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ABSTRACT
Google Search is where most developers start their Web journey
looking for code examples to reuse. It is highly likely that code that
is linked to the top results will be among those candidates that find
their way into production software. However, as a large amount
of secure and insecure code has been identified on the Web, the
question arises how the providing webpages are ranked by Google
and whether the ranking has an effect on software security.

We investigate how secure and insecure cryptographic code
examples from Stack Overflow are ranked by Google Search. Our
results show that insecure code ends up in the top results and is
clicked on more often. There is at least a 22.8% chance that one out
of the top three Google Search results leads to insecure code.

We introduce security-based re-ranking, where the rank of Google
Search is updated based on the security and relevance of the pro-
vided source code in the results. We tested our re-ranking approach
and compared it to Google’s original ranking in an online developer
study. Participants that used our modified search engine to look for
help online submitted more secure and functional results, with sta-
tistical significance. In contrast to prior work on helping developers
to write secure code, security-based re-ranking completely eradi-
cates the requirement for any action performed by developers. Our
intervention remains completely invisible, and therefore the proba-
bility of adoption is greatly increased. We believe security-based
re-ranking allows Internet-wide improvement of code security and
prevents the far-reaching spread of insecure code found on the
Web.

CCS CONCEPTS
• Security and privacy→ Usability in security and privacy; •
Information systems→ Content ranking.
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1 INTRODUCTION
“Just Google it!” Using the dominant search engine has become
one of the most popular ways to find an answer to a question
when there is no easy explanation at hand. This counts for software
developers as well, as it is often the first stop on their journey to
solve urgent programming problems. This is because theWeb offers
everything developers need to know; from books and tutorials to
documentation and code examples. As such, solutions seem to be
only a few queries and clicks away.

Even though Google Search provides thousands of results for a
single query, users typically choose a link that is among the top
results, or “above the fold.”1 If there is nothing relevant, they try
another query and Google again. That means search results that are
above the fold may have a tremendous impact on today’s software
as they define what developers learn and how they solve problems.

Researchers at Google have shown that developers mostly used
their search engine in order to find out how to use a specific ap-
plication programming interface (API) and to find functional ex-
amples [39]. However, the safe use of cryptographic APIs not only
heavily relies on functional examples but on the availability of se-
cure best-practice examples [1, 2, 17, 18, 22]. Since the use cases of
these APIs are very different and complex [17, 18], Google Search
appears to be essential for finding the right examples for the prob-
lem at hand [2].

Stack Overflow is among developers’ most favorite Web re-
source [2] and provides a huge amount of ready-to-use code ex-
amples [18]. Prior work shows that while developers usually start
with Google Search [2, 39, 41], Stack Overflow is almost always
part of the subsequent Web journey [2].

Unfortunately, these code examples often provide very weak
cryptography or contain severe software vulnerabilities. Moreover,
software developers tend to reuse these code examples over secure
ones even though sometimes significantly more secure than inse-
cure examples are available. Ninety-seven percent of Google Play
applications that reused code from Stack Overflow reused at least
one insecure example [17].

This phenomenon might be explained by a generally higher
Google Search rank for insecure code. The Google Search rank is
a very powerful positive indicator that people tend to follow even
if the displayed abstract of the related result is less relevant [32].
This selection bias might contribute to the reuse of insecure code if
it ends up in the top results.

If this is the case, could this observation be harnessed to improve
software security by a deliberate and comprehensive re-ranking
1https://backlinko.com/google-ctr-stats
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of search results? To investigate this important question, we have
perform an end-to-end investigation on whether modifications to
the rank have a direct significant effect on the security of code
written by software developers.

First, in an online study, we have systematically tested how
secure and insecure cryptographic code examples are currently
ranked by Google Search. We collected search results from 192
developers and analyzed the security of Stack Overflow code exam-
ples found among the top ten search results (𝑡10) that are shown
on the first page of Google Search.

We find that significantly more results in 𝑡10 provide links to
insecure code. More interestingly, if 𝑡10 provides an insecure link
chances are higher that it is among the top three results. In fact,
there is a 22.8% probability that one out of the three top results link
to insecure code examples. Further, there is only a 46.1% chance
that users will not encounter an insecure Stack Overflow result on
Google Search.

Second, we introduce and evaluate security-based re-ranking. It
applies a semi-supervised clustering method to identify code exam-
ples on the Web that are not only secure, but provide secure best
practices. This means they provide the secure end-to-end pattern
to solve the given use case at hand. By boosting these examples in
search results and decreasing the rank of insecure results, we have
improved the security distribution of results in 𝑡10. Afterwards, we
observed a near zero probability that the top three results contained
insecure code. Moreover, there was a 29.4% chance that at least one
top three result contained secure best practices.

Lastly, we tested security-based re-ranking in an online devel-
oper study with 218 participants that had to solve several security-
related programming tasks. The more the participants interacted
with the modified search engine, the more secure and functional
solutions they submitted. We show that this effect is statistically sig-
nificant (𝑝 < 0.05). We did not observe this effect from our control
group using original Google Search, who provided more insecure
solutions.

We summarize our contributions as follows:

• We demonstrate that Web search ranking has a significant
effect on software security.

• We show that the current distribution of insecure coding
practices in the top results of Google Search is significantly
higher than those of secure ones.

• We have developed security-based re-ranking which helps in
identifying secure best practices on the Web and adjusts the
Google Search ranking to show these results preferentially.

• Wehave performed a developer study and show that security-
based re-ranking significantly helps software developers to
write more secure code in comparison to those that used
original Google Search.

We structure and present our work as follows. We first discuss
related work in the domains of search and security, software devel-
oper studies, and developer search behaviors in Section 2. We then
describe our first online study in Section 4, where we measure the
security of search results and present the results in Section 4.5. In
Section 5, we continue with the presentation of our methodology
for security-based re-ranking, and follow with its evaluation in
Section 5.6. Finally, we test whether security-based re-ranking has

an effect on code security in our second online study in Section 6
and present the results in Section 6.2.

We support open science and open-source our data including
surveys, study tasks, source code, and results.2

2 RELATEDWORK
2.1 Search and Security
A key area of prior work relates to understanding search behavior.
Mining query data from search engines suggests that patterns fol-
low a power-law distribution [5], i.e., there are huge differences in
the importance of the quality of results. Likewise, research over the
last 20 years has shown that individual consumers typically visit
only a limited set of — often prominent — distinct websites [10, 12].

To protect users from reaching unwanted search destinations,
various approaches have been taken, ranging from automatic de-
tection of “dangerous” websites (e.g., [30, 45]) to using notifications
to inform users about such risks, e.g., Google Safe Browsing [21].

From a privacy perspective, earlier work focused on embedding
P3P-related indicators in the search engine [8]. In the security
context, a variety of indicators have been studied regarding their
effectiveness, in particular in the phishing context [13, 14, 16, 26].

While the extant literature for this topic space is tremendously
rich, we are unaware of research on the impact of common Internet
search engines on the utilization of formal or informal security
advice sources, and the eventual implications for code security.

2.2 Software Developer Studies
In the past five years, the research area of usable security has in-
creasingly focused on the work practices of developers [3], thereby
complementing the existing literature on end-user security prac-
tices and behaviors [38, 50].

Previous work has shown that developers do not only vary in
their ability to deliver functional code, they also vary in terms of
creating code free of security problems [4].

In this context, programming advice forums play an important
role when it comes to code delivered by developers. For example,
previous work has shown that 30% of cryptographic code examples
on Stack Overflow were insecure, and that these insecure samples
were reused in over 190,000 Android apps [17]. Bai et al. performed
a survey to find out why developers reuse insecure code [6]. A user
study has shown that programmers prefer programming advice
platforms over more traditional sources such as textbooks and
official programming documentation [2].

In fact, a developer survey (with over 88,000 software developers
from 179 countries) conducted by Stack Overflow reported that
over 60% visit the platform at least once or more every day, and
that 96% come to seek solutions to specific problems [42].

Identifying secure code on Stack Overflow is challenging, since
quality signals can often be misleading. Based on the manual in-
spection of a large sample of advice postings for cryptographic
code, it was shown that insecure posts were most often associated
with higher view counts and scores, and were frequently posted

2https://github.com/TUM-ChairOfCyberTrust/security-based-reranking.git
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by so-called trusted users [9]. Another study showed that addi-
tional information beyond the code can be taken into consider-
ation to identify insecure code on Stack Overflow with machine
learning methods [55]. Other research documented that developers
are easily influenced by the high-level (irrelevant) appearance of
postings, rather than such quantitative ratings provided on Stack
Overflow [44]. This means even developers may not even always
follow quantitative indicators.

