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Abstract—Strategic game models of defense against stealthy,
targeted attacks that cannot be prevented but only mitigated
are the subject of a significant body of recent research, often
in the context of advanced persistent threats (APTs). In these
game models, the timing of attack and defense moves plays
a central role. A common assumption, in this literature, is
that players are indifferent between costs and gains now and
those in the distant future, which conflicts with the widely
accepted treatment of intertemporal choice across economic
contexts.

This paper investigates the significance of this assump-
tion by studying changes in optimal player behavior when
introducing time discounting. Specifically, we adapt a popu-
lar model in the games of timing literature, the FlipIt model,
by allowing for exponential discounting of gains and costs
over time. We investigate changes of best responses and the
location of Nash equilibria through analysis of two well-
known classes of player strategies: those where the time
between players’ moves is constant, and a second class
where the time between players’ moves is stochastic and
exponentially distributed.

By introducing time discounting in the framework of
games of timing, we increase its level of realism as well as
applicability to organizational security management, which
is in dire need of sound theoretic work to respond to
sophisticated, stealthy attack vectors.

Index Terms—games of timing, game theory, APT, discount-
ing

1. Introduction

Over the last years many successful high-profile tar-
geted attacks against supposedly well-protected, secure
targets have been documented such as Iranian industrial
control systems [1], the U.S. Office of Personnel Manage-
ment [2], [3], the U.S. Internal Revenue Service [4], large
telecommunication providers [5], [6] and major health
care insurance companies [7]. The perpetrators of these
attacks are commonly referred to as advanced persistent
threats (sAPTs) and their attacks often remain unnoticed
for a number of months, years, or possibly forever. In
fact, analysis of data about reported security incidents

shows that organizations need on average about 200 days
to detect successful attacks [8].

It is apparent that defense against APTs through per-
fectly effective preventative investments is an impossible
goal in most contexts [9], [10], which places additional
emphasis on mitigation strategies, in particular, against
stealthy threats. Such strategies may include in-depth se-
curity audits, or resetting of key parts of the IT infrastruc-
ture to disrupt successful security compromises. However,
due to the sparsity of data about such attacks, a principled
theoretical approach is needed to understand the economic
rationale for such mitigation strategies as part of a science-
based security management approach.

The consideration of time has to be a central strate-
gic element of economic decision-making to account for
stealthy threats. Research in this context can build on
a comprehensive body of literature of games of timing,
which emerged during the cold war period (see, for ex-
ample, [11]). More recently, this area of research received
the addition of a series of papers about the so-called FlipIt
game beginning with research by van Dijk et al. [12],
which captures the competitive dynamics to control a con-
tested resource under the assumption of attack stealthiness
and canonical player strategies.

While this line of work has explored diverse facets
of security decision-making, a crucial limitation of these
studies is that players are indifferent between costs and
gains now in comparison to those in the (distant) future,
which conflicts with the widely accepted treatment of in-
tertemporal choice across economic contexts by applying
some notion of discounting. In particular, discounting of
economic costs and gains with a monetary equivalent is
seen as uncontroversial. Importantly, also non-monetary
factors such as health benefits are typically associated with
a positive discount factor [13]; even though the debate
about the concrete specifics is more lively. Similarly,
security decision-making may involve reasoning about
monetary and non-monetary factors.

Economists distinguish between two high-level forms
of discounting: time discounting and time preference. The
former refers to any form of consideration to care less
about an uncertain future in economic terms, while the
latter refers to the robust empirical finding of the psycho-
logical tendency to prefer immediate utility over delayed
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outcomes [14]. Our work focuses on the former broad
definition.

As a matter of public policy and organizational
decision-making it is critical to deliberate about the ap-
propriate consideration of discounting. For example, in
the security context, underappreciation of long-term con-
sequences can falsely justify inadequate security measures
at the expense of future competitiveness (see the problem
context of cyberespionage). In our assessment, the debate
of appropriately accounting for intertemporal decision-
making and discounting in the context of security is still
in its infancy, which stands in contrast to other disciplines
– such as public health or environmental policy – where
it has been central (see, for example, [15], [16]). With
our work, we want to shed light on this challenge in the
particularly troubling context of stealthy security threat
mitigation.

