume that this is independent of the
gadget types. In particular, it is plausible these would be simpler
on average than functions that are not indirect call targets. In fu-
ture work, we can improve Equation 2 by modeling the frequency
distribution of gadgets. Further in the updated formula the gadget
probabilities will be longer averaged as in the current version. Thus,
more accurate results can be obtained.

Different Attack Types. ESL provides a Python like API which
can be used to craft COOP-like attacks. In future work, by extending
our DSL-based ESL to implement new attacks, other attack types
can be specified. As such, iTOP’s API can make the implementation
of other types of attacks relatively easy. Thus, by implementing
other types of attacks (e.g., ROP), this would considerably enhance
iTOP’s target binary analysis of the assessed CFI policy.

9 RELATEDWORK

Automatic Exploit Generation (AEG) [6] automatically searches
for a vulnerability in the target binary and generates an exploit.
Assuming no defenses are in-place, AEG [6] is an end-to-end attack
crafting tools which first discovers a vulnerability and then tries
to generate exploits, if possible, for both source code and binary
programs, respectively. In contrast to iTOP, AEG finds first the vul-
nerability and is not designed to operate under strong defenses.
Opposed to iTOP, AEG has no attack specification language. iTOP
is not dependent on the provided vulnerability type, while AEG
focuses only on stack overflows and format string vulnerabilities.

Revery [49] is a dynamic attack crafting tool that analyzes a
vulnerable program and collects runtime information on the crash-
ing path as for example taint attributes of variables. Revery is an
extension of AEG but goes beyond by focusing on other challenges.
In contrast to iTOP, Revery analyzes crashing paths and as such
a vulnerability has not be provided. Revery fails in certain cases
to generate an attack due to complicated defense mechanisms of
which the tool is not aware. Further, in some cases, Revery does not
generate exploits due to dynamic decisions that have to be made
during exploitation. In contrast to iTOP, Revery does not come with
an attack specification language.

Newton [48] is a runtime attack crafting tool whereas iTOP is a
static attack crafting tool that both provide an attack specification
language. In contrast to iTOP which focuses on COOP-like attacks,
Newton focus on other types of attacks as well. Further Newton,
iTOP uses a static specification for constructing the payload while
Newton uses an attack specification language which is used to inter-
act during runtime with the monitored program. Further, Newton
uses a more general black-box approach based on dynamic taint
analysis and is not limited to COOP attacks. In contrast, iTOP covers
both black-box (i.e., a CFI policy is not deployed) and white-box
(i.e., a CFI policy is deployed) during attack construction.

BOPC [24] is a framework for automatic static building of data-
only attacks which do not violate the control flow of the program.
BOPC can assess whether an attacker can perform arbitrary code
execution attacks within a binary which was previously hardened
with CFI and/or shadow stack defenses. In contrast to BOPC, iTOP
does not address data-only attacks as BOPC does, but rather control-
flow violating attacks. BOPC searches inside the legitimate CFG of
the program for machine code basic blocks to used for an attack, in

contrast iTOP searches inside and outside of the program CFG for
targets which may or may not be protected by a CFI policy which
then can be used as gadgets for constructing COOP-like attacks.

Other tools such as PSHAPE [15], Kepler [51], ropc [38], ROPGad-
get [42], Q [44], and work by Wollgast et al. [50] seek to automate
the full attack construction process. In contrast to iTOP, these tools
are limited, as these rely on finding hard-coded sequences of in-
structions to identify gadgets and can only build pre-determined
gadget chains.

10 CONCLUSION

We have presented iTOP, a framework for fully automated construc-
tion of control-flow hijacking attacks, which can bypass state-of-
the-art deployed CFI defenses and shadow stack defenses. iTOP
automates the analysis of the target binary, the identification of
useful gadgets and gadget dispatch mechanisms, and can build
payloads under consideration of state-of-the-art CFI policies. We
have evaluated iTOP by testing it on seven real-world programs,
successfully creating payloads ranging from spawning a shell to
loops and conditionals when using our attack generation primitives.
These payloads have spawned a shell (no CFI policy deployed) for
all evaluated binaries and demonstrated that many state-of-the-art
CFI policies are too permissive, allowing an attacker with in-depth
knowledge of the vulnerable program to construct attacks that
bypass these deployed state-of-the-art fine-grained CFI defenses.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers, and our shepherd
Erik van der Kouwe, VU Amsterdam, Netherlands, for their help
in improving this work. We also would like to thank Chao Zhang,
Tsinghua University, P. R. China and Haohuang Wen, The Ohio
State University, USA, for providing insightful feedback on earlier
versions of this paper.