Several studies have investigated how to help developers to
deliver more secure code. On the one hand, multiple systems such
as FixDroid have been designed to support developers with easy-to-
use tools to check (cryptographic) code and to provide fixes [31].

On the other hand, several works address the complexity of
developing secure code. One solution approach is to provide devel-
opers with simplified APIs to prevent incorrect usage [1]. However,
the associated developer study showed that code sometimes lacked
necessary functionality, and the simplified APIs were not applicable
to several specific use cases.

Recent work has tried to harvest the existing wealth of informa-
tion on Stack Overflow more directly by using machine learning
techniques to distinguish secure from insecure postings on crypto-
graphic use cases, and reworking the Stack Overflow interface to
nudge users to postings which are relevant for the use case and are
secure [18]. A user study shows that developers produce functional
code, which is often more secure using the improved system.

Our review of publications in the security and usable security
space did not yield any research that specifically addresses how
developers search for secure solutions with search engines.

2.3 Developer Search Behavior
However, a variety of studies have been conducted to explore de-
veloper search behaviors in the software engineering domain. The
studies analyze how developers use specialized code search engines
and also Web search engines.

A study with developers at a large Internet company showed
that they used a specialized code search engine for the internal
codebase 12 times each day on average [39]. The study used an
experience sampling methodology. Another recent study explored
how developers use Web search engines with a focus on comparing
code search with other search behaviors [35]. The authors explored,
e.g., whether the used vocabulary or the length of queries differ
across the two contexts. In another survey study, it was found that
91% (out of 55 developers) had used search engines in the past to
look for source code examples. However, directly using search func-
tionality on “social help sites” (e.g., StackOverflow, Quora etc.) had
only been done by 36% of the participants [27], which emphasizes
the importance of the Web search context in our work.

A multi-method study investigating survey responses of 235
software engineers as well as the search queries of 60 developers
sheds some light on the self-reported frequency and perceived
difficulty of searching for certain types of programming-related
information on the Web, as well as actual query frequencies [53].
Somewhat relevant to our work, participants reported searching for
“explanations for exceptions/error messages (e.g., HTTP 404)” and
“solutions to common programming bugs” often, and considered
these search tasks to be relatively easy. The participants further

reported to sometimes “search for reusable code snippets” (with a
neutral level of difficulty). The analysis of the query logs suggests
that these three categories belong to the most frequent search
activities. The study, however, remains at a very high level, and in
particular does not show whether developers are able to identify
secure search results, and whether their searches contribute to the
development of functional and secure code.

Our work builds on the existing literature of developer studies.
However, to the best of our knowledge, no study exists that focuses
on security search behavior, or investigates the impact of using
search engines on code security.

3 ONLINE STUDIES
We performed two different online studies: Security of Search Results
and Impact of Ranking on Code Security.

In Study 1 on Security of Search Results, 192 participants per-
formed code search on the Web using Google Search. We calculated
the distribution of Stack Overflow results that provide secure code
examples and the distribution of Stack Overflow results that pro-
vide insecure ones among the top ten results 𝑡10. Distributions were
calculated for a set of 274 distinct user queries 𝑄 and 3,800 related
search results 𝑅.

Further, we wanted to know whether the ranking of search
results actually has an impact on code security. In Study 2, 218
participants had to solve three security-related programming tasks
on the Impact of Ranking on Code Security with the help of Google
Search. Therefore, we tested two conditions. The control group
had to use the original Google Search engine that was used in
Study 1, while our treatment group used a different Google Search
engine that applies security-based re-ranking.We developed security-
based re-ranking in order to up-rank secure results and down-rank
insecure results. We explain this approach in Section 5.

Age
Mean = 32.03/30.94 Median = 29.5/29 Stddev = 10.34/8.59 Min = 18 Max = 74/59

Country of Origin
USA = 40/60 Germany = 23/19 Brazil/India = 13/18 China/Brazil = 11/9 Other = 105/112

Gender
Male = 171/188 Prefer not to say = 5/22 Other = 6/1 Female = 10/7

Level of Education Achieved
High School = 30/21 Bachelor= 80/102 Master = 44/60 PhD = 18/11 Other = 20/24

Professional
Yes = 133/161 No = 52/33 N/A = 7/24

Security Background
Yes = 56/46 No = 129/143 N/A = 7/29

Java Years of Experience
< 1 year = 51/61 1 to 2 years = 35/40 > 2 years = 82/80 N/A = 25/37

Java Primary Focus of Job
Yes = 31/49 No = 158/144 N/A = 3/25

Table 1: Detailed data about demographics of participants
for Study 1 (N = 192) and Study 2 (N = 218).

3.1 Recruitment
We recruited participants by contacting GitHub developers via
email. We extracted around 900,000 email addresses from public
GitHub user profiles. A randomly compiled list of 50,000 users was
contacted for Study 1. To incentivize users, ten Amazon vouchers
worth 50 USD were given away in a drawing for all participants. A
randomly selected list of 100,000 users was contacted for Study 2.
Here we offered no compensation. We attached an opt-out link to



all of our study emails that (if used) deleted the recipient’s email
address from our database.

Participants were first directed to a landing page that introduced
the respective study, followed by a comprehensive consent form.
We avoided priming in the description of the study and tasks by not
mentioning any terms related to security or privacy. After complet-
ing the main task, participants were asked to complete a short exit
survey that explored the characteristics of the specific sample. In
Study 1, 192 out of 991 participants that entered the landing page
completed the survey. In Study 2, out of the 827 participants that
began the survey, 218 finished it.

3.2 Research Ethics
Our institution does not require IRB review for online survey stud-
ies. However, we closely followed the recruitment and remuneration
modalities of a GitHub developer study (discussed in the related
work section), which had received approval by the Ethics Review
Board of Saarland University, the IRB of the University of Maryland,
and the NIST Human Subjects Protection Office [4].

Survey studies with GitHub users as the survey population
are relatively common. Most prominently, the 2017 GitHub Open-
Source Survey provided detailed knowledge about the user pop-
ulation on the platform [19, 20]. In the security domain, we are
aware of one study using GitHub as the primary participant source
[4, 22]. In contrast, there are numerous peer-reviewed studies in
the domain of software engineering that survey GitHub devel-
opers to explore a variety of coding and development practices
[7, 23, 24, 28, 34, 36, 37, 40, 46, 52] as well as gender and diversity
issues [47, 48]. Most of those papers used email for recruitment.

3.3 Demographics, Experience, and Education
We collected demographic data about our study participants using
an exit survey and present them in Table 1. Participants were asked
about general information including country of origin, age, and
gender. In order to control our samples for programming expertise,
we asked for developer-specific information such as years of ex-
perience in Java and whether they were professionals. Lastly, we
collected security-related information such as security experience
and background.

Figure 1: Description of a sub-task in Study 1

4 STUDY 1: SECURITY OF SEARCH RESULTS
4.1 Tasks
In order to measure the distribution of insecure Stack Overflow
links in the top ten results 𝑡10, we performed an online study where
participants had to perform several queries using Google Search.
They were introduced into a scenario setting where they had to
solve hypothetical programming tasks on the topic of AES encryp-
tion. We followed our prior work (Fischer et al. [18]) in the design of
the tasks, which include initializing a symmetric cipher (CIPHER),
an initialization vector (IV), and a cryptographic key (KEY). Each
task had several sub-tasks, e.g., inform yourself about symmetric
encryption or look up how to use a specific API element. We show
a screenshot of a sub-task in Figure 1.

Participants were instructed to type a search query into the
provided search bar for each task in order to find help online. Next,
they had to select the result that appeared to be the most relevant
to solve the task. To decide relevance, participants could visit the
webpage of each result and make a final decision. Thereby, we
stored the search queries, the links from the results including their
rank, and a click log.

