
ρFEM: Efficient Backward-edge Protection Using Reversed
Forward-edge Mappings

Paul Muntean
Technical University of Munich
paul.muntean@sec.in.tum.de

Matthias Neumayer
Technical University of Munich

matthias.neumayer@tum.de

Zhiqiang Lin
The Ohio State University
zlin@cse.ohio-state.edu

Gang Tan
The Pennsylvania State University

gtan@psu.edu

Jens Grossklags
Technical University of Munich

jens.grossklags@in.tum.de

Claudia Eckert
Technical University of Munich
claudia.eckert@sec.in.tum.de

ABSTRACT
In this paper, we propose reversed forward-edge mapper (ρFEM), a
Clang/LLVM compiler-based tool, to protect the backward edges of a
program’s control flow graph (CFG) against runtime control-flow hi-
jacking (e.g., code reuse attacks). It protects backward-edge transfers
in C/C++ originating from virtual and non-virtual functions by first
statically constructing a precise virtual table hierarchy, with which to
form a precise forward-edge mapping between callees and non-virtual
calltargets based on precise function signatures, and then checks each
instrumented callee return against the previously computed set at run-
time. We have evaluated ρFEM using the Chrome browser, NodeJS,
Nginx, Memcached, and the SPEC CPU2017 benchmark. Our results
show that ρFEM enforces less than 2.77 return targets per callee in
geomean, even for applications heavily relying on backward edges.
ρFEM’s runtime overhead is less than 1% in geomean for the SPEC
CPU2017 benchmark and 3.44% in geomean for the Chrome browser.

CCS CONCEPTS
• Security and privacy → Systems security; • Software and ap-
plication security;

KEYWORDS
Clang/LLVM, control flow integrity, hijacking attack, cyber defense.
ACM Reference Format:
Paul Muntean, Matthias Neumayer, Zhiqiang Lin, Gang Tan, Jens Grossklags,
and Claudia Eckert. 2020. ρFEM: Efficient Backward-edge Protection Using
Reversed Forward-edge Mappings. In Annual Computer Security Applications
Conference (ACSAC 2020), December 7–11, 2020, Austin, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3427228.3427246

1 INTRODUCTION
Control-flow hijacking attacks, such as return oriented programming
(ROP) [1], have threatened software systems for a long time. These at-
tacks proliferate mainly due to the fact that statically building a precise
program control flow graph (CFG) is practically not feasible. Building
the CFG requires precise program alias analysis of, e.g., source code,
binary, intermediate representation (IR), which is not tractable due to
its undecidability [2]. Consequently, the obtained CFG is an over- or

ACSAC 2020, December 7–11, 2020, Austin, USA
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Annual Computer
Security Applications Conference (ACSAC 2020), December 7–11, 2020, Austin, USA,
https://doi.org/10.1145/3427228.3427246.

under-approximation of the real program’s CFG. In addition to con-
trol flow forward-edge (i.e., jump, call) violations, backward-edge
(i.e., ret) violations play a crucial role in facilitating attacks.

In general, there are two main approaches to protect the integrity
of backward edges during runtime: (1) check-based approaches
including µRAI [3], PittyPat [4], CFL [5], PT-CFI [6], τCFI [7],
which check if the function ret instruction targets the legitimate
return address; and (2) stack-discipline-based approaches including
SafeStack [8], RAD [9], Microsoft’s RFG [10], Zieris et al. [11],
Shadesmar [12], BinCFI [13], GCC’s ShadowStack [14], and double
stacks [15]. However, most shadow stack techniques rely on informa-
tion hiding for security. Unfortunately, information hiding (disclosure)
based defenses are generally vulnerable [3] to information disclosure
[16, 17], profiling attacks [18] and to at least four other attacks [19],
which can be used independently to bypass shadow stacks.

In this paper, we seek to design an alternative to shadow stack tech-
niques. We present ρFEM, a compile-time software instrumentation
tool used to enforce a fine-grained CFI-based policy for protecting
backward edges against control-flow hijacking attacks. The key idea
is to use a precise compiler-generated program virtual table hierarchy
to protect virtual callee targets, and a precise reverse forward-edge
function signature mapping to protect non-virtual callee targets.
While previous work has adopted such an approach to protect back-
ward edges either through function signatures [20, 21] or through
class hierarchy analysis [22–24], we are not aware of any other purely
source code based solution that combines the two approaches for a
comprehensive protection. In terms of instrumentation, in contrast
to [25], which uses instruction prefetch, we use: (1) NOPs allowing
us to encode IDs into them; (2) multiple checks for covering cases
where the same function can be invoked directly and indirectly; and
(3) ID intervals which make the checks more efficient.

A key advantage of ρFEM over previous tools (e.g., information
hiding) is that its instrumentation is write-protected at all times, does
not rely on information hiding, which is fundamentally broken from a
security perspective [12], does not use special purpose registers/seg-
ments, which may not be present on all types of systems, and its meta-
data primitives can be easily re-purposed to protect forward edges.

We have implemented ρFEM atop the Clang/LLVM [26] compiler
framework and evaluated it with a set of real-world programs in-
cluding all pure C/C++ programs contained in the SPEC CPU2017
benchmark. ρFEM has a low runtime overhead with them, while
maintaining high calltarget return address precision. Further, as e.g.,
AIR [13], fAIR [21], and AIA [27] are not ideal (according to Carlini

https://doi.org/10.1145/3427228.3427246
https://doi.org/10.1145/3427228.3427246

et al. [28]) as these capture only average target-reduction results, we
use the RTR [29] metric to provide more detailed results and insights.

In summary, we make the following contributions:
• We design a novel fine-grained backward-edge protection

technique that relies on reversed forward-edge mappings.
• We implement our technique based upon the Clang/LLVM

compiler framework inside a prototype called ρFEM1.
• We evaluate ρFEM thoroughly and report a runtime overhead

of 3.44% in geomean for the Chrome browser, less than 1% in
geomean for the SPEC CPU2017 benchmark, and 2.77 return
targets per callee in geomean for the tested programs.

2 BACKGROUND
2.1 Virtual Table Hierarchy

(C,0)

– C, P, GP –

C::f()

P::g()

(P,0)

– P, GP –

GP::f()

P::g()

(GP,0)

– GP –

GP::f()

GP::g()

Figure 1: Virtual tables (vtable) of a single C++ class hierarchy.

Figure 1 depicts a single derived vtable typeC with a parent vtable
P and grandparent vtable GP (i.e., the root class of both functions f()
and g()). An arrow depicts a parent-child class inheritance relation.
The arrow tip indicates the parent vtable whereas the other arrow end
indicates the child vtable. With regard to a specific virtual callsite
(which is used to call a virtual function contained in this vtable
hierarchy), we introduce the following definitions.
Precise class. The precise class of a callsite is the least-derived type of
which the object used at the callsite can be. Usually, the precise class is
the static type of the variable used for the virtual call. In our example,
we assume that we have a virtual callsite which uses a variable of
static type C. This static type is the precise class of the callsite.
Base class. We define the base class as the class which provides the
function implementation which is called when an object of precise
type is used, i.e., the object has a dynamic type of precise class.
Therefore, the vtable entry used for the object dispatch is located in
the vtable of precise class and, per definition, points to a function
of base class. It follows that if the precise class itself implements
(or overrides) the function used at the callsite, then the precise class
and the base class of the callsite are the same. Figure 1 depicts in
blue shaded color the vtable entries used, in case the object at the
callsite is of precise type (C). If the callsite dispatches function f(),
then the base class for this callsite is C, since C overrides function
f(). If instead the callsite dispatches function g(), then the base class
for this callsite is P, because class C does not override function g()
and instead uses the implementation provided by class P.
Root class. The root class is defined as the class first introducing
the function (i.e., the least-derived class declaring the function).
Note that this class might declare this function as abstract and not
provide any implementation for it.

2.2 Backward Control Flow Edges
The control flow of a program can be captured using a control flow
graph (CFG), in which the forward edges represent the function call or
1ρFEM Source code: https://github.com/TeamVault/rhoFEM

(un)conditional jumps, and backward edges represent the return. The
return transfers in assembly code are usually represented by return
instructions and are used to return the control flow of the program to
the address after the callsite which originally called the function. De-
pending on the instruction set architecture (e.g., x86, x86-64, ARM,
SPARC), the format of the return instruction can vary (e.g., ret in
x86/x86-64). Note that for the herein mentioned return-edge details,
the format of the corresponding instruction is irrelevant. However, the
pre-conditions and post-conditions needed for normal program execu-
tion are of importance. These are determined by the used calling con-
vention and can slightly vary depending on the used architecture bi-
nary interfaces (ABIs) (e.g., Itanium [30], Microsoft [31], ARM [32]).