REFERENCES

[1] 2018. pyelftools. (2018). https://github.com/eliben/pyelftools.
[2] 2018. System – Execute a shell command in Linux man pages. (2018). https:

//linux.die.net/man/3/system.
[3] ANTLR. 2020. ANother Tool for Language Recognition. (2020). https://www.

antlr.org/.
[4] Apache. 2017. Apache Httpd. (2017). https://httpd.apache.org/.
[5] Apple. 2020. Apple Security Bounty. (2020). https://developer.apple.com/security-

bounty/.
[6] T. Avgerinos, S. K. Cha, A. Rebert, E. Schwartz, M. Woo, and D. Brumley. 2015.

Automatic exploit generation. In Communications of the ACM. ACM.
[7] D. Bounov, R. G. Kici, and S. Lerner. 2016. Protecting C++ Dynamic Dispatch

Through VTable Interleaving. In Proceedings of the Symposium on Network and
Distributed System Security (NDSS). ISOC.

[8] Capstone. 2019. Capstone Disassembly Framework. (2019). http://www.capstone-
engine.org/.

[9] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross. 2015. Control-Flow
Bending: On the Effectiveness of Control-Flow Integrity. In Proceedings of USENIX
Security Symposium (USENIX Security). USENIX.

[10] Clang. [n. d.]. Clang SafeStack. ([n. d.]). https://clang.llvm.org/docs/SafeStack.
html.

[11] T. H. Y. Dang, P. Maniatis, and D. Wagner. 2015. The Performance Cost of Shadow
Stacks and Stack Canaries. In Proceedings of the Asia Conference on Computer and
Communications Security (AsiaCCS). ACM.

[12] M. Elsabagh, D. Fleck, and A. Stavrou. 2017. Strict Virtual Call Integrity Check-
ing for C ++ Binaries. In Proceedings of the Asia Conference on Computer and
Communications Security (AsiaCCS). ACM.

[13] Firefox. 2019. Firefox. (2019). https://www.mozilla.org/en-US/firefox.
[14] Firefox. 2019. LibTorrent. (2019). https://www.libtorrent.org/.

14

https://github.com/eliben/pyelftools
https://linux.die.net/man/3/system
https://linux.die.net/man/3/system
https://www.antlr.org/
https://www.antlr.org/
https://httpd.apache.org/
https://developer.apple.com/security-bounty/
https://developer.apple.com/security-bounty/
http://www.capstone-engine.org/
http://www.capstone-engine.org/
https://clang.llvm.org/docs/SafeStack.html.
https://clang.llvm.org/docs/SafeStack.html.
https://www.mozilla.org/en-US/firefox
https://www.libtorrent.org/

[15] A. Follner, A. Bartel, H. Peng, Y. C. Chang, K. Ispoglou, M. Payer, and E. Bod-
den. 2016. PSHAPE: Automatically Combining Gadgets for Arbitrary Method
Execution. In Proceedings of the International Workshop on Security and Trust
Management (STM). ACM.

[16] GCC. 2016. shadow stack proposal. (2016). https://gcc.gnu.org/ml/gcc/2016-
04/msg00083.html.

[17] E. Goektas, E. Athanasopoulos, H. Bos, and G. Portokalidis. 2014. Out Of Control:
Overcoming Control-Flow Integrity. In Proceedings of the Symposium on Security
and Privacy (S&P). IEEE.

[18] Google. 2017. Google Chrome. (2017). https://www.chromium.org/.
[19] Google. 2020. Google Application Security. (2020). https://www.google.ch/

about/appsecurity/reward-program/.
[20] Google. 2020. Google’s Project Zero . (2020). https://googleprojectzero.blogspot.

com/.
[21] B. Gras, K. Razavi, E. Bosman, B. Herbert, and C. Giuffrida. 2017. ASLR on

the Line: Practical Cache Attacks on the MMU. Proceedings of the Network and
Distributed System Security Symposium (NDSS) (2017).