4.2 Setup
The study was performed on the participants’ own devices. The
search bar was run by a Google Custom Search Engine (CSE) that we
integrated into the online survey. The CSE API allows for different
types of search customization, including filtering and boosting
results. This way, we were able to store all inputs and outputs and
to control what was shown in the results.3 Results were not affected
by Google’s search personalization [25], since those services are
not supported by CSE.4

4.3 Ground Truth
To be able to determine the security of search results, we needed
ground truth about the security of code examples that are provided
by Stack Overflow webpages shown in the results. We used TUM-
Crypto,5 an open-source dataset which contains security labels for
the complete list of Java code examples on Stack Overflow that
provide potential solutions for our study tasks CIPHER, IV, and
KEY [18]. Each code example from the dataset provides a link to
the Stack Overflow webpage it was downloaded from. This allowed
us to label the security of Stack Overflow links that are relevant for
solving the tasks.

4.4 Security Labeling
We defined the webpage labeling function 𝑙𝑡1, which labeled a
Stack Overflow webpage as insecure if the top answer given on
the webpage contained insecure code. A webpage was labeled as
secure if otherwise. Measuring the distribution for 𝑙𝑡1 gave us a
realistic view on the distribution of results, that are more likely of
being reused in production code. Chen et al. [9] have shown that
code examples from the top answer are significantly more often
reused than examples with a lower score. That is probably due to

3We removed all ads that would have been shown to the user.
4https://support.google.com/programmable-search/answer/70392?hl=en
5https://github.com/fischerfel/TUM-Crypto
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Figure 2: Binomial distribution of secure (blue) and insecure (red) Stack Overflow results over the top ten results 𝑡10. The 𝑥-axis
represents the observed count of secure or insecure results in 𝑡10. The 𝑦-axis shows the probability for each observation, i. e.
there is a probability of 𝑦 that 𝑥 results are secure or insecure in 𝑡10.

the top answer the first one being seen by the user as it is shown
right below the question. Further, it oftentimes comes with a green
check mark that highlights the accepted answer by the user who
posted the question.

4.5 Results
The TUM-Crypto dataset contains 3,361 secure and 7,195 insecure
code examples, which are provided in 5,811 Stack Overflow dis-
cussion threads (i.e., webpages). For webpages that provide code
examples for CIPHER, IV, and KEY, we obtained 1,671 secure and
2,057 insecure ones after applying our webpage labeling function
𝑙𝑡1, described in Section 4.4. These webpages represent a subset of
the potential search results 𝑅.

Participants that typed a search query into our CSE obtained
search results from 𝑅 = {𝑐𝑠𝑒 (𝑞)}𝑞∈𝑄 , where 𝑄 is the complete set
of queries we tracked during the study and 𝑐𝑠𝑒 the search func-
tion implemented in our CSE. Note that 𝑅 provides all search re-
sults returned by the search engine and was not subject to any
modifications. However, only those results that could be linked to
TUM-Crypto obtained a security label.

On average, our 192 participants submitted 1.3 queries and per-
formed 1.0 clicks per task.

We obtained |𝑄 | = 274 unique queries that were typed into the
CSE. We observed 98 unique queries for IV, 87 for KEY, and 89 for
CIPHER resulting into 1,290 top ten search results for IV, 1,210 for
KEY, and 1,300 for CIPHER.

Stack Overflow was the most clicked on domain with 32% of
clicks followed by official documentation websites for Java (docs.
oracle.com) with 26%, and Android (developer.android.com) with
10% of the clicks. Rank one and two were the most clicked on ranks
with both 33% of the clicks and the top three results received 79%
of the clicks made in total.

Binomial Distribution— Based on the collected queries𝑄 and
results 𝑅 from our three tasks, we measured the probability of
secure and insecure Stack Overflow results to appear in the top
three (𝑡3), top five (𝑡5) and top ten (𝑡10) results.

We calculated the binomial distribution 𝐵(𝑛, 𝑝) of secure and
insecure results over 𝑡𝑛 ∈ 𝑅, where 𝑛 ∈ {3, 5, 10} is the number of
trials, i. e., the number of displayed results in 𝑡𝑛 , and 𝑝 the success
probability of each trial, i. e., probability of a result to be secure or
insecure. The probability is given by 𝑝 = 𝑟/𝑠 , where 𝑟 is either the
number of secure or insecure Stack Overflow results in 𝑡𝑛 , and r

the total number of results in 𝑡𝑛 . The distributions are calculated
simulating 10,000 searches.

Second, we calculated the task-specific distributions of secure
and insecure results over 𝑅𝑖𝑣 = {𝑐𝑠𝑒 (𝑞)}𝑞∈𝑄𝑖𝑣

⊂ 𝑡𝑛 where𝑄𝑖𝑣 is the
set of queries entered into the search bar during the IV task. Like-
wise, we measured the distributions of secure and insecure results
over 𝑅𝑘𝑒𝑦 = {𝑐𝑠𝑒 (𝑞)}𝑞∈𝑄𝑘𝑒𝑦

⊂ 𝑡𝑛 and 𝑅𝑐𝑖𝑝 = {𝑐𝑠𝑒 (𝑞)}𝑞∈𝑄𝑐𝑖𝑝
⊂ 𝑡𝑛

where𝑄𝑘𝑒𝑦, 𝑄𝑐𝑖𝑝 are the set of queries entered during the KEY and
CIPHER task.

Figure 2 shows the binomial distribution over aggregated results
from all three tasks, and over results from each individual task.

Task-Independent Results— Figure 2, (ALL, 𝑡10, blue), shows
the distribution 𝐵(10, 0.030) of secure results, while (ALL, 𝑡10, red)
shows the distribution 𝐵(10, 0.070) of insecure results over 𝑡10 for
the complete set of queries 𝑄 . We observed a 28.17% chance for at
least one secure result to appear in 𝑡10 vs. a chance of 36.47% for
one insecure result. Probabilities of more than one result to appear
in 𝑡10 were also much higher for insecure results: 14.07% for two,
2.91% for three, and 0.32% for four vs. 5.22% for two and 0.64% for
three secure results to be found in 𝑡10.

Probabilities diverged even stronger in the top three results 𝑡3.
Here, we observed a chance of 22.78% for at least one insecure
result where a secure result has only a 9.19% chance. This means if
an insecure result ends up in 𝑡10 it is more likely that it obtains a
rank in the top three than in the lower ranks. Further, every fourth
Google Search query will probably show an insecure result in 𝑡3 if
the query is related to IV, KEY, or CIPHER.

IV— Figure 2, (IV, 𝑡10, blue) contrasts the distribution 𝐵(10, 0.004)
of secure results with the distribution 𝐵(10, 0.060) of insecure re-
sults shown in Figure 2, (IV, 𝑡10, red) for queries 𝑞 ∈ 𝑄𝑖𝑣 .

We observed a 22.44% chance that at least one result in 𝑡10 is
secure vs. a 34.90% chance for one insecure result. While probabil-
ities were near 0% for a secure result to be contained in 𝑡5 or 𝑡3,
we observed 29.79% for 𝑡5 and 25.10% for 𝑡3 to provide at least one
insecure result. In contrast to secure results, insecure results also
had a chance for more than one result to be present in 𝑡10: 10.43%
for two, and a 1.65% for three results.

KEY— We observed a surprisingly high distribution of secure
results in 𝑡10 for queries 𝑞 ∈ 𝑄𝑘𝑒𝑦 . There was a 37.32% chance for at
least one secure result (see Figure 2, (KEY, 𝑡10, blue)). The probability
of an insecure result was only slightly higher with 37.65%, as shown
in Figure 2, (KEY, 𝑡10, red).

docs.oracle.com
docs.oracle.com
developer.android.com


Probabilities of more than one result in 𝑡10 were also higher for
insecure results: 15.22% for two, and 3.47% for three vs. 13.99% for
two, and 2.94% for three secure results.

Once more, probabilities of one insecure result in 𝑡5 and 𝑡3 only
slightly decreased with 37.03% and 29.19%, respectively.

Even though we observed a lower probability of secure results in
𝑡10 again, the probability values do not differ as much as observed
in IV. However, probabilities diverged more significantly in 𝑡3 again,
where one insecure result has a chance of 29.19% and a secure result
19.48%.

CIPHER— For CIPHER, there was a 21.06% chance for at least
one secure result in 𝑡10 and a 2.71% chance for two results (see
Figure 2, (CIPHER, 𝑡10, blue)). We only observed a 3.26% chance for
one result in 𝑡3 to be secure.