In this work, we present and analyze a timing game
similar to FlipIt [12] in which two players vie for control
of a single resource. The players in our model apply
exponential discounting to both the resource value and
cost to flip ownership. Our model exhibits a number
of features that differentiate it substantially from FlipIt.
For example, the total cost of the resource is finite; the
defender has a unique advantage due to the value being
higher when time begins. Periodic strategies are also
not necessarily optimal. Our penultimate result is a full
characterization of the game’s Nash Equilibria under the
assumption that both players choose strategies from the
same restricted strategy space, where the space is among
exponential strategies or periodic strategies. These results
have practical implications for both the incentives of time-
based security decisions, as well as their corresponding
outcomes.

The remainder of the paper is organized as follows. In
Section 2, we discuss related work. Next, in Section 3, we
define our game-theoretic model. We analyze our model
in Section 4, and discuss implications of our findings in
Section 5. We offer concluding remarks in Section 6.

2. Related work

The past decade has seen a rapid increase in the use
of game theory as a tool for studying security-related
decision-making. Manshaei, Zhu, Alpcan, et al. [17] and
Laszka, Felegyhazi, and Buttyán [18] give an excellent
overview of the achievements in the space of general
security games. We restrict our discussion here to work
that is directly related to games of timing, and specifically
to FlipIt, a game that was invented by researchers at RSA
[12], [19] with the intent of capturing the essential nature
of advanced, stealthy attacks such as those performed by
entities that represent an APT. FlipIt has since received
significant attention from the research community, such
that there now exist many adapted and extended versions
of the original game. In the following, we classify this
literature by key distinguishing aspects.

Player types. Laszka, Johnson, and Grossklags
[20], [21] have investigated the influence of including
non-targeted attackers in the FlipIt model. Feng, Zheng,
Hu, et al. [22] and Hu, Li, Fu, et al. [23] modified the
game by considering insider threat actors. Feng, Zheng,
Hu, et al. [22] accomplish this by adding a third player,

an insider, to the model. The insider derives benefits from
the resource, when it is under control of the defender, by
selling information to the attacker who will learn about
ways to decrease the cost of attacks.

Attack model. In the basic FlipIt game, moves by
both the attacker and defender are assumed to be instan-
taneous and always successful. Farhang and Grossklags
[24] introduce the idea of imperfect defensive moves with
a quality level α ∈ [0, 1] that expresses the fraction of
the resource that remains under the control of the attacker
after a flip by the defender. Zhang, Zheng, and Shroff [25]
and Laszka, Johnson, and Grossklags [20], [21] capture
the realistic notion that attacks are complex and take a
random amount of time before taking effect. Johnson,
Laszka, and Grossklags [26] redefine the probability of
success of an attack as a function of time. They also
consider that the cost of flipping may be time-dependent.

Game duration. In the basic FlipIt game, the
game has an infinite time horizon and players compete
for the resource forever. Zhang, Zheng, and Shroff [25]
and Johnson, Laszka, and Grossklags [26] assume that the
game ends at a fixed pre-defined point in time. Pham and
Cid [27] propose a variation of the FlipIt game in which
each action makes it more costly for the opponent to take
over the resource again; effectively reducing the game to
a finite version.

Multiple resources. Laszka, Horvath, Felegyhazi,
et al. [28] consider two ways of composing resources: one
where the attacker receives gain when she is in control
of at least one resource (OR-model) and one where she
receives gain only when in control of all of the resources
(AND-model). Leslie, Sherfield, and Smart [29] generalize
this to a model where the attacker has to compromise
a threshold fraction of the defender’s resources before
receiving any gain. Zhang, Zheng, and Shroff [25] also
consider multiple resources, but model no interaction be-
tween them except through a resource constraint imposed
on players in the form of a maximum play frequency that
is shared across resources.

Stealthiness. Much of the follow-up work on
FlipIt has made changes to the assumption of perfect
stealthiness. Often the defender is assumed to be com-
pletely overt [20], [21], [24], [25]. Besides the conceptual
difference, overtness also allows for a different characteri-
zation of the FlipIt game as a convex optimization problem
[25]. Pham and Cid [27] add a new audit action to the
game, which allows a player to query the current owner
of the resource. The insider player introduced by Hu, Li,
Fu, et al. [23] is at risk of being caught when selling
information, which is integrated in her utility function.