[22] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. 2016. Prefetch Side-
Channel Attacks: Bypassing SMAP and Kernel ASLR. In Proceedings of the Con-
ference on Computer and Communications Security (CCS). ACM.

[23] I. Haller, E. Goktas, E. Athanasopoulos, G. Portokalidis, and H. Bos. 2015.
ShrinkWrap: VTable Protection Without Loose Ends. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC). ACM.

[24] K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer. 2018. Block Oriented Pro-
gramming: Automating Data-Only Attacks. In Proceedings of the Conference on
Computer and Communications Security (CCS). ACM.

[25] J. Koschel, C. Giuffrida, H. Bos, and K. Razavi. 2020. TagBleed: Breaking KASLR
on the Isolated Kernel Address Space using Tagged TLBs. In Proceedings of the
European Symposium on Security and Privacy (Euro S&P). IEEE.

[26] Metasploit. 2019. Metasploit Framework. (2019). https://github.com/rapid7/
metasploit-framework.

[27] Microsoft. 2009. The STRIDE Threat Model. (2009). https:
//docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=
cs.20)?redirectedfrom=MSDN.

[28] Microsoft. 2020. Microsoft Bug Bounty Program. (2020). https://www.microsoft.
com/en-us/msrc/bounty.

[29] Changes to Functionality in Microsoft Windows XP Service Pack 2. Microsoft.
2003. (2003). https://technet.microsoft.com/en-us/library/bb457151.aspx.

[30] L. d. Moura and N. Bjorner. 2008. Z3: An efficient SMT solver. In Proceedings
of the International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS/ETAPS). Springer.

[31] P. Muntean, M. Fischer, G. Tan, Z. Lin, J. Grossklags, and C. Eckert. 2018. τ FI:
Type-Assisted Control Flow Integrity for x86-64 Binaries. In Proceedings of the
International Symposium on Research in Attacks, Intrusions, and Defenses (RAID).
Springer.

[32] P. Muntean, M. Neumayer, Z. Lin, G. Tan, J. Grossklags, and C. Eckert. 2019.
Analyzing Control Flow Integrity with LLVM-CFI . In Proceedings of the Annual
Computer Security Applications Conference (ACSAC). ACM.

[33] P.Muntean,M. Neumayer, Z. Lin, G. Tan, J. Grossklags, and C. Eckert. 2020. ρFEM:
Efficient Backward-edge Protection Using Reversed Forward-edge Mappings. In
Annual Computer Security Applications Conference (ACSAC). ACM.

[34] P. Muntean, S. Wuerl, J. Grossklags, and C. Eckert. 2018. CastSan: Efficient Detec-
tion of Polymorphic C++ Object Type Confusions with LLVM. In Proceedings of
the European Symposium on Research in Computer Security (ESORICS). Springer.

[35] Nginx. 2017. Nginx web server. (2017). https://nginx.org/en/.
[36] B. Niu and G. Tan. 2014. Modular Control-Flow Integrity. In Proceedings of the

Symposium on Programming Language Design and Implementation (PLDI). ACM.
[37] NodeJS. 2017. Open-source, cross-platform JavaScript run-time environment.

(2017). https://nodejs.org/en/.
[38] Pakt. 2013. ropc: A turing complete ROP compiler. (2013). https://github.com/

pakt/ropc.
[39] A. Pawlowski, M. Contag, V. van der Veen, C. Ouwehand, T. Holz, H. Bos, E.

Athanasopoulos, and C. Giuffrida. 2017. MARX: Uncovering Class Hierarchies
in C++ Programs. In Proceedings of the Network and Distributed System Security
Symposium (NDSS). ISOC.

[40] Application Entry Point. 2021. InfoSec Institure. (2021). https://resources.
infosecinstitute.com/topic/discovering-entry-points/.

[41] Redis. 2017. Redis in-memory database. (2017). https://redis.io/.
[42] J. Salwan. 2011. ROPgadget - Gadgets Finder and Auto-roper. (2011). http://shell-

storm.org/project/ROPgadget/.
[43] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz. 2015.