The distribution of insecure results shown in Figure 2, (CIPHER,
𝑡10, red) is not very different from IV and KEY. 𝐵(10, 0.077) revealed
a 37.77% chance for at least one result, 14.05% for two, and 3.16%
for three results. We observed very similar probabilities of insecure
results in 𝑡5 and 𝑡3 as observed for IV and KEY. 𝐵(5, 0.089) revealed
a 30.24% chance and 𝐵(3, 0.065) a 17.70% chance for one insecure
result to be in 𝑡5 and 𝑡3, respectively.

Summary— Study 1 has shown that the distribution of insecure
Stack Overflow results in the top tiers 𝑡3, 𝑡5, and 𝑡10 is significantly
higher than the distribution of secure Stack Overflow results. This
was the case for all three tasks that were performed by our partici-
pants. Moreover, the probability of insecure results to end up in 𝑡3
is higher than for lower ranks.

These observations led to the following research questions: Does
the higher ranking of insecure Stack Overflow code examples actu-
ally have a negative impact on code security? Further, does security-
based re-ranking help in mitigating this effect by down-ranking
insecure and up-ranking secure results? We first present our ap-
proach for security-based re-ranking in the following Section 5 and
investigate both research questions in Study 2 in Section 6.

5 SECURITY-BASED RE-RANKING
In Section 4.5, we have shown that Google Search currently up-
ranks Stack Overflow results that provide insecure cryptographic
code.We introduce security-based re-ranking to tackle this problem.
In a nutshell, based on the security label of a webpage’s content
(i. e., source code), its rank is updated by either lowering or raising
it.

This would help developers to start their Web search on a safe
path. In fact, the Web offers secure best-practice examples that
help developers to finish their programming tasks functionally
and securely for a wide range of use cases [18]. Boosting those
examples in Google Search while simultaneously lowering the rank
of insecure results could have a ripple effect on the code security
of production software.

In this section, we describe howwe identified secure best-practice
examples in TUM-Crypto and how we re-ranked results based on
security. We continue to use the labeling function 𝑙𝑡1 to determine
the security of webpages.

5.1 Secure Best-Practice Examples
A secure Stack Overflow webpage is labeled as a best-practice re-
sult if it is secure with respect to 𝑙𝑡1 and provides at least one
best-practice example for IV or KEY. An example is a code snippet
which gives the complete API usage pattern for how to safely gen-
erate a cryptographic key or an IV (see Figure 9 in the Appendix).
We distinguish secure best-practice from secure examples. A secure
code example is not a best-practice example if the API usage pattern
is incomplete. This means that the example does not show how
to safely implement all necessary dependencies of IV or KEY. For
instance, it does not show how to initialize a secure random number
generator which is necessary to generate a cryptographic key. In
practice, popular (but misleading) examples are code snippets that
show how to encrypt a string using a key that is passed through
a method parameter. Even though these examples may be secure
(in terms of not being insecure), developers will not learn the com-
plete pattern since key generation is missing. We do not make this
differentiation for CIPHER since initializing a CIPHER using the
Java SDK is done within a single statement that does not have any
dependencies.

We will show in later sections that patterns are incomplete for
most secure KEY and IV examples on Stack Overflow. This causes
the following problem: developers may be presented with secure
but unhelpful code. This forces them to continue the code search,
potentially leaving the secure path, ending up reusing insecure code
once again. By up-ranking secure best practices, there is higher
probability that developers start and stay on a safe path.

5.2 Code Embeddings
We have followed a semi-supervised methodology to identify secure
best-practice examples in TUM-Crypto. We first applied DBSCAN,
an unsupervised clustering method to cluster secure API usage
patterns for the use cases KEY and IV. Those provide the most
diverse patterns available in the dataset as shown in [18]. Note, our
clustering method does not separate secure from insecure patterns,
but is solely applied to secure ones to separate best practices from
potentially less helpful examples.

The advantage of DBSCAN is that it does not need to know the
number of expected clusters in advance. Since its clustering method
is performed on input vectors, we need vector representations for
the API usage patterns. In Fischer et al. [18], we have trained a
deep learning model that generated embeddings for API usage
patterns from TUM-Crypto. These embeddings were learned such
that similar patterns are close, and dissimilar ones are far away
from each other in the embedding space, using cosine distance
as the distance metric. The learned embeddings encode data and
control dependencies of code graphs, as well as lexical information
of code statements. We used them as inputs for DBSCAN because it
supports clustering based on cosine distance. Please refer to [18, 54]
for further details on the generation of the embeddings.

5.3 Best-Practice Clustering
DBSCAN automatically creates clusters based on two parameters:
the maximum distance 𝜖 of an embedding to the core sample of the
cluster, and the minimum number of embeddings𝑚𝑖𝑛𝑃𝑡𝑠 necessary
to form a cluster. It does not require the number of clusters to be



(a) IV, 𝑡10 (b) IV, 𝑡3 (c) KEY, 𝑡10 (d) KEY, 𝑡3

Figure 3: Parameter search for boosting results for IV and KEY. The horizontal axis represents boost values and the vertical
axis the probability of a secure best-practice or a secure or insecure result to appear in the top ten results.

known in advance as it is determined based on these parameters.
Embeddings that cannot be assigned to a cluster end up in the noise
cluster 𝑁 .

After we obtained the set of clusters𝐶 := 𝐷𝐵𝑆𝐶𝐴𝑁 (𝜖,𝑚𝑖𝑛𝑃𝑡𝑠) \
𝑁 for a given pair of 𝜖 and𝑚𝑖𝑛𝑃𝑡𝑠 , we looked at exactly on rep-
resentative 𝑐𝑖 for each cluster 𝐶𝑖 ∈ 𝐶 to determine whether it is a
secure best practice, or not. This way manual labeling effort is given
by cardinality |𝐶 |, and its reduction 𝑟𝑙𝑎𝑏 given by 𝑟𝑙𝑎𝑏 = 1− |𝐶 |/|𝐸 |,
where 𝐸 is the set of embeddings generated from all samples in
TUM-Crypto.

We wanted to keep the manual labeling effort as low as possible
and therefore 𝑟𝑙𝑎𝑏 close to 1. Additionally, we wanted the clustering
to be as accurate as possible in order not to miss any best-practice
examples. Therefore, the size of the noise cluster |𝑁 | needs to be
as small as possible, as well as the biggest cluster 𝐶𝑚𝑎𝑥 ∈ 𝐶 . These
three objectives are competing with each other. Smaller |𝑁 | leads
to more clusters |𝐶 | and to smaller 𝑟𝑙𝑎𝑏 .

It follows that we had to solve the following multi-objective
optimization task: Choose parameters 𝜖 and 𝑚𝑖𝑛𝑃𝑡𝑠 that maxi-
mize 𝑟𝑙𝑎𝑏 , while minimizing the percentage of the biggest cluster
|𝐶𝑚𝑎𝑥 |/|𝐸 |, |𝐶𝑚𝑎𝑥 | ≥ |𝐶𝑖 |,∀𝐶𝑖 ∈ 𝐶 and the percentage of the noise
cluster |𝑁 |/|𝐸 |.

The smaller |𝐶 |, the smaller the manual effort 𝑟𝑙𝑎𝑏 . The bigger
𝐶𝑚𝑎𝑥 , the higher the chance 𝜖 has been chosen too large; thereby
insufficiently differentiating between API patterns. If |𝑁 | becomes
too large, it might contain best-practice examples that would be
missed since the noise cluster naturally will not be considered for
manual inspection.

5.4 Pareto Optimum
We determined the optimal parameter by performing a grid search
for a Pareto-optimal solution. Thereby, we calculated all values for
labeling effort, noise, and maximum cluster size during the grid
search with the objective to minimize them. The grid was given by
𝜖 ∈ [0.0, 0.09] as we observed that |𝐶 | quickly converged to 1 for
bigger cosine distances than 0.09. We searched for𝑚𝑖𝑛𝑃𝑡𝑠 ∈ [2, 10],
as we only needed 10 best-practice examples to show in the top
ten tier of the Google Search results. Our search space was very
small. 𝜖 was increased by 0.01 for each search, resulting in a grid
with dimension 10 × 9.

We calculated the knee-points for the 3𝑑 Pareto curve for all three
competing objectives and derived the related DBSCAN parameters
for IV and KEY. The results are shown in Table 3 in the Appendix.

Distance 𝜖 was similar for both use cases with 0.3 and 0.4 and both
had a minimum cluster size of two. For both use cases, we reached
a noise level of around 10% of the respective example set. Those
examples were not considered for manual labeling.