Other Changes. Johnson, Laszka, and Grossklags
[26] consider a discretized version of a timing game
similar to FlipIt, in which players are only allowed to
make decisions at discrete points in time. Discretization of
time is especially relevant for defender moves, which often
have to be performed according to some schedule so as not
to interrupt business operations (e. g. only at night) [30].
Zhang, Zheng, and Shroff [25] impose budget constraints
on players that limit the maximum flip frequency, a prac-
tical consideration that is ignored in other treatments of
FlipIt. Pawlick, Farhang, and Zhu [31] define a meta-game
that consists of a signalling game and a FlipIt game. The
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parameters of the FlipIt game are defined by the outcome
of the signalling game and vice versa.

Behavioral studies. Nochenson and Grossklags
[32], Reitter, Grossklags, and Nochenson [33] and
Grossklags and Reitter [34] study the behavior of human
participants when playing FlipIt-like games against com-
puterized opponents.

We are unaware of any studies that investigate the
impact of discounting in FlipIt-like game models.

3. Model definition

This section introduces our model for stealthy timing-
based security games with discounting. In this two-player
game, a defender (D) and an attacker (A) are vying for
control over a central resource in an interaction that starts
at a set point in time t = 0 and that goes on forever.
Whoever is in control receives value from the resource at a
well-defined, constant rate. To obtain control, either player
can choose to pay a fixed cost to execute an instantaneous
move at any point in (continuous) time. The resource is
always controlled by the last player to execute such a
move; simultaneous moves cancel out and do not cause
the owner of the resource to change. We also refer to
moving as performing a ‘flip’. Neither player can observe
when the other player moves or when she is in control
of the resource. Both the value generated by the resource
and the cost of performing a move decrease exponentially
over time.

Figure 1 graphically depicts an instance of our game.
Blue and red dots on the time axis indicate defender
and attacker moves, respectively. Moves performed while
already in control of the resource have no effect (e. g. by
the defender at time t = 1.5), while moves performed
while the other player is in control of the resource trigger
a change of ownership (e. g. by the attacker at time t = 3).
The total income received by the defender for being in
control of the resource is proportional to the blue area;
for the attacker this is the red area. We refer to a player’s
total income as her gain. The discounted cost of a move is
proportional to the length of the dotted line coming from
its corresponding dot. We refer to the sum of all these
discounted costs as the player’s cost. Total player utility is
equal to the difference between gains and costs. Note that
the defender starts out in control of the resource; in terms
of gains, this gives her an advantage over the attacker
that we refer to as the defender advantage. The defender
advantage is proportional to the area colored in a darker
shade of blue. Note that on the figure, the defender is
more impatient than the attacker: her valuation of future
gains and costs decreases faster with the passing of time.

The remainder of this section formally defines all the
elements of our model and introduces the periodic and
exponential strategy spaces. Our model is equal to the
FlipIt model presented by van Dijk, Juels, Oprea, et al.
[12] with more general definitions for gains and costs that
allow discounting over time. Readers that are familiar
with FlipIt can limit their attention to Section 3.4 and
Section 3.5.

TABLE 1. TABLE OF SYMBOLS

Symbol Description
D The defending, “good” player (Section 3.1)
A The attacking, “bad” player (Section 3.1)
i An arbitrary player, i ∈ {D,A} (Section 3.1)
j The other player, j ∈ {D,A} \ {i} (Section 3.1)
ti Sequence of times at which player i moves (Section 3.2)
ti,n Time of the nth move by player i (Section 3.2)
t Sequence of times of moves by either player (Section 3.3)
tn Time of the nth move made by either player (Section 3.3)

GS(t) The game state function (Section 3.3)
λi Player i’s discount factor for gains (Section 3.1)
Λi Player i’s discount factor for costs (Section 3.1)
ci Player i’s (instantaneous) move cost (Section 3.1)
Gi Player i’s gain (Section 3.4)
G+
D The defender advantage (Section 3.4)
Gi The anonymous gain of player i (Section 3.4)
Gi|λ Anonymous gain of player i for discount rate λ (Sec-

tion 3.4)
Ci Player i’s cost (Section 3.5)
ui Player i’s benefit or utility (Section 3.6)
ηi Play rate of i playing an exponential strategy (Sect. 3.7.1)
ϕi Phase of i playing a periodic strategy (Sect. 3.7.2)
δi Period of i playing a periodic strategy (Sect. 3.7.2)
αi Play rate of i playing a periodic strategy (Sect. 3.7.2)

3.1. Players

There are two players: a defender D and an attacker
A. We will also often refer to player i; this is an arbitrary
player and can be either D or A. Player j then refers to
the other player.