Counterfeit Object-oriented Programming: On the Difficulty of Preventing Code
Reuse Attacks in C++ Applications. In Proceedings of the Symposium on Security
and Privacy (S&P). IEEE.

[44] E. J. Schwartz, T. Avgerinos, and D. Brumley. 2011. Q: Exploit Hardening Made
Easy. In Proceedings of the Conference on Security (USENIX Security). USENIX.

[45] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna. 2015. Firmal-
ice - Automatic Detection of Authentication Bypass Vulnerabilities in Binary
Firmware. In Proceedings of the Symposium on Network and Distributed System
Security (NDSS). ISOC.

[46] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, and G. Vigna. 2016. SoK: (State of) The Art of
War: Offensive Techniques in Binary Analysis. In Proceedings of the Symposium
on Security and Privacy (S&P). IEEE.

[47] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson, L. Lozano, and
G. Pike. 2014. Enforcing Forward-Edge Control-Flow Integrity in GCC and LLVM.
In Proceedings of USENIX Security Symposium (USENIX Security). USENIX.

[48] V. van der. Veen, D. Andriesse, M. Stamatogiannakis, X. Chen, H. Bos, and C.
Giuffrida. 2017. The Dynamics of Innocent Flesh on the Bone: Code Reuse Ten
Years Later. In Proceedings of the Conference on Computer and Communications
Security (CCS). ACM.

[49] Y. Wang, C. Zhang, X. Xiang, Z. Zhao, W. Li, X. Gong, B. Liu, K. Chen, and W.
Zou. 2018. Revery: From Proof-of-Concept to Exploitable. In Proceedings of the
Conference on Computer and Communications Security (CCS). ACM.

[50] P. Wollgast, R. Gawlik, B. Garmany, B. Kollenda, and T. Holz. 2016. Automated
Multi-architectural Discovery of CFI-Resistant Code Gadgets. In Proceedings of
the European Symposium on Research in Computer Security (ESORICS). Springer.

[51] W. Wu, Y Chen, X Xing, and W. Zou. 2019. Kepler: Facilitating Control-flow
Hijacking Primitive Evaluation for Linux Kernel Vulnerabilities. In Proceedings
of USENIX Security Symposium (USENIX Security). USENIX.

[52] C. Zhang, C. Song, K. Chen Zhijie, Z. Chen, and D. Song. 2015. vTint: Protecting
Virtual Function Tables’ Integrity. In Proceedings of the Network and Distributed
System Security Symposium (NDSS). ISOC.

15

https://gcc.gnu.org/ml/gcc/2016-04/msg00083.html
https://gcc.gnu.org/ml/gcc/2016-04/msg00083.html
https://www.chromium.org/
https://www.google.ch/about/appsecurity/reward-program/
https://www.google.ch/about/appsecurity/reward-program/
https://googleprojectzero.blogspot.com/
https://googleprojectzero.blogspot.com/
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)?redirectedfrom=MSDN
https://www.microsoft.com/en-us/msrc/bounty
https://www.microsoft.com/en-us/msrc/bounty
https://technet.microsoft.com/en-us/library/bb457151.aspx.
https://nginx.org/en/
https://nodejs.org/en/
https://github.com/pakt/ropc
https://github.com/pakt/ropc
https://resources.infosecinstitute.com/topic/discovering-entry-points/
https://resources.infosecinstitute.com/topic/discovering-entry-points/
https://redis.io/
http://shell-storm.org/project/ROPgadget/
http://shell-storm.org/project/ROPgadget/

	Abstract
	1 Introduction
	2 Background
	3 Threat Model and Assumptions
	4 System Overview
	5 Design and Implementation
	5.1 iTOP Front-ends
	5.2 Classifying Candidate Gadgets
	5.3 Searching for Dispatcher Gadgets
	5.4 Assembling a Gadget Chain
	5.5 Simulation and Payload Generation

	6 Evaluation
	6.1 Case Study: NodeJS
	6.2 Assessing CFI Policies against NodeJs
	6.3 Stopping Attacks: NodeJS Case Study
	6.4 General Results

	7 Discussion
	8 Limitations and Future Work
	9 Related Work
	10 Conclusion
	References