We randomly selected a representative for each cluster and man-
ually reviewed the source code of the representative to decide
whether it is a best-practice example. If yes, all samples from the
related cluster were added to the set of best-practice examples of
the related class IV or KEY, respectively. The manual labeling effort
was below 10%, which resulted in 65 samples for IV and 114 samples
for KEY.

Finally, we evaluated the precision of the whole process. We
selected a maximum of 50 random samples from each secure best-
practice cluster and manually evaluated whether they were true
positives. We obtained a precision of 0.81 for KEY and 0.98 for IV.
None of the false positives were insecure.

5.5 Re-ranking
We implemented a CSE that updates the rank of Stack Overflow
results based on the security of the content and whether it pro-
vides best-practice examples. The CSE API provides functionality
to influence the ranking of search results. Those modifications are
domain-based. For a given URL, attributes can be defined in order to
boost their rank. For a given Stack Overflow link, our CSE assigns
the search function 𝑐𝑠𝑒𝑏 a boost 𝑏 ∈ [−1, 1].

Parameter Search— Trivially, we set the boost value 𝑏𝑏𝑝 for
secure best-practice results to the maximum of 𝑏𝑏𝑝 = 1.0 and
for insecure results to the minimum of 𝑏𝑖 = −1.0. We performed a
parameter search to find the optimal boost value𝑏𝑠 for secure results
that were not best practices. On the one hand, one would expect
those results to obtain a lower rank than secure best practices, since
they may be less helpful. On the other hand, one would require
them to have a higher rank than insecure results.

Therefore, they naturally compete with secure best-practice and
insecure results to obtain ranks in 𝑡10. If the boost for secure results
is too high, some secure best-practice results in 𝑡10 may be replaced
by secure results. If the boost is too low, some secure results may be
replaced by insecure ones. Therefore, the boost for secure results
has to be high enough to push insecure results further out of 𝑡10
while not interfering with secure best-practice results.

To find the optimal boost value for secure results, we repeated
our measurements from Study 1 (see Section 4). We calculated
probabilities 𝑝 = 𝑟/𝑠 for secure best-practice (𝑝𝑏𝑝 ), secure (𝑝𝑠 ), and



Figure 4: Binomial distribution of boosted secure best-practice (green), secure (blue), and insecure results (red) for IV, KEY,
and CIPHER over 𝑡10. The 𝑥-axis represents the observed count of secure best-practice, secure, or insecure results in 𝑡10. The
𝑦-axis shows the probability for each observation, i. e., there is a probability of 𝑦 that 𝑥 results are secure best-practice, secure,
or insecure in 𝑡10.

insecure results (𝑝𝑖 ) to appear in 𝑡10. Here, 𝑟 was either the number
of secure best-practice, secure, or insecure results in 𝑡10, and 𝑠 the
total number of results in the respective tier. We calculated these
probabilities for different boost values𝑏𝑠 ∈ [−1, 1] for secure results
using an increment of 0.1. Boost values 𝑏𝑏𝑝 and 𝑏𝑖 remained the
same. The results are shown in Figure 3.

Rank Trade-off— For IV, maximum probability 𝑝𝑏𝑝 for secure
best-practices to appear in 𝑡10 and 𝑡3 was given for 𝑏𝑠 = 0.1 (see
green line in Figure 3b). However, for KEY it was given for 𝑏𝑠 =

−0.2 (see the green line in Figure 3c). Therefore, those two values
represented the upper and lower bound of 𝑏𝑠 . To decide optimal
𝑏𝑠 ∈ [−0.2, 0.1] we searched for a point where the probability of
secure results was higher than for insecure results. Figure 3a shows
that 𝑏𝑠 > 0.0 fulfilled this restriction for both tiers and all three
tasks. Probabilities of insecure results were the lowest in all four
plots. Therefore, we selected 𝑏𝑠 = 0.1 as it was the next increment
in the interval and the upper bound. This solution led to a small
reduction of probabilities of secure best practices for KEY in 𝑡10 and
𝑡3, as shown in Figure 3c and 3d. We considered this loss acceptable
in order to keep insecure probabilities low. Further, this led to an
additional gain for secure KEY results (see the blue line in Figure 3c
and 3d).

Since results for CIPHER are only separated into a secure and
insecure class, we did not have to include them in the parameter
search. Secure CIPHER results obtained 𝑏𝑠 = 1.0 and insecure
results 𝑏𝑖 = −1.0.

5.6 Results
This section provides the results for security best-practice clustering
and the binomial distribution of boosted secure best-practice, secure,
and insecure results in 𝑡10.

Secure Best-Practice Clusters— DBSCAN identified 12 best-
practice clusters for IV with overall 92 identified best-practice ex-
amples. The biggest cluster contained 16% of the samples, as shown
in Table 3. We found 46 Stack Overflow webpages that were labeled
secure by 𝑙𝑡1 (the top answer provides only secure code examples)
and contained at least one best-practice example in the top answer.
For those results, we set the boost to 𝑏𝑏𝑝 = 1.0 in 𝑐𝑠𝑒𝑏 .

Ten best-practice clusters were found for KEY with overall 113
identified best-practice examples. The biggest cluster contained
17% of the samples. We found 11 webpages that were labeled secure

by 𝑙𝑡1 and provided at least one KEY best-practice example in the
top answer. They also obtained a boost value of 𝑏𝑏𝑝 = 1.0 in 𝑐𝑠𝑒𝑏 .

Binomial Distribution—We computed the binomial distribu-
tion over {𝑐𝑠𝑒𝑏 (𝑞)}𝑞∈𝑄 ⊂ 𝑡10, where 𝑐𝑠𝑒𝑏 is the modified Google
Search engine that applies our boosting values 𝑏𝑏𝑝 , 𝑏𝑠 , and 𝑏𝑖 . 𝑄
are the same queries we collected in Study 1. We calculated the
binomial distribution for IV, KEY, and CIPHER by simulating 10,000
searches.

Task-Independent Results—We first measured the binomial
distributions independently from the tasks. 𝐵(10, 0.089) of boosted
secure best-practice results revealed a probability of 38.16% for one
result to appear in 𝑡10 and 29.36% in 𝑡3. Both distributions over 𝑡3
and 𝑡10 were even higher than the observed distributions of insecure
results in Study 1 (see Figure 2). Further, we saw a 17.11% chance
for two, and 3.85% for three results to appear in 𝑡10.

𝐵(10, 0.061) of secure results showed a chance of 36.54% for one
result, 11.59% for two, and 2.28% for three results to appear in 𝑡10.
As expected (𝑏𝑠 < 𝑏𝑏𝑝 ) is lower than the distribution of secure best
practices.

The distribution of insecure results 𝐵(10, 0.008) was finally the
lowest. The probability of one result in 𝑡10 was reduced from 36.46%
(as observed in Study 1) to 5.57%. Moreover, we observed near-zero
probability of an insecure result in 𝑡3 which was 22.78% in Study 1.

IV— We measured the binomial distribution 𝐵(10, 0.084) for
boosted secure best-practice results {𝑐𝑠𝑒𝑏𝑏𝑝 (𝑞)}𝑞∈𝑄𝑖𝑣

over 𝑡10. As
shown in Figure 4, (IV, 𝑡10, green) the probability of at least one result
to appear in 𝑡10 was 38.96%, 18.70% for two results, and for three
results, 6.08%. Comparing this distribution with the distribution
of boosted secure results {𝑐𝑠𝑒𝑏𝑠 (𝑞)}𝑞∈𝑄𝑖𝑣

also shown in Figure 2
(see IV, 𝑡10, blue), we observed the required higher distribution of
secure best-practice results.

Further, the distribution for boosted secure results shown in
Figure 4, (IV, 𝑡10, blue) was higher than the distribution of non-
boosted secure results shown in Figure 2. The probability of at least
one secure result in 𝑡10 increased from 22.44% to 25.03%, for two
results from 2.86% to 3.52%, and from 0.19% to 0.3% for three results.

Lastly, we calculated the distribution 𝐵(10, 0.010) of boosted
insecure results {𝑐𝑠𝑒𝑏𝑖 (𝑞)}𝑞∈𝑄𝑖𝑣

, shown in Figure 4, (IV, 𝑡10, red),
and compared it with the distribution of non-boosted insecure
results from Figure 2. Probability decreased from 34.90% to a 9.32%
for at least one insecure result in 𝑡10, from 10.43% to 0.32% for two
results, and from 1.65% to 0% for three results. Furthermore, there



was an increase from a 54.74% to a 90.36% chance that none of the
results in 𝑡10 were insecure.