2.3 Shadow Stack Techniques
General Description. Shadow stack techniques are used similarly
to stack canaries, in order to protect against backward-edge program
control-flow hijacking attacks. These techniques consist of comple-
menting the program with additional code, which is able to check if
the caller/callee function calling convention is respected during run-
time. The technique relies on building a second stack for each function
stack located in the program. Runtime checks ensure that each func-
tion return address, which was put in the shadow stack before entering
the context of the called function, is popped from the stack before
leaving the called function or before the stack frame was cleaned up
by the program. Essentially, a shadow stack technique keeps track of
all addresses that are pushed and popped on the stack and checks that
the push-pop address pairs match. This way, the caller/callee function
calling convention is enforced. In this fashion, the program stack is
checked to be not corrupted (polluted) by the attacker with fake ad-
dresses, that are usually used to chain code reuse gadgets, as for exam-
ple in return oriented programming (ROP) attacks. While these tech-
niques are effective in theory, they have received only partial accep-
tance. For example, SafeStack [8] is in production, but was recently
bypassed; see Goktas et al. [19] for more details. Lastly, their effective-
ness is influenced by the information hiding technique on which most
rely. As previously mentioned, most shadow stack techniques rely on
information hiding for security. An exception is “Read-only RAD”
[9], which uses mprotect to keep the shadow stack pages read-only
except when needed for updates. Likewise, hardware-based shadow
stacks (e.g., Intel CET [33]) also do not rely on information hiding.
Next, we list some significant properties of shadow stack techniques.
Hiding the Shadow Stack. The software based shadow stack is
typically hidden from the usual program execution through one level
(ideally more) of program indirection (i.e., trampolines, segment
register, etc.). The goal of these levels of indirection are to guarantee
that the attacker is not able to find the shadow stack which remains at
all time writable. This ensures that the attacker cannot locate and write
into the stack (it resides in writable memory) its own return addresses.
Further, it is not yet demonstrated, that one level of indirection is
sufficient to ensure that the shadow stack cannot be found (through
information leaks) by a motivated and resourceful attacker. Shadow-
stack implementations put the shadow stack in writable memory;
accordingly, if found, it could be overwritten by attacker-controlled
addresses in order to mount an attack. As a consequence, approaches
which split the shadow stack in two parts have been presented. These
approaches [11] essentially separate the sensitive data in yet another

2

https://github.com/TeamVault/rhoFEM

memory area. As such, if the main shadow stack is compromised the
sensitive data remains hidden from the attacker.
Program Binary Size. Shadow stack-based techniques provide a
separate shadow stack frame for each function, that is either instru-
mented inside the protected program or inside a library loaded along
with the protected program. Research on shadow stack techniques
(see Dang et al. [15]) reports a negligible increase in the size of the
program binary (on disk or in memory). Even for parallel shadow
stacks, the memory usage is modest; and for traditional shadow
stacks, it is indeed negligible, since the return addresses are stored
compactly. However, these techniques might not be suitable for all
types of restrictive program memory applications, such as certain
embedded devices where the program heap is small in size. Lastly,
note that shadow-stack techniques, which are, for example, based on
hardware features such as Intel’s CET [33] (Intel Tiger Lake based
CPUs, which contain CET, are currently on the market) and compiler
support, have negligible program binary size blow-up. The binary
blow-up of hardware based (e.g., CET) and software based shadow
stacks will be similar; CET will still need pages of memory to store
the shadow stack. The advantage of CET is that the shadow stack
will be fast, and content write-protected.
Special Callee Types. The C and C++ programming languages, for
which most of the shadow stack techniques were designed, provide
some function calls, that do not return or respect the caller-callee func-
tion calling convention, such as: longjump, tail calls, etc. For
these types of calls, the shadow-stack techniques reach their technical
limitations, since these types of function calls do not return to the ad-
dress next to the callsite. Lastly, currently available compilers enforc-
ing shadow stack policies do not handle these types of calls: (1) due
to complexity reasons, and (2) because these calls do not violate the
caller/callee function calling convention, as these do not return at all.
Runtime Overhead. As each function return address has to be
pushed, compared with the stack top value, and popped from the
shadow stack, the runtime overhead varies drastically from one
shadow stack technique implementation to another depending on
how efficient this process is implemented. Depending on the count
of operations (instructions), which need to be performed (1-3), some
research-based shadow techniques have high performance overheads
(around 10%; see Dang et al. [15] for more details), making them
infeasible for deployment in production software. For these reasons,
researchers have looked for approaches to do these operations with
a minimal number of steps (see GCC’s and Clang’s shadow stack
implementations for more details), such that the overhead is as low
as possible and no memory leaks are generated.
Support for External Calls. Most C/C++ based programs rely on
third-party libraries; as such, calls to functions residing in these
external libraries can be made. For this reason, this type of external
call needs to be protected as well. However, note that most of the
research-based binary approaches and compiler-based shadow stack
approaches do not protect these shared libraries for the following
reasons. First, binary-based tools usually cannot deal with functions
having their address not taken. Second, binary-based tools often fail
to analyze large binaries due to their complexity. Third, the compiler-
based tools opt to not recompile shared libraries due to increased

analysis complexity, thus backward edges (also forward edges) re-
main unprotected. For example, BinCFI [13] (binary tool) could have
easily added a shadow stack to protect libraries, but omitted it, due to
the resulting overhead. In other words, the backward edges contained
in shared libraries are not protected and accordingly the attack surface
remains high, and the protection added to the program does not help
considerably when all the needed gadgets reside in a shared library.
Emulated Shadow Stacks. Techniques approximating a perfect
shadow stack do not contain all caller/callee address pairs. Further,
these approaches (e.g., [34]) are mostly based on CPU features such as
from/to address pairs and achieve only a coarse-grained precision w.r.t.
the return addresses, that need to be checked. This is because these
techniques are optimized for performance, and some of the return
edges remain unprotected, due to their imprecision. Furthermore, the
checks of harvested addresses are slow due to: (1) the high volume
of data flowing through the CPU, (2) the need to collect and analyze
this data, and (3) the relatively low speed of the continuous reads. As
such, these techniques are mostly inefficient against attacks which use
backward edges (see Schuster et al. [35]). Therefore, other techniques,
which are more fine-grained or have a comparable precision as a
perfect shadow-stack implementation should be used instead.

3 THREAT MODEL AND ASSUMPTIONS
Adversarial Capabilities.

• System Configuration. In our threat model (e.g., STRIDE [36]),
we assume that the adversary is aware of the applied defenses and
has access to the source and non-randomized binary of the target
application.

• Vulnerability. We assume that the target program suffers from a
memory corruption vulnerability (e.g., C++ object type confusion
[37]) that allows the adversary to corrupt memory objects in order
to read from and write to any arbitrary memory address.

• Scripting Environment. Further, the attacker can exploit a scripting
environment to process memory disclosure information at runtime,
adjust the attack payload, and subsequently launch a code reuse
attack.

Defensive Requirements.

• Writable (xor) Executable Memory. The target system ensures that
memory can be either writable or executable, but not both at the
same time, e.g., DEP [38]. This prevents an attacker from injecting
new code or modifying existing executable code.

• JIT Protection. Next, we assume that mitigations are in place to
prevent code injection into the just-in-time (JIT) code cache and
prevent reuse of JIT-compiled code [23]. These protections are
orthogonal to ρFEM.

• Brute-forcing Mitigation. Lastly, we require that the protected
software does not automatically restart after hitting a booby trap
that terminates execution. For example, in the Web browser context,
this may be accomplished by displaying a warning message to the
user and closing the offending process.

3

Figure 2: Identifier (ID) based backward-edge mapping of virtual functions called through object dispatches, (a) & (b), and ID based
backward-edge mapping of non-virtual functions called indirectly through function pointers, (c) & (d). Essentially, for each virtual
callee (virtual function) the program class sub-hierarchy relationship is enforced between callee and corresponding callsite. This is
achieved by assigning the same ID at the callee check (before returning) and at the matching callsites. Lastly, for each non-virtual
callee (non-virtual function), a function signature is computed which allows only matching callers to call matching callees. This is done
by inserting the same ID inside the callee check (before returning) and at the matching callsites.

4 OVERVIEW
4.1 Objectives and Scope
Objectives. During control flow hijacking attacks, attackers often
corrupt the backward edges, e.g., by overwriting return addresses.
The goal of ρFEM is to protect the backward edges of control flow
transfers. While state-of-the-art approaches are using shadow stacks,
they suffer from information leakage attacks. Therefore, we seek to
design an alternative to shadow stack techniques in order to protect
backward edges. Inspired by the initial CFI design in which IDs are
used to check the integrity of both forward and backward edges, we
extend its ID checks with more precise information, especially by
considering the sophisticated caller-callee relation among virtual
calls and indirect calls.
Scope. In general, it is a hard problem to determine the point-to
relation among pointers especially at the binary code level. We
assume we have the source code of the to-be-protected program, and
thus we want to perform source code analysis in order to instrument
and demonstrate the feasibility of our approach. Currently, ρFEM
does not aim to protect tail calls, position independent code, and long
jumps. Further, we assume that these program primitives do not allow
the attacker to access usable gadgets which may help to craft an attack.

4.2 Approach

…
call foo()
NOP [ID]

…

foo() {
…
load ID from retAddr
compare with foo‘s ID
return
}

Caller Callee

Figure 3: Loading callsite’s ID.

Figure 3 shows the instrumentation inserted by ρFEM at both caller
and callee sites. In particular, the NOP instruction is inserted right
after the caller (left box), while the runtime check is inserted before
the callee returns (right box). The black shaded arrows represent the

forward-edge and backward-edge transfers, while the gray shaded
arrow represents the load of the NOP payload before the callee return.

The presented technique consists of assigning a unique ID (iden-
tifier) to every function. Then, every callsite is annotated with the
IDs of the functions it legitimately can call. Before returning, the
callee retrieves the ID from the callsite and compares it with its own
ID (or ID range). This helps to ensure that the callee is only allowed
to return to the addresses located after a callsite, which can call
this callee. In order to store and later retrieve an ID from a callsite,
ρFEM inserts these in x86 NOP instructions located right after the call
instruction. Further, ρFEM uses the argument of this NOP instruction
to store the ID. The checks contained inside the callee as well as
the callsite NOPs are inserted at compile-time and reside in the code
section of the program due to their placement inside the functions.
Therefore, these cannot be overridden or disabled at runtime as this
code is loaded into non-writeable memory.

After a virtual callsite, two NOP instructions are used, as due to in-
heritance a range of possible callees is allowed (see Virtual Function
Analysis for more details). For function pointer based callsites, a func-
tion signature approach is used (see Indirect Call Analysis for more
details). Since the caller-callee convention is enforced by the compiler,
the return address of the callee should point to the next instruction
after the callsite. At this instruction new NOPs will be inserted.

The actual check is done inside the callee’s function body, right
before the RET instruction is executed. This check will load and extract
the ID from the NOP using the return address found on the stack. In
case the extracted data matches the ID of the callee, the check passes
and the RET instruction is executed and the execution continues. In
this case, the same return address located on the stack is used to
jump to and the program execution continues from that particular
address. Otherwise, if the extracted IDs do not match, we assume
that the return address stored on the stack was tampered with and we,
therefore, assume that a backward-edge violation happened. Thus,
program execution is stopped in order to prevent a potential attack.