Each player i is characterized by three real parameters:
her (instantaneous) move or flip cost ci > 0, her discount
factor for gains λi ∈ (0, 1), and her discount factor for
costs Λi ∈ (0, 1).

These discount factors indicate how she values in-
stantaneous gains and costs compared to gains and costs
in the future. As λi and Λi come closer to 1, player i
places a higher value on the future, or equivalently that
she discounts at a lower rate. Mathematically, we define
the discount rate as − lnλi. Note that we do not consider
the possibility of players valuing the future higher than
the present.

3.2. Player strategies

A player’s strategy determines when that player per-
forms moves. Because we assume that moves by players
are not observable (perfectly stealthy) and that players also
do not obtain any other information about the game as
it progresses, we can think of a player strategy simply
as a probability distribution over sets of times at which
the player moves. We can draw a set of moves from the
distribution before the game starts.

Formally, let

ti = (ti,0, ti,1, ti,2, . . .)

be a strictly increasing sequence of times at which player
i moves. It is not allowed for a player to move twice
at exactly the same point in time. The length of ti can
be finite or infinite. However, we require that there are
always a finite number of members of ti falling within any
finite time interval. At its most general, a player strategy
is simply a probability distribution over a set of possible
ti.

3



t

Attacker

Defender

t = 0

λtA

λtD

Figure 1. Instance of a discounted security game of timing with periodic play (ϕD = 1.5, δD = 3, ϕA = 3, δA = 4). Each tick mark denotes the
passing of one unit of time.

When deriving player gains and costs, we will not
reason in terms of distributions over ti. Instead, we limit
our attention to interesting subsets of the general strategy
space that have real-world relevance as well as a much
more convenient mathematical description. We introduce
these strategy spaces in Section 3.7.

3.3. Game state

Let

t = (tD ∪ tA) \ (tD ∩ tA) = (t0, t1, t2, . . .)

be the strictly increasing sequence of times of moves made
by either player, leaving out the points in time where both
players move simultaneously – moves made at the same
point in time cancel out and do not change the game state.
Let Actor : t → {D,A} identify who is making a move
at a certain time:

Actor : t 7→
{
D if t ∈ tD and
A if t ∈ tA.

(1)

We can then define the game state function GS: R+ →
{D,A}, which indicates who was the last to flip and is
therefore deriving value from the resource at time t:

GS: t 7→
{

Actor(max(t ∩ [0, t)) if t ∩ [0, t) 6= ∅ and
D otherwise.

(2)

Note that the defender starts out in control of the resource:
GS(t) always equals D at any time t before the first flip t0.
If the attacker never moves, player D remains in control
forever.

As we have seen, strategies determine distributions
over ti. We can also treat the ti as random variables and
GS as a stochastic process determined by the players’
strategies.

3.4. Player gains

The (discounted) gain of player i is the value that
she derives from being in control of the resource. Player
gains form the positive part of the expressions for player
utilities.

Let GSi : R+ → {0, 1} be the stochastic process
indicating whether player i is in control of the resource
at a certain time:

GSi : t 7→
{

1 if GS(t) equals i and
0 otherwise.

Player i’s (discounted) gain is then just the expected
exponentially weighted integral of GSi(t) over all of time,
normalized with respect to the total (discounted) value of
the resource:

Gi =
E
[∫ +∞
τ=0

GSi(τ)λτi dτ
]

∫ +∞
τ=0

λτi dτ
(3)

= (− lnλi) E

 +∞∫
τ=0

GSi(τ)λτi dτ

 .
As we have seen in Section 3.1, λi ∈ (0, 1) is the
discount factor of player i for gains. We use E[·] to denote
the expected value of the expression ·. The expectation
in equation (3) is with respect to the stochastic process
GSi(t), which is determined by both players’ strategies.