KEY— We see slightly different results for KEY due to the selec-
tion of 𝑏𝑠 . It trades off higher probability of secure best-practice
results to ensure that insecure results have lower probability than
secure results across the board. This decision had an effect on the
distributions for KEY.

𝐵(10, 0.047) of boosted secure best-practice results, as shown
in Figure 4, (KEY, 𝑡10, green), shows a probability of 33.14% for at
least one result, 8.99% for two results, and 1.4% for three results
in 𝑡10. 𝐵(10, 0.094) of boosted secure results, shown in Figure 4,
(KEY, 𝑡10, blue), revealed a higher probability of one secure result
to appear in 𝑡10 with 37.47%, 22.52% for two, and 7.95% for three
results. The distribution of boosted secure results slightly increased
in comparison to non-boosted secure results shown in Figure 2.

The distribution 𝐵(10, 0.007) shown in Figure 4, (KEY, 𝑡10, red)
for boosted insecure results {𝑐𝑠𝑒𝑏𝑖 (𝑞)}𝑞∈𝑄𝑘𝑒𝑦

, largely decreased in
comparison to non-boosted insecure results shown in Figure 2. For
at least one result in 𝑡10, probability decreased from 37.35% to 9.32%,
and from 15.22% to 0% for two results. Further, there is a chance
of 95.22% that none of the results are insecure, which was 43% for
non-boosted secure results.

CIPHER— The distribution 𝐵(10, 0.062) of boosted secure re-
sults {𝑐𝑠𝑒𝑏𝑠 (𝑞)}𝑞∈𝑄𝑐𝑖𝑝

over 𝑡10, shown in Figure 4, (CIPHER, 𝑡10,
blue), is slightly higher than the respective distribution for IV and
slightly lower than the one for KEY. The probability of at least one
secure result in 𝑡10 increased from 21.06% to 36.76%, from 2.71%
to 12.64% for two results, and from 0.24% to 2.19% for three, in
comparison with non-boosted secure results from Figure 2. There
is 0% chance that one of the results is insecure, which was 37.77%
before, while the chances for no insecure results increased from
44.41% to 100%.

Summary—Wehave shown that the new distributions of boosted
results show the required relative probabilities. Secure best-practice
results have the highest distribution, secure results the second high-
est, and insecure results very low probabilities to appear in the top
results. However, we observed one exception. Secure best-practice
results for KEY actually have a lower distribution than secure re-
sults. This is due to the boosting trade-off that ensures that insecure
results have the lowest probabilities across the board.

We have shown how clustering of secure best-practice results
and boosting helps to perform security-based re-ranking. In the
next step, we had to test whether the original ranking by 𝑐𝑠𝑒 and
the re-ranking by 𝑐𝑠𝑒𝑏 actually had an effect on code security. In
other words, would we observe different results with respect to
code security if developers solved a programming task with the
help of Google Search, while one group used 𝑐𝑠𝑒 and the other one
𝑐𝑠𝑒𝑏?

6 STUDY 2: IMPACT OF RANKING ON CODE
SECURITY

We performed an online study where participants were presented
the same tasks from Study 1, i.e., CIPHER, IV, and KEY. This time
they not only had to search for potential solutions online but also
had to write small Java programs in order to solve them.

6.1 Setup
We used the online study framework Developer Observatory [43]
to perform the study. It provides ready-to-use study templates, an
online code editor, tracking functions, and security features.

Participants were first presented with a landing page that pro-
vided an overview of the study, followed by a consent form and an
explanation about the online code editor and a Jupyter notebook
that was given to solve the tasks. The notebook gave an introduc-
tion and overview of the tasks, followed by text/code cell pairs
that described each task and provided code skeletons to solve them
(see Figure 5). Each of the tasks could be run and solved indepen-
dently from each other. To provide participants the opportunity
to verify that all three tasks were solved functionally correct, the
notebook provided a code cell to run and test the given solutions.
The notebook applied a Java 8 kernel to execute code cells.

Participants were instructed to solve each task using the provided
Google Search bar to look for help online. They were randomly
assigned to one of our conditions. If assigned to the treatment
group, the search bar was run by 𝑐𝑠𝑒𝑏 , which applied security-
based re-ranking, as explained in Section 5. Participants that were
assigned to the control group used 𝑐𝑠𝑒 , Google’s default search
engine. We provided the respective link to each search bar in the
introduction section of the notebook. The search bar was opened
in a new browser tab.

Figure 5: Example task from Study 2

6.2 Results

(a) Security (b) Functional Correctness

Figure 6: Interaction plots (number of searches above and
below median Quantile Q2)

Search Depth— In order to evaluate whether our treatment
helped in writing functional and secure code, we first investigated
to what extent the search engine was actually used to solve the
tasks. Participants may have not used the search engine at all, or
performed very few searches for only a subset of tasks. In contrast,
they may have used the search engine extensively.



Security Functionality
MS1 MS2 MS3 MS4 MF1 MF2 MF3 MF4

Condition: Treatment 0.083 0.256 0.004 0.062 -0.485* -0.902*** -0.564* -1.251***
(0.181) (0.210) (0.210) (0.244) (0.214) (0.238) (0.256) (0.283)

Condition × Searches† - - - 0.125* - - - 0.307***
(0.058) (0.080)

Condition × Votes† 0.004* 0.002
(0.001) (0.002)

Secure ∪ Best-Practice Results† - 0.106* - - - 0.296*** - -
(0.052) (0.076)

No Searches Performed -0.587 - - - -1.149** - - -
(0.373) (0.333)

Task: IV -1.254*** 1.241*** -1.283*** -1.272*** -0.784** -0.767** -1.008*** -0.753**
(0.223) (0.221) (0.0226) (0.224) (0.267) (0.225) (0.286) (0.261)

Task: Key -1.325*** -1.312*** -1.246*** -1.343*** -0.575* -0.560* -0.521 -0.550*
(0.223) (0.223) (0.226) (0.225) (0.271) (0.268) (0.303) (0.265)

Table 2: Logistic regression results for SECURITY and FUNCTIONALITY. Significant values are highlighted in bold, and
marked with: +p<0.1, *p<0.05, **p<0.01, and ***p<0.001. Standard errors are included in parentheses. Variables marked with †
are average counts per task.

More specifically, we expected an interaction effect between the
number of searches and condition (i. e., control vs. treatment) on
the security and functional correctness of submitted solutions. The
number of searches was the average number of performed search
queries per task. An interaction plot shows the relationship of the
two observed variables Searches and Condition. We show the two
relevant interaction plots in Figures 6a and 6b.

Figure 6a indicates the interaction effect between Condition and
Searches on the mean of secure solutions (Max: 3 secure solutions
per participant). It shows a red line which represents the median
Quantile 𝑄2 of Searches and a blue line which represents Searches
above 𝑄2. The left side of each line represents the results from the
control group and the right side the results of the treatment group.
Interaction plots indicate an interaction effect within a condition if
their points (diamond and triangle) are far away from each other
on the y-axis. This allows to easily spot differences between the
conditions in the interaction effect if lines are not parallel.

We can easily observe that a higher number of searches has a
different effect on security for each condition. In particular, the
amount of searches did not have a substantial effect on control (i.e.,
the mean of secure solutions remained around 1.6 (blue and red).
However, in the treatment group the mean of security increased
from 1.6 (red) to 1.9 (blue) for search counts that are above the me-
dian. In other words, the more searches performed by participants
in the treatment condition, the stronger the positive effect of the
treatment on the number of securely solved tasks. We show later
on that this interaction effect is statistically significant.

Figure 6b shows the interaction plot for functionality. We again
observe that the amount of searches did not have an effect on
control, since the mean of functional solutions remained around
2.5 (blue and red). In the treatment group we observed an increase
of the mean of functionality from 2.35 (red) to 2.58 (blue) for search
counts above the median. That means, the more the participants
in the treatment group used the modified search engine the more

functional solutions they submitted. We will show that this positive
interaction effect is also statistically significant.

Figure 6b also indicates that the treatment group performed
worse than control (2.51 vs. 2.34) for search counts below themedian
(red). We will show that this is likely caused by a difference in the
subject pool, which we will explain later on. However, participants
with high search activity in the treatment condition, outperform
the participants in control irrespective of their degree of search
activity.