4

4.3 Mapping Backward Edges to Callsites
ρFEM fills the NOPs located at the caller and callee with IDs which
help to construct a mapping between legal callees and callers. This
mapping is used to enforce CFI policies between legitimate callees
and callers. To achieve this, ρFEM builds two separate caller-callee
mappings: (1) for non-virtual functions (callees), and (2) for virtual
functions (callees). Next, we present how these two mappings (sets)
for each caller are constructed.

Figure 2 depicts how backward-edge return address sets are built
based on the program class hierarchy in sub-figures (a) and (b)
for virtual callsites, and based on a precise forward-edge function
signature type mapping in sub-figures (c) and (d) for pointer-based
function callsites.
Function Signature Based (for non-virtual callees). Mapping
backward edges using function signatures (see Figure 2(c) forward-
edge mapping and Figure 2(d) backward-edge mapping for more
details) is based on a precise forward-edge analysis which determines
a set of legitimate calltargets for each function pointer based callsite.
The forward mapping is built by matching callsites and calltargets as
follows. For each callsite, the number of provided parameters, their
type, and the return type is used to build a per function signature.
This callsite information is matched with all calltargets in the pro-
gram during compile time by comparing the number of parameters
consumed, their type, and the return type with the data collected
at the callsites (not object dispatches). For each matching function
signature (calltargets) and callsite signature pair, a set is built. Lastly,
for each calltarget contained in the previously determined calltarget
set, another per-calltarget return set is built by following the caller-
callee function calling convention. This essentially means that for
each calltarget-callsite mapping, the legitimate calltarget set contains
the return address located after the legitimate callsite.
Class Hierarchy Based (for virtual callees). Forward-edge informa-
tion, provided by the class hierarchy, is used to map backward edges
(see Figure 2(a) forward-edge mapping and Figure 2(b) backward-
edge mapping). Essentially, all legitimate forward edges are reflected
back based on the legitimate class sub-hierarchy these are allowed
to call in the first place. As such, for each callee, a set containing
all calltarget return sites is built. Depending on the base class of the
dispatched object at the callsite and the location in the class hierarchy,
the number of calltarget return sites differs. Lastly, our technique is
aware of inherited members and as such these are included in the
relevant backward-edge target set.

5 DESIGN AND IMPLEMENTATION
In this section, we present first the main components of ρFEM and
then we describe how ρFEM handles various function call types
including direct calls in §5.1, virtual calls in §5.2, indirect function
pointer based calls in §5.3, and how checks are performed at the
callees in §5.4. Lastly, implementation details are presented in §5.5.

Figure 4 depicts the components of ρFEM by starting (from left to
right) with the callsite checks and performing a walk-through of the
involved Clang/LLVM parts. At a high level, ρFEM assigns unique
IDs to each function (callee). At each callsite, the ID (or the range
of IDs) of the function(s), which can be called by this callsite, is
inserted. Before a callee returns, we retrieve the ID data from the

Clang LLVM-LTO LLVM Back-
End

❶ Collect Poly-
morphic Classes

❷ Build Virtual
Class Hierarchy

❸ Build Vir-
tual Function
ID-ranges

❺ Insert Checks
Into Callee

❹ Build Static
Function IDs

❼ Annotate Static
and Indirect Calls

❼ Annotate
Virtual Calls

❿ Insert NOPs
at Callsite

❾ Match Call-
site Annota-
tion with IDs

❽ Find Callsite
Annotation

❻ Insert Virtual
Call Instrinsics

C
/C

++
Source

C
ode

ofa
Program

LLVM IR LLVM MI

H
ardened

Program
Binary

V
irtualClassM

etadata

IVT

ρFEM
(front-end)

ρFEM
(back-end)

Figure 4: Overview of ρFEM’s system design.

callsite, using the return address stored on the stack, and verify the
backward edge by comparing the retrieved data with the fixed ID (or
ID range) of the callee.

The IDs and callee side checks are generated as follows. The virtual
class metadata is collected in Clang ❶ and is used to reconstruct the
virtual table hierarchy during the link time optimization (LTO) phase
❷. Afterwards, metadata about the function entries in the virtual
tables is used together with the virtual table hierarchy to generate IDs
for virtual functions and corresponding ranges for virtual function
callsites ❸. Once all virtual functions have been assigned an ID,
ρFEM continues to assign IDs to the remaining non-virtual functions
❹. Next, IR code instrumentation based checks are inserted before
the return instructions in each function (callee) using the virtual and
non-virtual function IDs determined beforehand ❺.

Further, for callsites’ ID assignment, ρFEM performs the following
steps. In the Clang front-end, each virtual function call is annotated
using an LLVM intrinsic ❻. An intrinsic is a particular type of Clang
program annotation, which allows marking of certain program parts.
This enables inspection at a later phase along the compilation pipeline.
During LTO, these intrinsics are detected and the corresponding call
instructions are further annotated for later back-end analysis ❼. All
remaining calls, i.e., the ones that were not annotated in the front-end,
are marked as either direct calls or function pointer-based indirect
calls ❼. In the LLVM back-end, all annotated calls are relocated ❽

and then matched with the correct ID or an ID-range depending on
the annotation type ❾. That is, virtual callsites are assigned ranges of
IDs, direct callsites are assigned the unique ID of the function called
directly, and callsites which use function pointers are assigned their
respective function signature ID. Next, NOP instructions are inserted
directly after the callsite, carrying the ID data as a payload ❿. Insert-
ing the NOPs this late in the compiler analysis pipeline (i.e., machine
instruction (MI) generation stage) ensures that no instructions are
placed between the callsites and our NOPs by a different LLVM pass.

5.1 Handling Direct Calls
Note that CFG forward edges stemming from direct calls do not need
to be protected, as the address to which the program control flow
is transferred is fixed. Within the context of this paper, a direct call
is a forward-edge based program transfer where the target address

5

is determined by the compiler and available during compile time.
Further, we assume that this address is write-protected and cannot
be overwritten during runtime.

In contrast, the situation is different for callees which are called
through forward direct calls. Since the attacker may manipulate the
callee return address on the stack, these backward edges need to be
protected. ρFEM handles backward edges returning from direct calls
by checking their IDs. Note that each direct function gets its own ID.
Direct callsites only have a single target, for which a single valid ID
can be determined.

5.2 Handling Virtual Calls
In this subsection, we explain how ρFEM handles virtual function
calls. At a high level, ρFEM uses a modified version of the inter-
leaved virtual tables (IVT) metadata as presented by Bounov et
al. [39]. More specifically, it constructs backward-edge mappings
of legitimate return address sets for virtual functions (callees) by
first building the virtual table hierarchy and enforcing the respective
legitimate virtual table sub-hierarchy for each callee. The matching
callees are identified after examining the offset addresses collected
within the virtual tables. This is achieved while the matching callers
are identified by searching through all virtual callsites. This metadata
consists of virtual table hierarchies for all class hierarchies of a
program compiled with the Clang/LLVM compiler. Additionally, we
modify this metadata layout to have it contain: (1) virtual table entry
information, and (2) virtual table offsets which are used during our
analysis. ρFEM uses this modified metadata to determine legitimate
callsites and to infer forward-edge information.
The Invariant. In order to construct the forward-edge target set for
a virtual callsite, we need to be able to represent the IDs of the
functions contained in this set as a compact range as this allows
a more efficient type of check. Note, that we do not need a total
ordering of all function IDs. Instead, we have to be able to build
compact (no gaps) ranges. Meanwhile, we note that the type of an
object at a particular callsite can either be of precise class type or
of any subclass type thereof. Furthermore, if the object has dynamic
type of precise class, then, per definition, the callsite uses the im-
plementation provided by the base class. Therefore, any subclass
of a precise class can at most call the implementation found in the
base class or an override of this implementation. Thus, the sub-graph
of the virtual table hierarchy rooted at the base class contains all
possible function implementations (i.e., all callees for this callsite).
Hence, this sub-graph provides the set of all functions which can be
called at this particular callsite, i.e., the target set of the callsite.

Next, ρFEM uses this sub-graph to assign IDs in order to ensure
the previously described invariant. There are four steps, which are
explained in their order of execution in the following. Note that the
algorithm’s Step I up to Step III run at LTO, i.e., at compile-time
after static linking, while Step IV of the analysis runs in the LLVM
back-end, i.e., after LLVM-IR was lowered to machine instructions,
and right before the program binary is emitted.
Step I – Constructing Function Hierarchies. Using the modified
virtual table hierarchy, a regular class hierarchy is reconstructed,
i.e., if a class has multiple virtual tables, these are merged into a
single node in the class hierarchy. Figure 5(a) shows such a class
hierarchy reconstruction process. Note that each box depicted in

Figure 5 represents a virtual table and the first line in each virtual
table states the class name from which the virtual table was inherited.

The reconstructed class hierarchy depicted in Figure 5(a) allows
ρFEM to collect information about each virtual function implemen-
tation. This information is represented as follows. First, the class
in which the implementation was defined, and second, whether this
class is the root class of the given function. In case it is not the root
class, then the implementation has been overridden by a sub-class
implementation, i.e.,ρFEM is able to analyze all function overrides
by using the virtual table metadata.

This information is extracted from the class hierarchy as follows.
ρFEM starts by topologically sorting the class hierarchy, which en-
sures that each parent is visited before any of its children. Then, the
topologically-sorted list of classes is traversed and each function
entry in the virtual tables of the class is inspected. In case a class
contains a function implementation that was not previously encoun-
tered, the function is regarded as it would be implemented by this
class. This happens, due to the fact that parents are visited before
their children during pre-order traversal.