Scaling by the total value of the resource makes it
possible to interpret the gain as the exponentially weighed
“average” time that the player is in control of the resource,
and enables comparing gains and costs of players for
different discount rates. Without the scaling factor, players
with discount rates closer to one would usually have
higher gains than players with discount rates closer to
zero. With the scaling factor, gains are always values
between zero and one.

Note that if λD = λA, then the sum of the players’
gains is one. To see this, first observe that for every real
number τ , we have GSi(τ) + GSj(τ) = 1. If we also
have λi = λj , then adding Gi + Gj using Equation 3
allows us to do the sum inside the integral, in which case
it simplifies to 1.

3.5. Player costs

When players perform a move, this comes at a fixed
instantaneous cost of ci > 0. Costs are exponentially
discounted just like gains, but we allow players to discount
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costs using a discount factor Λi that is different from λi.
Instantaneous costs are unit-less and normalized with re-
spect to the value of the resource: when keeping the rate at
which the resource generates value fixed, an instantaneous
cost of one corresponds to the value of being in control of
the resource for one time unit. As an example: if a player
values control of the resource twice as high as another
player and can take control of the resource at the same
nominal cost, her value for ci will only be half that of the
other player.

Player i’s (discounted) cost is equal to the sum of all
discounted costs made by i, normalized with respect to
the total (discounted) value of the resource:

Ci =
E
[∑

τ∈ti ciΛ
τ
i

]
∫ +∞
τ=0

λτi dτ
= (− lnλi) E

∑
τ∈ti

ciΛ
τ
i

 . (4)

The expectation is taken over player i’s strategy. Scaling
again enables us to compare costs of players for different
discount rates λi. The absolute value of the cost can
also be easily interpreted as a fraction of the maximally
achievable gain. Executing a strategy with a cost greater
than one can never be better than dropping out, so the cost
of any reasonable strategy lies between zero and one.

3.6. Player utilities

Player i’s utility is simply the difference between her
gain and her cost:

ui = Gi − Ci. (5)

In the literature related to FlipIt, utility is also often
referred to as benefit.

Note that the scaling of gains and costs as explained in
the previous subsections corresponds to an affine transfor-
mation of utility values. Scaling therefore has no impact
on the behavior of rational players.

3.7. Restricted strategies

The description of player strategies as distributions
over time sequences as in Section 3.2 is useful for defining
the game state, but does not allow us to easily characterize
good strategies, or to more generally conduct a fruitful
analysis. Certain subsets of the general strategy space have
an elegant description and warrant special attention be-
cause of their real-world relevance. This section introduces
the two strategy spaces that we will discuss in this paper:
the exponential strategies, and the periodic strategies.

3.7.1. Exponential strategies. An exponential strategy is
characterized by having its flip inter-arrival times (the
time between flips) drawn from the same exponential
distribution. Exponential distributions have a probability
density function (PDF)

f(t) = ηe−ηt.

We refer to η as the flip rate, move rate or play rate of
the exponential strategy. The expected time between two
moves is equal to 1/η. An exponential strategy is fully
characterized by its play rate.

Exponential strategies are of special interest for two
reasons. Firstly, they have an elegant mathematical de-
scription. When specifying a strategy from a continuum
of choices, it is essential for such a strategy to have a short
specification. Exponential strategies are a good example of
this, being both mathematically rich and easy to specify.

Secondly, the memorylessness property of the expo-
nential strategy makes exponential strategies robust with
respect to information leakage. The stochastic process
corresponding to an exponential strategy is completely in-
dependent of time, which makes certain information about
a player who uses this strategy worthless. Specifically,
information that says when player i last moved or has
moved in the past does not allow player j to improve her
response. Exponential play is therefore, in a sense, a robust
strategy and a reasonable choice when playing against
players who might receive information of this kind.

3.7.2. Periodic strategies with random phase. A strat-
egy is a periodic strategy iff the time between consecutive
moves is constant. The time between moves is the period
of the strategy and we denote it by δ. The inverse of the
period, 1/δ, is the strategy’s play rate and we denote it
by α. In the context of periodic strategies, we refer to the
time of the first flip, ti,0, as the phase and denote it as ϕi.
Periodic strategies with random phase are those periodic
strategies whose phase is drawn uniformly random from
the positive values smaller than its period. A periodic
strategy with random phase is fully characterized by the
single real number δ. Formally,

ti,0 = ϕi ∼ U [0, δ] and
ti,n+1 − ti,n = ∆ti,n = δ for all n ≥ 0,

where U [0, δ] denotes the uniform distribution between 0
and δ.