The interaction plots indicate that the more that participants in
the treatment condition used the search engine, the more secure and
functional solutions they submitted. In the following, we provide
several logistic regression models that show statistical significance
of this key result.

Security— We provide four logistic regression models for secu-
rity. We used Akaike information criterion (AIC) model selection to
distinguish among a set of possible models describing the relation-
ship between the condition, interaction effect, amount of searches,
search results, tasks and background variables. We present the mod-
els MS1-MS4which had the best fit in Table 2. Based on Peduzzi et al.
(Rule of 10) and later results by Vittinghoff and McCulloch (suggest-
ing 5-9 samples per independent variable) for logistic regression,
our analysis should be adequately powered [33, 49].

MS1 shows that No Searches Performed had no significant effect
on security for all participants, independently from the condition.
This means participants that did not use the search engine at all
showed no significant difference in the security of submitted solu-
tions. MS2 shows that Secure ∪ Best-Practice Results, the average
count of results per task that where secure or secure best-practices,
had a significant positive effect on all participants (𝑝 < 0.05). The
more the participants received secure or secure best-practice results,
the more secure solutions they submitted. This already indicates
that searching and receiving good results leads to better security.
Therefore, we would expect participants from the treatment group



to perform better than the control group with increasing searches,
since they are the ones expected to receive more secure and secure
best-practice results. To measure this we include the interaction
variable Condition × Searches in model MS4. It confirms our expec-
tation: in the treatment group increasing searches had a significant
positive effect on security (𝑝 < 0.05).

Figure 7 further explains this result by showing the distribu-
tion of received results and visited results across both conditions.
The treatment group received more secure (45.8% vs 30.8%) and
drastically more secure best-practice results (36.9% vs. 0.4%) than
the control group; and also much fewer insecure results (17.3% vs.
68.8%). When studying click behavior, participants in the treatment
condition visited more secure (41.0% vs. 15.4%) and secure best-
practice results (25.6% vs. 1.3% ). The control group predominantly
visited insecure results with 84.3% of made clicks.

The two tasks IV and KEY had a significant negative effect on
security (𝑝 < 0.001). This goes in line with our initial assumption
that secure solutions are more difficult to achieve for these two
tasks.

We calculated further models which included background vari-
ables, i.e., whether participants had a security background, were
professional developers, and whether developing in Java was their
primary job. None of those variables had a significant effect on se-
curity. This means that the treatment helped in improving security
independent of whether or not participants had any distinguishing
characteristics.

Functional Correctness—We again conducted our analysis for
three models MF1-MF4 and made similar observations. We present
the three best fits according to (AIC) model selection in Table 2.

MF1 shows that not searching at all had a significant negative
effect on functionality (𝑝 < 0.01) for all participants independently
from the condition. Further, MF2 shows that the average count of
secure or secure best-practice results per task has a significant pos-
itive effect on functionality (𝑝 < 0.001). Further, once more, in the
interaction of participants with the search engine, we find a robust
significant positive interaction effect on functionality (𝑝 < 0.001)
in the treatment group, as shown by MF4. The more the treatment
group used the modified search engine, the more functional solu-
tions they submitted. We calculated further models that included
background variables. None of them had a significant effect on
functionality.

Given our observations in Figure 6b, it is unsurprising that we
find a residual negative baseline effect of being in the treatment
group (Condition: Treatment) on functionality (𝑝 < 0.001), once the
positive interaction effect is filtered out.

We performed further analysis to explain this observation and
found an imbalance between conditions in the amount of partici-
pants that submitted only one functional solution (treatment: 19 vs.
control: 9). We further observed that this imbalance is resembled in
the average amount of searches performed by those participants
(treatment: 6.32 vs. control: 10.44). While participants from the
control group that submitted only one functional solution had a
similar average amount of searches as performed by all remain-
ing participants that submitted more than one functional solution
(10.02), participants from the treatment group that submitted only
one functional solution were way below average.

Figure 7: Results received and clicked

This low-effort search behavior can be caused by participants
rushing through the study, solving the tasks on their own without
searching, or side-using other sources (such as books, formal doc-
umentation, their own code repositories or other search engines).
The treatment group had more participants who searched less often
than the control group. Similar to the participants, who did not
search at all, they did less well.

Note that the bottom line is that interaction with the treatment
significantly improves security and functionality in comparison
with the control group. This means with increasing search depth
in both condition groups, the treatment group significantly and
increasingly outperforms the control in submitting secure and func-
tional solutions.

7 STACK OVERFLOW SIGNALS
We analyzedwhether Stack Overflow’s voting signals were reflected
by the ranking of search results. Since we have shown that devel-
opers mostly click on one of the top three results it is important to
evaluate whether those links provide posts with relatively low or
high votes as it may influence the developer’s decisions.

In order to measure to what extent the ranking of search results
reflects Stack Overflow’s voting signals, we calculated the Norma-
tive Discounted Cumulative Gain (NDCG) of search results from
both condition groups in Study 2. NDCG is the standard metric
used to evaluate information retrieval systems and reports a value
between 0.0 and 1.0. It reveals how close a given ranking is to a
defined ideal ranking. In our case, the ideal ranking 𝑟𝑉 was created
by ordering all Stack Overflow results for each search query in
Study 2 based on the score of the top voted answer. A NDCG value
of 1.0 means that the ranking perfectly matches the voting signals
on Stack Overflow.

7.1 Reflection in Ranking
We obtained NDCG values based on the top ten results for each
search query submitted during Study 2. We calculated two average
NDCG values, one over all queries from the control group, and one
for the treatment group. However, comparison between conditions
has rather informative character since the set of queries of each
condition is different, even though participants in both treatments
solved the same tasks.

Ranking had an average NDCG of 0.89 in the control group and
0.85 in the treatment group. The obtained values reveal that the
higher the rank of a result shown to our participants, the higher
the vote of the top answer on the Stack Overflow post linked by
the result. There was a much lower chance that results that lead to
highly voted answers appeared on lower ranks.



Figure 8: Sum of votes for secure results per rank

This is an important observation. If developers would frequently
encounter lower-scored answers when clicking on top results, they
may start looking for better scored content on the Stack Overflow
site itself without using Google Search. This would subvert our
intervention of security-based re-ranking. However, this risk is
mitigated since top ranks lead to top voted content.

We further compared votes of top ranked secure and secure best-
practice results in the treatment group with the control group. We
observed that the sum of votes per rank was much higher in the
treatment group on all ranks (except rank 9) and especially in the
top three ranks as shown in Figure 8.6

We also included the voting score in regression models MS3
and MF3 (see Table 2). The interaction variable Condition × Votes
measures whether higher voting scores in search results under
treatment lead to better security or functionality outcomes. The
variable was only significant for security (𝑝 < 0.05) but with a small
effect size (0.004). As such, the effect of votes is clearly dominated
by the number of searches (Condition × Searches).

Taken together, these findings are promising because for secure
content our re-ranking intervention is compatible with Stack Over-
flow’s own content evaluation system to a large extent. Therefore,
developers can follow two signals they are used to pay attention to
—Google rank and Stack Overflow votes—while being much better
protected from inadvertently selecting insecure content.

7.2 Voting-Based Re-ranking
Similar to security-based re-ranking in Section 5, we calculated a
boosting weight based on Stack Overflow’s voting signals. This
weight only considers the security label (i. e., secure/insecure) and
the Stack Overflow score of the top voted answer. It does not know
whether the top answer provides a secure best practice example
(see Section 5.1). The advantage of voting-based re-ranking over
security-based re-ranking is that it does not require manual labeling
and clustering of secure best practices (see Section 5.3), as well as
task-dependent ranking boosts (see Section 5.5).

Boost values for secure results were mapped to a value in [0, 1]
by applying min-max normalization on the Stack Overflow score.
We did not consider the Stack Overflow scores for insecure results.
Those still obtained a fixed negative boost of −1. We created a new
search engine that applied those boosts and reapplied the search
queries obtained from Study 2.

6The sum of votes per rank averaged over the number of results showed very similar
results.

We compared the ranking of the results with Google’s original
ranking and security-based re-ranking using the same set of queries.
We calculated two different NDCGs: 𝑁𝐷𝐶𝐺𝑆 compares a given
ranking with the ideal security ranking 𝑟𝑆 , while𝑁𝐷𝐶𝐺𝑉 compares
with ideal ranking 𝑟𝑉 (as introduced in the beginning of Section 7).
The ideal security ranking 𝑟𝑆 ranks secure best-practice results
before secure results, and insecure results are shown last.