Lastly, to differentiate between root classes and overridden classes
(inheriting classes), ρFEM inspects the primary virtual table of the di-
rect parent. In case such a parent class exists and the parents’ primary
virtual table contains an entry at the same offset as the function in
the child, then this child overrides the entry in the parent with a new
function implementation. Otherwise, the child defines a new function
and becomes the root class for this function. Figure 5(b) shows the
root class and the override information inferred within this step.
Step II – Function-wise Traversal and Analysis. The root class
information from Step I allows ρFEM to inspect the sub-graph of
the virtual table hierarchy rooted at the root class. As such, if ρFEM
would disregard virtual inheritance, then this sub-graph would be
a tree. By using this information, ρFEM iterates over non-overriding
functions and then in an inner loop it iterates through the sub-graph
(contains individual virtual tables and not classes) rooted at the root
class of the particular function.

Next, ρFEM assigns unique IDs to each virtual table and function
pair, while ensuring the following invariant. For a particular func-
tion, each parent virtual table has to have a larger ID value than all
its children IDs which have a smaller value. This is similar to the
well-established heap invariant and is achieved using a pre-order
traversal of the corresponding sub-graph. To achieve this, ρFEM
starts with the first function, iterates through the sub-graph rooted
at the root class of this function, and assigns IDs to each explored
virtual table. This process is repeated by ρFEM for the sub-graph of
each non-overriding function.

At the same time, the virtual call ID ranges are constructed as
follows. For each virtual table, a range of IDs is assigned containing
its own ID and the IDs of all of its children. Due to the pre-order
traversal, this results in a single closed (compact) range with its own
ID having minimum value. Note that these ranges are assigned for
each individual function or virtual table pair. In case the sub-graph
is a tree, then no virtual inheritance is involved. Consequently, each
virtual table gets at most one ID and one range per function contained
in the virtual table. Otherwise, the virtual table will get multiple IDs
and ranges, since w.r.t. virtual inheritance a virtual table can have
multiple parents and therefore can be explored from multiple paths in

6

(E,0)

– A, C, E –

A::f()

E::g()

(E,1)

– B –

E::g()

(E,2)

– B, D –

E::g()

(C,0)

– A, C –

A::f()

(C,1)

– B –

B::g()

(A,0)

– A –

A::f()

(B,0)

– B –

B::g()

(D,0)

– B, D –

D::g()

(a)

(E,0)

– A, C, E –

A::f()

E::g()

(E,1)

– B –

E::g()

(E,2)

– B, D –

E::g()

(C,0)

– A, C –

A::f()

(C,1)

– B –

B::g()

(A,0)

– A –

A::f()

(B,0)

– B –

B::g()

(D,0)

– B, D –

D::g()

(b)

(E,1)

– B –

E::g()

(E,2)

– B, D –

E::g()

(C,1)

– B –

B::g()

(B,0)

– B –

B::g()

(D,0)

– B, D –

D::g()

ID: 1
Range: 1-5

ID: 2
Range: 2-3

ID: 3
Range: 3-3

ID: 4
Range: 4-5

ID: 5
Range: 5-5

(c)
Figure 5: Steps to compute the IDs and the range for function B::g() (marked with red font color, upper box in (c)). (a) Step I: Building
class hierarchies from virtual table hierarchies. (b) Step II: Collecting root class information of functions (shaded in red font color) and
overrides (shaded in green font color). (c) Step III: Determining ranges, calculating their widths and generating IDs for e.g., B::g().

the same sub-graph. Figure 5(c) shows the IDs and ranges assigned
for function g() [1, 5] with the sub-graph rooted at the virtual table
(B,0). Further, in case all classes use non-virtual inheritance, each
virtual table gets at most one ID. Note that the three virtual tables
shaded in gray in the left part of Figure 5(b) are not part of the
sub-graph and therefore have no ID assigned.
Step III – Inserting Callee Backward-edge Checks. In this step,
ρFEM inserts checks at each callee. For each virtual function in the
program, ρFEM uses the information from Step I to determine the
class it belongs to. Then, ρFEM takes each virtual table of this class
and looks up the IDs assigned to the virtual table function pair. Note
that ρFEM might find multiple IDs, either because there can be multi-
ple virtual tables for a class or because with virtual inheritance there
can be multiple IDs for a single virtual table. It is interesting to note
that at the end of the analysis the total number of IDs is independent
of whether virtual or non-virtual inheritance was used. This is due
to the fact that the number of edges in the virtual table hierarchy is
independent of the inheritance type. All IDs are unique IDs for this
function, because the IDs were assigned for function/virtual table
pairs, and a function cannot be defined twice within a virtual table.

Next, ρFEM generates the actual check during LTO. The inserted
check works as follows. First, it takes the callee’s return address
from the stack and second, it tries to load the range data from this
address. The NOP instructions containing this data are inserted in
Step IV. ρFEM then checks whether or not one of the callee IDs is
inside of the fetched range. If this is the case, then the check passes.
Otherwise, the return address is not an address after a valid callsite
for this particular calltarget and program execution is interrupted.
Step IV – Attaching Callsite Metadata. ρFEM annotates, within
the front-end, each callsite with its base class and the function imple-
mentation of the base class, which legitimately can be called by the
callsite. As explained previously, a callsite can only call functions
in the sub-graph rooted at the callsite’s base class. This principle is
reflected by the range, which is obtained through the analysis of base
class/function pair. This idea holds, because the range contains only

the IDs assigned to the function implementations in the base class or
in any of its children classes, which were explored by ρFEM during
the pre-order traversal in Step II.

Lastly, ρFEM performs in Step III and also in Step IV the following
optimization. As opposed to storing the start and end ID of a range,
ρFEM stores the start ID and the width of the range. This optimization
reduces the amount of operations required during a runtime check
and as such runtime overhead.

5.3 Handling Function Pointer Based Calls
Each non-virtual callee, of which the address escapes to memory
(address taken (AT)) can potentially be called by a function pointer
based callsite (a non-virtual callsite). The matching callees are iden-
tified after removing from the total set of callees the virtual and
statically called callees. This is done while the matching callers
are identified by removing from the total set of callees the virtual
callees and the static address callees. As fully precise control flow
analysis is generally impossible due to the fact that alias analysis is
undecidable [2], and less precise alias analysis does not necessarily
provide small target sets, we assume in this work that it is valid for
each function pointer based callsite to call a callee, as long as the
function signatures match. As such, ρFEM implements a function
signature encoding, allowing it to encode function signature data in
IDs. The function signature computed by ρFEM consists of: (1) the
name of the caller function and of the callee function, (2) the number
of parameters the caller provides and the number of parameters the
callee consumes (as for now, the first 8 function parameters are taken
into consideration), (3) their parameter types (as for now, 26 LLVM
IR parameter types, i.e., HalfTyID, FloatTyID, VoidTyID, etc. are
taken into consideration), and (4) the callee return type.

Consequently, for an address taken (AT) function, ρFEM generates
a function signature ID by using the previously mentioned function
signature encoding algorithm. Using the same encoding, ρFEM an-
notates each function pointer based callsite with such an ID. The
callee accepts both the ID(s) generated in §5.1 or §5.2 alongside

7

with the function signature ID in case it was called indirectly, but
only if its own function signature was used at the callsite. Note that
the regular ID is the ID which was assigned through the pre-order
traversal. Lastly, during runtime, in case the caller signature matches
the callee signature, the control flow is allowed to return. Otherwise,
the control flow transfer is stopped.

5.4 Callees Integrity Checks
1 ...
2 X *x=new W();
3 int t = x->foo();
4 ...

(a)

1 int foo(){
2 ...
3 return x;
4 }

(b)

1 ...
2 0x400d60 add $0x10,%rax
3 0x400d64 mov (%rax),%rcx
4 0x400d67 mov %rax,%rdi
5 0x400d6a callq *0x8(%rcx)
6 ...

(c)

1 ...
2 0x400cef pop %rbp
3 0x400cf0 retq
4 ...

(d)

1 ...
2 0x400d60 add $0x10,%rax
3 0x400d64 mov (%rax),%rcx
4 0x400d67 mov %rax,%rdi
5 0x400d6a callq *0x8(%rcx)
6 0x400d6d nopl 0x8000a(%rax)
7 0x400d74 nopl 0x80001(%rax)
8 ...

(e)

1 ...
2 0x400cce mov 0x8(%rbp),%rcx
3 0x400cd2 mov 0x3(%rcx),%eax
4 0x400cd5 mov $0x8000a,%edx
5 0x400cda sub %eax,%edx
6 0x400cdc cmp 0xa(%rcx),%edx
7 0x400cdf jbe 0x400cf1
8 0x400ce1 cmp $0x2000000,%rcx
9 0x400ce8 ja 0x400cf1

10 0x400cea cmp $0x7fffe,%eax
11 0x400cef jne 0x400cf3
12 0x400cf1 pop %rbp
13 0x400cf2 retq
14 0x400cf3 ud2

(f)

Figure 6: Caller (a), callee (b) C++ code; caller (c) machine code
(no instrumentation). Callee (d) assembly (no instrumentation);
caller (e), callee (f) instrumented machine code.

Figure 6 depicts the instrumentation added by ρFEM to a caller and
its corresponding callee in order to protect against backward-edge
control flow violations. For generating the values used in Figure 6(e)
lines 6 and 7, we use a counter.
Range based checks. The code listings depicted in Figure 6(a) and
Figure 6(b) show the original source code, while the code listings
depicted in Figure 6(c) and Figure 6(d) show the resulting assembly
instructions without applying any backward-edge checks. Lines 2 – 4
in Figure 6(c) execute the virtual dispatch using an object X stored in
the rax register. Before the callee returns, as depicted in Figure 6(d),
the stack is popped once to clean up the stack frame.