The strategies played by both the defender and attacker
in Figure 1 are periodic with ϕD = 1.5, δD = 3, ϕA = 3
and δA = 4.

Periodic strategies have received a lot of attention
in the literature [12], [19], [24], [27], [28], [31]. They
are of special interest for several main reasons. The first
one is that decision-makers implement them in real-world
systems, an example being Microsoft’s “Patch Tuesday”.
We refer to Farhang and Grossklags [24] for more ex-
amples. Another reason is that when moves are stealthy,
periodic strategies tend to be good performers. In fact,
van Dijk, Juels, Oprea, et al. [12] showed that in the ab-
sence of discounting and as long as moves are completely
stealthy, the class of periodic strategies strictly dominates
the class of non-arithmetic renewal strategies. Specifically,
periodic strategies with period δ strictly dominate all non-
arithmetic renewal strategies with the same average inter-
arrival time, when playing against opponents that play
non-arithmetic renewal strategies or periodic strategies.
Finally, similar to exponential strategies, periodic strate-
gies also exhibit an elegant behavior with only a short
description.

4. Model analysis

Our analysis of the model proceeds as follows. First,
in Subsection 4.1, we derive structural properties of the
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function describing the player gains. This allows us to
exhibit a number of symmetries that will simplify our
proofs and make the subsequent results easier to state.
Then, in Subsection 4.2, we use these symmetries to
derive closed-form solutions for the function describing
player utilities. Using this formalism, in Subsection 4.3,
we investigate how player utilities change with respect to
player actions, by deriving key properties of the utility
functions’ partial derivatives. In Subsection 4.4, we use
these incentive properties to characterize the set of strate-
gic best responses for each player, under both strategic
regimes. Finally, in Subsection 4.5, we characterize all
Nash equilibrium configurations for the game.

4.1. Player gains

We begin our analysis with structural investigation of
the player gain function Gi, whose definition in terms
of the discount factor λi and game state GS is given by
Equation (3).

Let us partition time in two intervals: the time before
the first flip, [0, t0), and the time after the first flip,
[t0,+∞). In the case where neither player ever flips, the
first interval constitutes all of time and the second interval
is empty. We can split up the total expected gain as the
sum of the expected gains over both intervals.

Defender advantage. Over the period [0, t0), the
defender owns the resource simply because she starts out
in control. The expected gain of the attacker over [0, t0)
is zero. We refer to the expected gain that the defender
receives over [0, t0) as the defender advantage and denote
it as G+

D:

G+
D = (− lnλD) E

 t0∫
τ=0

λτD dτ

 = 1− E
[
λt0D

]
. (6)

In Figure 1, the defender advantage is drawn in a darker
shade of blue. Note that without discounting (that is, for
λD → 1), the defender advantage is zero as long as at
some point, at least one player has moved with nonzero
probability (the probability of t0 < t goes to one for t→
+∞). If neither player ever moves, the defender advantage
is always equal to one.

Anonymous gain. Over the course of the interval
[t0,+∞), GSi is independent of the identity of i (whether
i is D or A). The gain depends only on the player strate-
gies. We refer to the expected gain that player i accrues
over [t0,+∞) as player i’s anonymous gain, denoted by

Gi = E

 +∞∫
τ=t0

GSi(τ)λτi dτ

 . (7)

We can express attacker and defender gains in terms of
the anonymous gain function and the defender advantage.
The defender obtains the defender advantage in addition
to anonymous gain, whereas the attacker only receives
anonymous gain:

GD = G+
D +GD (8)

GA = GA. (9)

The fact that if the discount rates are the same, the
defender and attacker gain sum to one also allows an alter-
native expression of the defender advantage and defender
gain in terms of just the anonymous gain function:

If we denote the anonymous gain that player i would
get if her discount rate were λ by Gi|λ, we may write

G+
D = 1−GD −GA|λD (10)

GD = 1−GA|λD , (11)

In other words, the function Gi|λ fully determines de-
fender and attacker gains by Equations (9) and (11).