Security-based re-ranking achieved the highest 𝑁𝐷𝐶𝐺𝑆 with
0.89, while Google’s original ranking had by far the lowest value
with 0.45. Surprisingly, voting-based re-ranking was very close
to security-based re-ranking with 0.86. With respect to 𝑁𝐷𝐶𝐺𝑉 ,
voting-based re-ranking was very close to Google’s original ranking
with 0.88 vs 0.89. Security-based re-ranking followed with 0.85.

The results show that voting-based re-ranking offers a security-
scalability trade-off: it up-ranks secure results and down-ranks
insecure results almost as good as security-based re-ranking and
it up-ranks highly voted results very similar to original Google
Search. Using this trade-off allows for a more scalable approach.
It sidesteps manual labeling as well as clustering of secure best
practices. Further, boosting values do not have to be customized to
individual search tasks such as KEY or IV.

8 THREATS TO VALIDITY
Since we performed our studies online and not in a laboratory
environment, we were not able to directly control side-use of other
sources (i.e., books, formal documentation, own code repositories
or different search engines).7 On the one hand, running a study
with actual developers at their place of (remote) work favorably
adds to the realism and ecological validity of our work. However,
this comes with a certain loss of control. Instead of solely using our
search engine provided on the study webpage, participants may
have opened a new browser tab and another search engine.

Wewere able to show that increase of interaction with our search
engine (i. e.,𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 × 𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑠 ) had a positive significant effect
on security and functionality in the treatment group. In addition, re-
ceiving more secure and best practice results significantly improved
outcomes for both treatment groups. Individuals in the treatment
group disproportionally benefited from this direct effect on out-
comes (see Figure 7). The question is if side-use may have effected
any of these robust statistical results.

We consider two theoretical scenarios: one where side-use was
significantly performed by only one of the condition groups and
one where side-use was similarly distributed across conditions.

Regarding the first scenario, we observed a lower average search
count for participants that submitted only one functional solution
in the treatment group. This may have been caused by side-use.
However, we do not think that the treatment itself would have
caused potential side-use, since we did not observe smaller than
average search counts for treatment participants that submitted
more than one functional solution.

In the second scenario we assume side-use is equally likely per-
formed by both groups. Here we would only expect differences if
one group used a search engine different to Google Search signif-
icantly more often. For instance, the treatment group may have
side-used Bing while the control group side-used Yahoo. However,

7Due to national and local COVID-19 restrictions, all studies were performed online.



we find this unlikely since all participants stated in the exit survey
that they merely use Google Search to solve programming tasks.

If participants side-used Google Search, personalization may
have let to different search results for individual participants. How-
ever, this effect would have evened out over the complete set of
participants.

9 DISCUSSION AND FUTUREWORK
Our results show that Google Search ranking has a significant effect
on code security. Therefore, we argue that Web mechanics can be
leveraged in order to support developers to write secure code. It is
a new approach in the research field of usable security for software
developers and we will discuss the advantages and disadvantages
of this approach in the following.

Scalability—While security-based re-ranking showed very promis-
ing results in our study it is still an open question whether it can be
applied to a greater ecosystem consisting of different open source
websites and multiple programming languages. Especially since
our approach involves manual inspection and reliance on a pre-
annotated dataset.

However, large-scale scanning of open-source code websites is al-
ready taking place. The code analysis platform LGTM8 scans public
repositories on Bitbucket, GitHub, and GitLab. It supports popular
programming languages like C,C++, C#, Go, Java, JavaScript, and
Python. It relies on deep learning to detect a wide range of CWEs
for each of the supported programming languages. Additional in-
variant learning allows detection of zero-days.

Further, LGTM’s code analysis tools9 and results are publicly
available and could directly be used by Google Search as a signal
to update their ranking.

As we have shown in Section 7.1, Google Search’s ranking very
closely reflects the perceived relevance of results to coding problems.
As such, Google may initially keep the relative ordering of their
ranking and merely use the security label, e. g., a found CWE by
LGTMor CodeQL, to down-rank those specific results. This solution
may be “good enough” in the sense that it keeps developers away
from the most dangerous CWEs.10 As discussed in Section 7.2, this
would eliminate the necessity of manual code inspection as well as
customized ranking boosts for individual tasks (see Section 5).

Note that by re-ranking specific pages of a single prominent
website, we were already able to demonstrate significant positive
effects on code security. Therefore, we think that it is not necessary
to scan and vet each and every webpage, but rather advocate for
a smaller scale that considers hot-spots, i. e., frequently visited
webpages. Google already has the necessary data including page
rank and click logs to identify those webpages.

Transparency— Being a major player, Google already took ad-
vantage of their central position in order to successfully enforce
security standards (e.g., HTTPS, CT). These standards can be en-
forced transparently with near-zero errors. However, identifying
insecure code examples is not transparent to the user and may
be associated with a non-negligible amount of false positives. A
wrongly identified vulnerability may then unjustly down-rank a

8https://lgtm.com/
9https://github.com/github/codeql
10See for example: https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html.

specific webpage. Note that our approach does not penalize the
complete website domain but merely the single webpage that pro-
vides insecure code. It requires further work on how to design a
protocol between website owners and search providers to commu-
nicate found vulnerabilities, required actions with a given timeline,
and penalties. The problem is very similar to Google’s approach
on down-ranking webpages that provide misinformation. Those
webpages obtain the lowest rating by their Search Quality Rater.
However, it is unclear how accurate their ratings are.11

Human Factors— Our intervention remains completely invisi-
ble and does not require anything from the user. Developers do not
have to be aware of it in order to use it [51]. They do not need to
download, install, and learn how to use it [31]. They do not have
to pay attention to understand and follow security warnings, in-
dicators, or recommendations [29]. They do not need to evaluate
whether vulnerabilities reported by code analysis tools are false
positives. There are no disruptive effects on the main programming
task [11]. Developers do not have to cope with incomplete or un-
helpful documentation or gain advanced skills that are sometimes
required to use security tools [51]. Therefore, typical factors that
need to be addressed in the field of usable security tooling, such
as unawareness, usability, habituation, and inertia may not have
any negative effects on security in our approach. Developers can
simply perform their default code search behavior.

Incentives— In previous work we have shown that roughly 15%
of apps from Google Play contain vulnerable code due to reuse
from information sources found on the Web [17]. Fahl et al. have
shown that many pose serious privacy risks [15]. In light of Google’s
privacy-first initiative, a further stride into that direction by helping
developers protect people’s privacy constitutes a strong incentive.
Moreover, security-based re-ranking provides a very powerful tool
to incentivize website owners to fix provided vulnerable code. If the
code was not fixed after a given time frame, the webpage is down-
ranked. This could have a ripple effect, improving the security of
open source code Internet-wide.

10 CONCLUSION
Web search is the default method for developers that are looking
for help online to solve programming tasks. Our study shows that
ranking of search results has a direct effect on the security of their
final solutions. Up-ranking secure results while down-ranking in-
secure ones leads to significantly more secure programs. Likewise,
up-ranking insecure results and down-ranking secure ones leads to
more insecure programs. Unfortunately, Google Search currently
inadvertently follows the latter practice. We have shown that prob-
ability for an insecure result to appear in the top three is 22.78%,
while only 9.19% for secure ones. We provide a semi-supervised
clustering approach that identifies webpages that provide secure
best practices. Further, we have provided a parameter search that
identifies effective ranking boosts for secure and insecure results.
We integrated both mechanisms in Google Search and performed
an online developer study. In this study, we demonstrate that the
mechanisms we have generated significantly help developers to
write secure code.

11https://static.googleusercontent.com/media/guidelines.raterhub.com/en/
/searchqualityevaluatorguidelines.pdf
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Appendix: Security-Based Re-ranking

Figure 9: Secure best-practice example for KEY

Noise Effort Max eps minPts Best-Practice
IV 0.114 0.07 0.155 0.04 2 12
KEY 0.092 0.045 0.172 0.03 2 10

Table 3: DBSCAN parameters for IV and KEY

Appendix: Study 2: Impact of Ranking on Code Security

Nr. of Participants Avg. Searches Nr. of Tasks Completed
0 1 2 3

Treatment 118 8.47 13 8 5 92
Control 100 9.19 13 2 6 79

Table 4: Average searches and tasks completed
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