Further, we analyze the actual checks shown in the last row con-
tained in Figure 6(e). The newly-added NOP instructions are depicted
on lines six and seven in Figure 6(e) and contain a range starting
at 0x0a (StartID) with a width of 0x01 (WidthOfRange), i.e., the
only callees valid at this callsite have IDs 0x0a or 0x0b. When
looking at the callee’s instructions depicted in Figure 6(f), we ob-
serve that its ID is located on line 4. As expected, it has one of
the IDs inside the range, namely 0x0a. We can also see the range
in the two instructions before (lines two and three): the start ID is
loaded from the first NOP and then the callee ID is substracted from it
(StartID−0x0a). In case everything went through up to this point,
the result of the subtraction should now be in the range from 0 to
WidthOfRange, which is checked with the help of the cmp and jbe
instructions located on lines six and seven in Figure 6(f).
Signature-based checks. Similarly, indirect calls (i.e., function
pointer based), which have a matching function signature encoding
(e.g., the cmp with the address 0x7fffe; see line 10 in Figure 6(f)),
which passes the check then the execution continues. This value
represents the valid function signature encoded as a hash value. The

hash value is a word size value obtained by concatenating the number
of parameters, their types and return type as a string and then hashing
them as described by vTrust [40].
Error handling. In case none of the checks succeed, the program
executes the ud2 instruction depicted on line 14 in Figure 6(f),
causing the program to terminate. While this type of mitigation is
sufficient for our purposes, in real-world applications more sophis-
ticated error handling might be used. Instead of abruptly terminating
the program, another possible approach is to log each legal and
illegal backward-edge transfer.
External Calls. In case a protected function is called by an unlabeled
callsite (i.e., external library call), then this call causes the protected
function to return at the next address after the call instruction with
the help of the instructions located on line 7 and 8 in Figure 6(f).
ρFEM is able to differentiate between external and internal calls by
determining during compile time the address range of the hardened
program. As such, external calls have a memory address not con-
tained in the range of the protected program and thus the inserted
check can differentiate between internal and external calls.

5.5 Implementation Details
We implemented ρFEM as five Clang/LLVM analysis passes, as
follows. One front-end pass for collecting metadata from the Clang
compiler for later usage during LTO analysis, three LTO passes and
a machine instruction-level pass. For this purpose, we extended the
Clang/LLVM [26] compiler framework infrastructure. As three of the
four ρFEM passes are performed during link time, our system requires
LLVM’s LTO. As previously mentioned, the implementation of ρFEM
is split between the Clang compiler front-end (metadata collection),
three new link-time passes and one machine-level pass used for anal-
ysis and generating backward-edge constraints, totaling around 3,235
LOC. ρFEM supports separate compilation by relying on the LTO
mechanism built in LLVM [26]. ρFEM generates unique IDs by keep-
ing track of already assigned ones and continuously incrementing a
counter variable for generating newIDs. Lastly, by carefully traversing
each class hierarchy in pre-order, uniqueID assignment is guaranteed.

6 EVALUATION
In this section, we address the following research questions (RQs).
• RQ1: How effective is ρFEM in protecting backward edges (§6.1)?
• RQ2: What backward-edge attacks can ρFEM thwart (§6.2)?
• RQ3: What security benefit does ρFEM offer (§6.3)?
• RQ4: What is the runtime overhead of ρFEM (§6.4)?

Benchmark Programs. In our evaluation, we used the following
real-world C/C++ programs: (1) Memcached [41] (general-purpose
distributed memory caching system, v.1.5.3, C/C++ code), (2) Nginx
[42] (Web server, usable also as: reverse proxy, load balancer, mail
proxy and HTTP cache, v.1.13.7, C code), (3) Lighttpd [43] (Web
server optimized for speed-critical environments, v.1.4.48, C code),
(4) Redis [44] (in-memory database with in-memory key-value store,
v.4.0.2, C code), (5) Apache Httpd Server (Httpd) [45] (cross-platform
Web server, v.2.4.29, C code) and the following C++ programs: (6)
NodeJS [46] (cross-platform JS run-time environment, v.8.9.1, C/C++
code), (7) Apache Traffic Server [47] (modular, high-performance
reverse proxy and forward proxy server, v.2.4.29, C/C++ code), and

8

(8) Google Chrome [48] (Web browser, v.33, C/C++ code). These
programs were selected due to their real-world security relevance.
Experimental Setup. The benchmarks were performed on an Intel
i5-3470 CPU with 8GB RAM running on the Linux Mint 18.3 OS.
We carefully compiled each program and executed it ten times in
order to provide reliable mean values. Note that we re-applied for
all hardened programs, in case these existed, their functionality/cor-
rectness tests and we can confirm that all work as expected after
hardening with ρFEM. Lastly, all programs were compiled with
Clang/LLVM -O2 compiler optimization flag.

6.1 Protection Effectiveness
In this section, we assess the precision of ρFEM by counting the
number of allowed return targets per function (callee). Further, we
consider the size of the return target set an indicator for the precision
of ρFEM’s backward-edge protection. Note that for all tables in
this section, we use the following measures: #Callees (all callees),
minimum, 90th percentile, maximum, geomean, median, average,
and standard deviation.

Program #Callee
Min 90p Max Geo Med St.dev

Httpd 1,086 0 20 187 3.34 3 18.18
Lighttpd 451 0 6 317 1.97 1 19.46
Memcached 106 0 8.5 136 2.81 2 15.15
Nginx 1,132 0 29 1,630 3.29 2 58.23
Redis 2,644 0 7 3,796 1.97 1 81.74
NodeJS 30,330 0 231 6,837 3.34 1 114.11
Tr. Server 6,115 0 14 2,673 3.13 2 64.04
geomean 1,616.32 0 18.23 986.87 2.77 1.57 40.74

Table 1: Return addresses for virtual and non-virtual functions.

Table 1 depicts the number of functions hardened by ρFEM and
the size of their legitimate return address sets enforced by ρFEM.
The geometric mean value for all assessed programs is 2.77 return
addresses per callee. This considerably decreases the chances of
a successful attack. The average value obtained for NodeJS (most
complex program analyzed in Table 1) represents an outlier. This
value originates from the high number of small helper functions
which are not in-lined and a large number of function pointer based
indirect callsites. We further investigated the results for NodeJS and
observed many indirect callsites calling template functions, which
were generated for multiple JavaScript types. These functions have
the same signature and can therefore be targeted by many indirect
callsites. Further, we note that for callees which allow more than 10
return targets, depending on the gadget types, there is potentially a
considerable decrease in the provided protection level.

Program #Callee
90p Max Geo Med St.dev.

NodeJS 4,177 239 2,792 23.12 19 143.31
Tr. Server 948 25 992 7.54 11 59.8
Chrome 66,032 1,150 15,014 144.21 155 3,677.36
geomean 6,394.53 190.11 3,464.50 29.29 31.87 315.86
Table 2: Allowed return addresses for only virtual callees.

Table 2 depicts the sizes of the legitimate return target sets for
only virtual functions. By comparing the geomean results depicted in
Table 2 with the results shown in Table 1 (2.77 vs. 29.29) we note that
in general ρFEM performs better for non-virtual functions than for

virtual functions. This is due to the fact that ρFEM: (1) uses ranges for
virtual functions instead of single IDs (i.e., ranges contain more than
one element, since the class sub-hierarchy is enforced backwards),
and (2) cannot precisely determine when a virtual function is called
through a function pointer based call (due to the currently used ad-
dress taken analysis). Further, note that in general it is difficult to rule
out pointers to virtual functions because pointers to these functions
are already stored in the corresponding virtual tables. Therefore, we
opted for the most conservative implementation in ρFEM in which
we assume that most of the virtual functions can be called using
function pointers which are indirect callsites as well. For this reason,
we have in general more legitimate calltargets for these callees.

Program Base Min %�
90p %�

Max %�
Geo %�

Med %�
SD %�

Lighttpd 52,060 0 0.38 3.59 0.06 0.06 0.35
Memcached 24,672 0 0.34 5.51 0.11 0.08 0.61
Nginx 173,273 0 0.17 9.41 0.02 0.01 0.34
Redis 333,835 0 0.02 11.37 0.01 0.00 0.24
NodeJS 2,479,736 0 0.09 2.76 0.00 0.00 0.05
geomean 179,091.65 0 0.13 5.67 0.02 0.01 0.24

Table 3: Fraction of instructions per mil. allowed to return to.

Table 3 depicts the fractions of instructions a callee can target.
The results denote the fraction (in %�) of return targets allowed
per callee. The Baseline entry denotes the number of assembly
instructions (addresses) in the program binary code section(s). We
used the objdump tool to determine the Baseline entries. Note that
without any backward-edge protection a return instruction can freely
transfer control flow to any of the Baseline addresses. The results
depicted in Table 3 are important since these show the fraction of
legitimate addresses which are allowed to be called after we hardened
the binary with ρFEM. The results in the second column up to the
last (from left to right) were determined by dividing the results from
Table 1 with the total number of Baseline instructions depicted in
column 2 (Baseline) of Table 3. The results indicate that the fraction
of addresses, which are targetable after applying ρFEM for every
analyzed program, is less than one in a thousand addresses on average.
Thus, in geomean less than one address can be targeted by more than
10K addresses when considering the whole program.

6.2 Exploits Defended
In this section, we show ρFEM’s exploit coverage by creating a
suite of C/C++ programs in order to demonstrate various possible
scenarios of calltarget return address overwrite prevention. These
programs are based on five ROP primitives (see T1-T5 in Table 4)
identified and confirmed [49] to be representative for ROP exploits.

Exploit Stopped Remark
Active-Set Attacks [49, 50]:
Type 1 (T1) ✓ Return to any stack func.
Type 2 (T2) ✓ Return to a child process
Type 3 (T3) ✓ Return to earlier callsites
Type 4 (T4) ✓ Return to future callsites
Type 5 (T5) ✓ Return to program begin

CALL-ret violating [51]:
Innocent flesh on the bone ✓ Caller-callee function

calling conv. violation

Table 4: Stopped backward-edge attack types.

9

Table 4 presents a summary of several types of backward-edge
based attacks and the primitives on which these rely. For each of
the types from T1 up to T5, our suite contains at least one program
reflecting this behavior. T1. Return to any active function on the stack
(not just the last function put on the call stack). T2. Return to parent
code in a child process after a fork. T3. Return to earlier callsites
in functions on the stack. T4. Return directly to future callsites in
functions on the stack. T5. Return directly to the beginning of a
program (typically the second callsite in main). Next, we present the
backward-edge primitives on which the attacks depicted in Table 4
rely. Note that T1 up to T5 can independently be used to bypass the
following backward-edge protection [49, 50, 52] techniques.

Type Full CFL ρFEM
T1 ✗ ✓
T2 ✗ ✓
T3 ✗ ✓
T4 ✗ ✓
T5 ✗ ✓

Table 5: Detected exploit types, T1-T5.

Table 5 depicts the results after running the programs from our test
suite with ρFEM. Note that we could not evaluate these with the CFL
tool as this is not open source. However, based on the analysis of the
CFL [5] paper, we expect that CFL cannot detect any of these 5 types
of backward-edge violations as it allows a callee to return to any ad-
dress following an indirect or direct function call. Further, we explain
how ρFEM mitigates these attacks. T1: none of the addresses enforced
by ρFEM is located at a function start, only legitimate function return
addresses are allowed. T2: in case the return address is not in the legal
return target set of the particular return, then this is forbidden. T3: call-
site addresses are rejected by ρFEM completely, allowed addresses are
only these which are following a callsite. T4: future callsite addresses
are not included by ρFEM in the target address set and as such these are
forbidden. T5: callsite addresses are completely forbidden by ρFEM.
Lastly, ρFEM stops the Galileo ROP attack [51]. This covers returning
to arbitrary code in mapped libraries as well. This is due to the fact
that ρFEM forbids that the callee can return to any program address.

6.3 Security Analysis
In this section, we evaluate the availability of gadgets after hardening
the program with ρFEM. Assuming that the initial backward edge
is protected by ρFEM, three conditions have to be met to make a
gadget usable in a ROP chain: (1) the gadget has to start with a NOP
instruction (in order to be targetable from a secured backward edge),
(2) the payload of the NOP instruction has to pass the backward-edge
check of the incoming backward edge, and (3) the return instruction at
the end of the gadget has to be either unprotected or its target has to be
contained in the return target set of the function the gadget is part of.
Note that condition (2) has already been extensively discussed in RQ1
in a generalized form. Assuming the return target set of the gadget is
not sufficient to extend the chain to the next gadget (as shown in RQ1),
then condition (3) only holds if the backward edge is unprotected.

Table 6 depicts the results obtained after analyzing the hardened
and unhardened program binaries using the ROPgadget [53] tool

Program # LTO
ρFEM

no-NOP
ret check

not prot.

% not prot.

Httpd 12,664 19,723 19,430 11,033 77 0.39%
Lighttpd 5,855 7,309 7,154 1,100 132 1.81%
Nginx 15,789 20,392 20,212 8,475 128 0.63%
Memcached 1,805 2,056 2,007 184 43 2.09%
NodeJS 375,032 490,570 485,396 99,853 3,222 0.66%
Tr. Server 75,187 106,766 104,935 23,486 1,275 1.19%
geomean 0.95%

Table 6: Number of ret gadgets before and after hardening.

(ROP gadget finding tool). We passed the following arguments to
ROPgadget: –depth=30 –nosys –nojop.

Next, we consider the Table 6 columns numbered from left to right;
in total, we have seven columns. The second column (# LTO) in
Table 6 shows the number of unique gadgets found in the unhardened
binary with only LTO enabled. We consider a gadget to be unique if
it consists of a unique sequence of instructions.

The third column (# ρFEM) presents the number of unique gadgets
in the hardened binaries with ρFEM. In this case, for a gadget to be
unique, we also consider the existence of a NOP instruction at the
beginning of the gadget. This means that two gadgets with the same
sequence of instructions, one with NOP before these instructions and
one without, are different gadgets. This differentiation is important
since for an attack the existence of the leading NOP is relevant. Due
to this change, the number of gadgets found by ROPgadget [53]
increases compared to the unhardened binary.

The fourth column (# no-NOP) shows the number of gadgets in the
hardened binary that fail condition (1), i.e., these gadgets do not start
with a NOP instruction and are therefore not targetable by a secured
backward edge. We can observe that most gadgets do not start with
a NOP instruction as expected, since the number of callsites (and
therefore of NOP instructions) is small compared to the total number
of instructions.

The gadgets depicted in column five (# ret check) end with a
return check generated by ρFEM and therefore can only target gadgets
that match the return target set of the function the gadget is contained
in. Note that the return instructions not protected by ρFEM are mostly
either boilerplate functions (e.g., global setup and init functions)
or small stack adjustment functions generated by LLVM. These
functions rarely contain any calculating instructions (e.g., ADD, SUB)
with non-immediate operands.

The sixth column (# not prot.) shows the number of gadgets
for which both conditions (1) and (2) hold. These gadgets are not
counted in column two or three and therefore have a NOP instruction
at the beginning, but no check of the backward edge. These are the
remaining gadgets that can be used for a ROP chain attack without
exploitation of the residual return target set evaluated in RQ1.

Lastly, the seventh column (% not prot.) depicts the percentage
of all gadgets in the hardened binary that are not protected after
hardening the program binary with ρFEM. We can observe that in
geomean only 0.05% (1 - 0.95%, see Table 6) of the previously
found gadgets are still useful after hardening the program binary
with ρFEM. Thus, ρFEM protects in geomean > 99% of the identified
gadgets from usage during an attack without averaging the results.

10

6.4 Runtime Overhead
In this section, we evaluate the runtime overhead of ρFEM by using
the SPEC CPU 2017 benchmarks and real-world programs.

Benchmark LTO SafeStack + LTO

SafeStack + LTO %

ρFEM + LTO

ρFEM + LTO %

500.perlbench_r 11.0 11.1 -0.91 11.1 -0.91%
505.mcf_r 11.7 11.4 2.56% 11.7 0.00%
520.omnetpp_r 8.05 8.12 -0.87% 8.02 0.37%
523.xalancbmk_r 8.79 8.79 0.00% 8.61 2.05%
525.x264_r 18.6 19.4 -4.30% 18.5 0.54%
531.deepsjeng_r 13.6 14.0 -2.94% 13.4 1.47%
541.leela_r 12.7 12.8 -0.79% 12.6 0.79%
557.xz_r 8.73 9.13 -4.58% 8.74 -0.11%
508.namd_r 12.8 13.0 -1.56% 12.7 0.78%
511.povray_r 17.7 17.6 0.56% 16.9 4.52%
519.lbm_r 4.82 4.82 0.00% 4.82 0.00%
526.blender_r 17.1 17.0 0.58% 17.1 0.00%
538.imagick_r 17.6 19.1 -8.52% 17.7 -0.57%
600.perlbench_s 3.51 3.46 1.42 % 3.55 -1.14 %
605.mcf_s 6.69 6.31 5.68 % 6.67 0.30 %
620.omnetpp_s 3.81 3.7 2.89 % 3.66 3.94 %
623.xalancbmk_s 3.73 3.65 2.14 % 3.55 4.83 %
625.x264_s 5.15 5.2 -0.97 % 5.09 1.17 %
631.deepsjeng_s 4.06 4.02 0.99 % 4 1.48 %
641.leela_s 3.62 3.54 2.21 % 3.62 0.00 %
657.xz_s 2.06 2.24 -8.74 % 2.24 -8.74 %
geomean - - 0.85% - 0.11%

Table 7: ρFEM’s overhead w.r.t. the SPEC CPU2017.

Table 7 depicts the runtime overhead when running ρFEM on all
pure C/C++ programs contained in the SPEC CPU2017 (rate and
speed) benchmark. Note that we could not compile 602.gcc_s and
502.gcc_r with SafeStack, whereas it was possible with ρFEM. For
this reason, we did not include these programs in Table 7. As reported
in the last row of the table, the average runtime overhead of ρFEM is
0.11% comparing favorably to SafeStack’s overhead which is 0.85%
on average. Thus, these results support ρFEM’s competitiveness.

Sunspider
Octane

Kraken

V8-benchmark
Dromeao-js

Speedometer geomean0

2

4

6

8

10

%
Ru

nt
im

e
O

ve
rh

ea
d

Clang’s SafeStack
ρFEM & IVT

ρFEM

Figure 7: Comparing ρFEM, SafeStack and IVT overheads.

In addition to the SPEC CPU 2017 benchmark, we also evaluated
ρFEM with a set of popular JavaScript benchmarks for the Chrome
Web browser. Figure 7 depicts the runtime overhead of SafeStack
(shaded light gray), ρFEM + IVT (shaded gray; note IVT provides
virtual call based forward-edge protection only), and ρFEM (shaded
black) for these benchmarks. As shown in the figure, when running
ρFEM incrementally together with IVT, offering both forward-edge
and backward-edge protection, the geomean runtime overhead is
equal to that of SafeStack (4.86% vs. 4.89%). In contrast, when
running ρFEM alone then the runtime ovehead is 3.44% in geomean.
Therefore, we conclude that ρFEM’s runtime overhead is negligible
and that it can be used as an always-on solution.

7 LIMITATIONS AND FUTURE WORK
Number of all function returns. Clang SafeStack’s (based on LLVM
v.3.7.0 stable) number of return addresses per callee is smaller than
the number of return address which ρFEM can enforce. In future
work, we want to reduce the number of return addresses per callee.
To achieve this, we first need to check availability of gadgets for
each hardened program. Additionally, we will reduce this number
by performing an analysis of provided and consumed parameters by
each callsite. This will further help to reduce the number of callee
return addresses considerably.
Attacker access to legitimate gadgets. As the number of callee
return addresses is in general larger than one, in some situations,
these addresses could still be used by an attacker to jump to a le-
gitimate address, in order to access useful gadgets. In future work,
we would like to address this issue by analyzing all legitimate callee
return sites and determining if these can be used as a gadget. In case
this can be further used as a gadget then instruction level program
transformations will be made in order to make the gadget unusable.
Performing attacks with our protection in-place. The legitimate
number of return addresses for a callee protected by ρFEM is low but
research shows that in general attacks are still feasible. For example,
Carlini et al. [28] show that in case the attacker knows: (1) the legiti-
mate return address of a callee, and (2) a usable return address to ac-
cess a gadget, then an attack is still possible. In future work, we plan to
address these cases by first looking into possibilities to insert another
level of indirection (e.g., re-purposed register based trampoline) (1)
between callee and its return address and (2) between callee and the
return address which can be used to jump to the beginning of a gadget.
RET instrumentation improvement. The return address is used to
access the respective return site(s), and to check IDs. This address
will be reloaded from the stack, via a ret instruction, and eventually
consumed. As such, this scheme may suffer from TOCTTOU-like
issues, as the check can be completed successfully, but the return
address in the stack can be altered right before ret is executed. In
future work, we will address this issue by replacing retwith pop and
jmp instructions, such that the return address is not double-fetched.
Note that most of backward-edge CFI schemes do not do this (i.e.,
are willing to tolerate the risk of TOCTTOU) because replacing RET
with POP/JMP may greatly increase overhead. This was the case at
least on Intel CPUs a few years ago as this would greatly influence
the hardware return address prediction.
Tail calls and position independent code. Currently, ρFEM does not
support tail calls and position independent code (PIC). In future work,
we plan to address this issue by keeping track during runtime of all
function calls which have not returned and enforce that a tail call could
return to the next address of all functions which did not return. The
PIC issue can be also addressed by not using absolute addresses and
by compiling any PIC code that may be loaded in protected programs.
Labeling of legitimate return sites. ρFEM inserts labels with IDs
that correspond to each legitimate return site for each function return
(callee). This could provide an attacker a useful hint at which ad-
dresses it is legitimate to return. In case these return addresses contain

11

useful gadgets, then the attacker may return at these addresses, thus by-
passing the ρFEM CFI checks. This limitation can be addressed in fu-
ture work by adding an additional level of indirection and computing
the ID, which was previously inserted at the NOPs location, on the fly.
Control flow bending. Control Flow Bending (CFB) [28] showed
that, even with fully-precise static CFI, powerful CRAs are still
possible. ρFEM cannot handle CFB attacks with the same precision
as shadow stack techniques. Note that all other techniques (excluding
shadow stacks) cannot protect against CFB as well. Further, to date
only shadow stack can mitigate this type of attack, but shadow stacks
can be bypassed [19]. Thus, in future work, we plan to make ρFEM
able to mitigate CFB attacks as well, at least to a partial degree.
Inter-modular support. ρFEM can only secure single binaries. Thus,
each used dynamic library has to be compiled in order to be protected.
In the current ρFEM implementation, the IDs for different modules
may overlap, which increases the return target set. In addition, inter-
modular backward edges are not protected. In future work, we would
like to address this by synchronizing IDs between modules. As a
result, the program modules are compiled after compiling dynamic
libraries. This allows for forward sharing of ID information in the
modules, which use the dynamic libraries. As such, we consider this
as an engineering limitation that is easily solvable.
Imprecise function pointer callsite analysis. Our experiments show
that function pointer based callsites account for a significant amount
of return targets. This is especially problematic for virtual callees
since these are usually not targets of function pointer based callsites.
In future work, this issue can be addressed by developing a better
address taken (AT) function detection analysis, which would help to
reduce the number of functions that can be targeted by any function
pointer based callsite. Lastly, the function signature encoding can
be improved by using more data types and the object this pointer.

8 RELATED WORK
There are many defenses to protect backward-edges. In the following,
we briefly categorize them to differentiate and motivate our research.
Shadow stack based. SafeStack [8] is an LLVM/Clang compiler
framework based tool which can protect program backward edges.
SafeStack uses for each program function stack a secondary shadow
stack frame that will be loaded during runtime. However, Goktas et
al. [19] show how SafeStack can be bypassed with relatively low ef-
fort, thus bypassing this protection technique. PittyPat [4] introduces
a fine-grained path-sensitive CFI for protecting both forward and
backward edges. It uses shadow stack to maintain a stack of points-to
information during its analysis, it will always allow only a single
transfer target for each return instruction.
Double shadow stack. Zieris et al. [11] propose a leak-resilient dual
stack approach by relocating potentially unsafe objects on a second
stack while keeping the unsafe objects on the program’s original
stack. Compared to ρFEM, our approach does not hide information,
and does not position data at statically defined addresses as our labels
are randomized during each program compilation.
HW register based. Shadesmar [12] is a compact shadow stack im-
plementation that relies on information hiding and which re-purposes
two new Intel x86 extensions: memory protection (MPX), and page

table control (MPK). It uses a register in order to hide the shadow
stack pointer and thus the access to the shadow stack which will be
located at variable distances in memory. As such it still relies on in-
formation hiding but raises the bar for the attacker when searching for
the shadow stack. The authors admit that information hiding is funda-
mentally broken, but recommend it only because of the resistance to
deploying any protection mechanism with greater than 5% overhead.
Non-shadow stack based. CFL [54] is a GCC compiler based tool
used for protecting backward edges only by instrumenting the source
code (only for 32-bit) of a compiled program. CFL uses a statically pre-
computed program control flow graph (CFG). Thus, this technique
(as it can be observed) relies on the precision of the computed
CFG. CFL can protect against code reuse attacks for statically linked
32-bit binaries, which violate the statically precomputed CFG. CFL
provides three modes of operation: (1) just alignment, (2) single-
bit CFL, and (3) full CFL, which each have different performance
overheads. πCFI [55] is a compiler-based tool, which lazily builds a
CFG on the fly during runtime. Indirect edges are added in the CFG
before indirect branches need those edges. πCFI disallows adding
edges, which are not present in the statically computed all-input CFG
(this CFG serves as an upper bound for the runtime constructed CFG).
Re-purposed registers. µRAI [3] protects backward edges also
without shadow stacks in microcontroller-based systems (MCUS)
by using a specific register to memorize where the legitimate return
address resides. µRAI’s technique relies on moving return addresses
from writable memory to readable and executable memory. It repur-
poses a single general purpose register that is never spilled, and uses
it to resolve the correct return location. At runtime, µRAI provides
each function a uniquely encoded ID (e.g., a hash value) each time
the function is executed.

9 CONCLUSION
We have presented ρFEM, a Clang/LLVM-based backward-edge
runtime protection tool, which leverages static forward-edge infor-
mation of C/C++ programs to protect backward edges. We conducted
an evaluation of ρFEM with several real-world programs such as
Google’s Chrome Web browser, NodeJS, and Nginx. Our evaluation
results show that only a low median number of return targets per
callee return site are allowed. More precisely, the median geomean
number of return addresses per callee is 1.57 while the geomean is
2.77. These results confirm that the attack surface is drastically di-
minished, thus the chances of successfully performing a control-flow
hijacking attack are considerably reduced. Further, our experiments
with Google’s Chrome Web browser indicate that ρFEM imposes a
low runtime overhead of 3.44% in geomean. Lastly, ρFEM is com-
patible with currently available real-world C/C++ applications such
as Google’s Chrome Web browser, readily deployable, and advances
the state-of-the-art protection of program callees.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their insightful comments.
Further, we want to thank Thurston Dang (MIT, USA), Artur Janc
(Google, CH), Jaroslav Sevcik (Google, DE), and Haohuang Wen
(OSU, USA), for constructive feedback on an earlier version of this
paper, which helped to improve the quality of our work.

12

REFERENCES
[1] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When Good Instructions Go

Bad: Generalizing Return-oriented Programming to RISC. In ACM Conference on
Computer and Communications Security (CCS), 2008.

[2] G. Ramalingam. The Undecidability of Aliasing. In Transactions on Programming
Languages and Systems (TOPLAS), ACM, 1994.

[3] N. S. Almakhdhub, A. A. Clements, S. Bagchi, and M. Payer. µRAI: Securing
Embedded Systems with Return Address Integrity. In Network and Distributed
System Security Symposium (NDSS), 2020.

[4] R. Ding, C. Qian, C. Song, W. Harris, T. Kim, and W. Lee. Efficient Protection
of Path-Sensitive Control Security. In USENIX Security Symposium (USENIX
Security), 2017.

[5] T. Bletsch, X. Jiang, and V. Freeh. Mitigating Code-reuse Attacks with Control-flow
Locking. In Annual Computer Security Applications Conference (ACSAC), 2011.

[6] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin. PT-CFI: Transparent Backward-Edge Control
Flow Violation Detection Using Intel Processor Trace. In Proceedings of the 7th
ACM Conference on Data and Application Security and Privacy (CODASPY),
2017.

[7] P. Muntean, M. Fischer, G. Tan, Z. Lin, J. Grossklags, and C. Eckert. τCFI:
Type-Assisted Control Flow Integrity for x86-64 Binaries. In Symposium on
Research in Attacks, Intrusions, and Defenses (RAID), 2018.

[8] Clang/LLVM. Clang’s SafeStack. https://clang.llvm.org/docs/SafeStack.html.
[9] T. Chiueh and F.H. Hsu. RAD: A Compile-Time Solution to Buffer Overflow

Attacks. In International Conference on Distributed Computing Systems (ICDCS),
2001.

[10] xLab. Return Flow Guard. http://xlab.tencent.com/en/2016/11/02/return-flow-
guard/.

[11] P. Zieris and J. Horsch. A Leak-Resilient Dual Stack Scheme for Backward-Edge
Control-Flow Integrity. In ACM Asia Conference on Computer and Communica-
tions Security (AsiaCCS), 2018.

[12] N. Burow, X. Zhang, and M. Payer. SoK: Shining Light on Shadow Stacks. In
IEEE Symposium on Security and Privacy (S&P), 2019.

[13] M. Zhang and R. Sekar. Control Flow Integrity for COTS Binaries. In USENIX
Security Symposium (USENIX Security), 2013.

[14] GCC. GCC’s Shadow Stack Proposal. 2019. https://gcc.gnu.org/onlinedocs/gcc/C
ommon-Function-Attributes.html#index-stack_005fprotect-function-attribute.

[15] T. H. Y. Dang, P. Maniatis, and D. Wagner. The Performance Cost of Shadow Stacks
and Stack Canaries. In ACM Asia Conference on Computer & Communications
Security (AsiaCCS), 2015.

[16] E. Goktas, B. Kollenda, P. Koppe, G. Bosman, Portokalidis, T. Holz, H. Bos, and
C. Giuffrida. Position-independent Code Reuse: On the Effectiveness of ASLR in
the Absence of Information Disclosure. In European Symposium on Security and
Privacy (EuroS&P), 2018.

[17] A. Oikonomopoulos, E. Athanasopoulos, H. Bos, and C. Giuffrida. Poking Holes
in Information Hiding. In USENIX Security Symposium (USENIX Security), 2018.

[18] R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, T. Hobson, S. Crane, C. Liebchen,
P. Larsen, L. Davi, and M. Franz. Address oblivious code reuse: On the effectiveness
of leakage resilient diversity. In Proceedings of the Symposium on Network and
Distributed System Security (NDSS).

[19] E. K. Goktas, A. Oikonomopoulos, R. Gawlik, B. Kollenda, I. Athanasopoulos,
C. Giuffrida, G. Portokalidis, and H. J. Bos. Bypassing Clang’s SafeStack for Fun
and Profit. In Black Hat Europe, November 2016.

[20] B. Niu and G. Tan. Modular Control-Flow Integrity. In Programming Language
Design and Implementation (PLDI), 2014.

[21] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson, L. Lozano,
and G. Pike. Enforcing Forward-Edge Control-Flow Integrity in GCC and LLVM.
In USENIX Security Symposium (USENIX Security), 2014.

[22] D. Jang, Z. Tatlock, and S. Lerner. SafeDispatch: Securing C++ Virtual Calls
from Memory Corruption Attacks. In Network and Distributed System Security
Symposium (NDSS), 2014.

[23] B. Niu and G. Tan. RockJIT: Securing Just-In-Time Compilation Using Modular
Control-Flow Integrity. In ACM Conference on Computer and Communications
Security (CCS), 2014.

[24] I. Haller, E. Goktas, E. Athanasopoulos, G. Portokalidis, and H. Bos. ShrinkWrap:
VTable Protection Without Loose Ends. In Annual Computer Security Applications
Conference (ACSAC), 2015.

[25] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control Flow Integrity. In
ACM Conference on Computer and Communications Security (CCS), 2005.

[26] Clang/LLVM. Clang/llvm compiler framework. https://clang.llvm.org/.
[27] X. Ge, N. Talele, M. Payer, and T. Jaeger. Fine-Grained Control-Flow Integrity for

Kernel Software. In European Symposium on Security and Privacy (EuroS&P),
2016.

[28] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross. Control-Flow
Bending: On the Effectiveness of Control-Flow Integrity. In USENIX Security
Symposium (USENIX Security), 2015.

[29] P. Muntean, M. Neumayer, Z. Lin, G. Tan, J. Grossklags, and C. Eckert. Analyzing
Control Flow Integrity with LLVM-CFI. In Annual Computer Security Applications
Conference (ACSAC), 2019.

[30] Industry Coalition. Itanium C++ ABI. https://mentorembedded.github.io/cxx-
abi/abi.html.

[31] J. Gray. C++: Under the Hood. 1994. http://www.openrce.org/articles/files/jangr
ayhood.pdf.

[32] ARM. C++ ABI for the ARM Architecture. 2015. http://infocenter.arm.com/help/
topic/com.arm.doc.ihi0041e/IHI0041Ecppabi.pdf.

[33] Intel. Intel Control-Flow Enforcement Technology (CET). https:
//software.intel.com/en-us/blogs/2016/06/09/intel-release-new-technology-
specifications-protect-rop-attacks.

[34] V. van der Veen, D. Andriesse, E. Göktas, B. Gras, L. Sambuc, A. Slowinska,
H. Bos, and C. Giuffrida. Practical Context-Sensiticve CFI. In ACM Conference
on Computer and Communications Security (CCS), 2015.

[35] F. Schuster, T. Tendyck, J. Pewny, A. Tendyck, M. Steegmanns, M. Contag,
and T. Holz. Evaluating the Effectiveness of Current Anti-ROP Defenses. In
International Symposium on Research in Attacks, Intrusions and Defenses (RAID),
2014.

[36] Microsoft. The STRIDE Threat Model, 2009. https://docs.microsoft.com/en-us/p
revious-versions/commerce-server/ee823878(v=cs.20)?redirectedfrom=MSDN.

[37] P. Muntean, S. Wuerl, J. Grossklags, and C. Eckert. CastSan: Efficient Detection of
Polymorphic C++ Object Type Confusions with LLVM. In European Symposium
on Research in Computer Security (ESORICS), 2018.

[38] Microsoft. Microsft’s data execution prevention. 2018. https://msdn.microsoft.c
om/en-us/library/windows/desktop/aa366553(v=vs.85).aspx.

[39] D. Bounov, R. G. Kici, and S. Lerner. Protecting C++ Dynamic Dispatch Through
VTable Interleaving. In Network and Distributed System Security Symposium
(NDSS), 2016.

[40] C. Zhang, S. A. Carr, T. Li, Y. Ding, C. Song, M. Payer, and D. Song. vTrust:
Regaining Trust on Virtual Calls. In Proceedings of the Symposium on Network
and Distributed System Security (NDSS), 2016.

[41] Memcached. Memcached. 2017. https://memcached.org/.
[42] Nginx. Nginx. 2017. https://nginx.org/en/.
[43] LightHTTPD. LightHTTPD. 2017. https://www.lighttpd.net/.
[44] Redis. Redis. 2017. https://redis.io/.
[45] Apache Software Foundation. Apache Httpd. 2017. https://httpd.apache.org/.
[46] Node.js Foundation. NodeJS. 2017. https://nodejs.org/en/.
[47] Apache Software Foundation. Apache Traffic Server. 2017. http://trafficserver.a

pache.org/.
[48] Google. Google’s Chrome Web browser. 2017. https://www.chromium.org/.
[49] M. Theodorides and D. Wagner. Breaking Active-Set Backward-Edge CFI. In

Hardware Oriented Security and Trust (HOST).
[50] M. Theodorides. Breaking Active-Set Backward-Edge CFI. In Technical Report

No. UCB/EECS-2017-78, 2017. http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2017/EECS-2017-78.html.

[51] H. Shacham. The Geometry of Innocent Flesh on the Bone: Return-into-Libc
without Function Calls (On the x86). In ACM Conference on Computer and
Communications Security (CCS), 2007.

[52] O. Arias, L. Davi, M. Hanreich, Y. Jin, P. Koeberl, D. Paul, A.-R. Sadeghi, and
D. Sullivan. HAFIX: Hardware-Assisted Flow Integrity Extension. In Annual
Design Automation Conference (DAC), 2015.

[53] J. Salwan. ROPgadget. 2018. https://github.com/JonathanSalwan/ROPgadget.
[54] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-Oriented Programming:

A New Class of Code-Reuse Attack. In ACM Asia Conference on Computer &
Communications Security (AsiaCCS), 2011.

[55] B. Niu and G. Tan. Per-Input Control-Flow Integrity. In ACM Conference on
Computer and Communications Security (CCS), 2015.

13

https://clang.llvm.org/docs/SafeStack.html.
http://xlab.tencent.com/en/2016/11/02/return-flow-guard/.
http://xlab.tencent.com/en/2016/11/02/return-flow-guard/.
 https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-stack_005fprotect-function-attribute
 https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-stack_005fprotect-function-attribute
https://clang.llvm.org/
https://mentorembedded.github.io/cxx-abi/abi.html
https://mentorembedded.github.io/cxx-abi/abi.html
http://www.openrce.org/articles/files/jangrayhood.pdf
http://www.openrce.org/articles/files/jangrayhood.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041e/IHI0041E cppabi.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041e/IHI0041E cppabi.pdf
https://software.intel.com/en-us/blogs/2016/06/09/intel-release-new-technology-specifications-protect-rop-attacks.
https://software.intel.com/en-us/blogs/2016/06/09/intel-release-new-technology-specifications-protect-rop-attacks.
https://software.intel.com/en-us/blogs/2016/06/09/intel-release-new-technology-specifications-protect-rop-attacks.
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)?redirectedfrom=MSDN
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366553(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366553(v=vs.85).aspx
https://memcached.org/
https://nginx.org/en/
https://www.lighttpd.net/
https://redis.io/
https://httpd.apache.org/
https://nodejs.org/en/
http://trafficserver.apache.org/
http://trafficserver.apache.org/
https://www.chromium.org/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-78.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-78.html
https://github.com/JonathanSalwan/ROPgadget

	Abstract
	1 Introduction
	2 Background
	2.1 Virtual Table Hierarchy
	2.2 Backward Control Flow Edges
	2.3 Shadow Stack Techniques

	3 Threat Model and Assumptions
	4 Overview
	4.1 Objectives and Scope
	4.2 Approach
	4.3 Mapping Backward Edges to Callsites

	5 Design and Implementation
	5.1 Handling Direct Calls
	5.2 Handling Virtual Calls
	5.3 Handling Function Pointer Based Calls
	5.4 Callees Integrity Checks
	5.5 Implementation Details

	6 Evaluation
	6.1 Protection Effectiveness
	6.2 Exploits Defended
	6.3 Security Analysis
	6.4 Runtime Overhead

	7 Limitations and Future Work
	8 Related Work
	9 Conclusion
	References