4.2. Player utilities

This subsection lists closed-form expressions for
player utilities when the attacker and defender both play
an exponential strategy (Sec. 4.2.1) as well as when they
both play periodically with random phase (Sec. 4.2.2).

4.2.1. Utilities for exponential play. We begin by con-
sidering the scenario in which the defender plays expo-
nentially with rate parameter ηD and the attacker plays
exponentially with rate parameter ηA.

Lemma 1 (Costs for exponential play). To player i, the
cost of executing the exponential strategy with move rate
ηi is:

Ci =
lnλi
ln Λi

ciηi, (12)

where Λi denotes player i’s discount factor for costs, λi
denotes player i’s discount factor for gains and ci denotes
player i’s immediate move cost.

Proof. We can compute the total discounted cost of flips
by player i directly as:

Ci = −(lnλi) ci

+∞∫
τ=0

Λτi ηi dτ =
lnλi
ln Λi

ciηi,

where ci is the (normalized) cost of a flip by player i.

If a player discounts gains and costs at the same rate
(λi = Λi), the formula for the cost is the same when
discounting as when not discounting. Notice that having
different values for λi and Λi has the same effect as
increasing the immediate flip cost (if gains are discounted
faster than costs) or decreasing the immediate flip cost
(if costs are discounted faster than gains) in a particular,
well-defined way.

Lemma 2 (Anonymous gain for exponential play). In
a discounted game of timing where both the defender
and the attacker are playing an exponential strategy, the
anonymous gain function is given by:

Gi =
ηi

ηi + ηj − lnλi
, (13)

where ηi denotes player i’s move rate and λi denotes
player i’s discount factor for gains.

Proof outline. Since we are deriving the anonymous gain
function, we are interested only in the time interval start-
ing at the first move: [t0,+∞). At any time in this
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Figure 2. Contour lines of player gains and utilities for exponential play and λD = λA = ΛD = ΛA = 0.5 and cD = cA = 0.18.

interval, the memorylessness property of the exponential
distribution implies that the probability pi of player i being
the last player to move remains constant over time. We
can state pi in terms of ηi and ηj . Multiplying pi by the
gain player i would obtain over the interval [t0,+∞), if
she were in control of the resource the entire time, yields
the anonymous gain function.

The full derivation is in Appendix A.

The players’ utility functions are easily derived from
the cost function and the anonymous gain function.

Theorem 1 (Utilities for exponential play). In a dis-
counted game of timing where both the defender and
the attacker are playing an exponential strategy, player
utilities are given by:

uD = 1− ηA
ηA + ηD − lnλD

− lnλD
ln ΛD

cD (14)

uA =
ηA

ηA + ηD − lnλA
− lnλA

ln ΛA
cA, (15)

where ηi denotes player i’s move rate, λi denotes player
i’s discount factor for gains, Λi denotes player i’s dis-
count factor for costs and ci denotes player i’s immediate
move cost.

Proof. This follows directly from Lemmas 1 and 2, the
definition of utility as the difference between gains and
costs (see Equation (5)), and Equations (9) and (11) that
express the utility of the attacker and the defender in terms
of the anonymous gain function.

Figure 2 illustrates the gains and utilities of defender
and attacker for exponential play. We see that generally,

increasing the play rate ηi causes player i’s gain to
rise. Increases in ηj cause player i’s gain to decrease.
The difference between GD and GA illustrates that the
defender advantage can be very significant, at least for
fairly high discount rates like in the figure. The defender
always achieves high benefit for attacker move rates that
are close to zero; while the attacker always has to move
at significant rates if she wants to obtain significant gain,
even if the defender does not move at all.

Notice that for λi → 1 the formulae for defender and
attacker gains become equal to:

lim
λD→1

GD = 1− lim
λD→1

GA|λD =
ηD

ηD + ηA

lim
λA→1

GA = lim
λA→1

GA|λA =
ηA

ηD + ηA
.

These equations confirm the results presented in van Dijk,
Juels, Oprea, et al. [12] for undiscounted games of timing.

4.2.2. Utilities for periodic play. We next consider the
scenario in which both players play a periodic strategy
with random phase.

Lemma 3 (Costs for periodic play). To player i, the cost
of executing the periodic strategy with period δi is:

Ci =
lnλi
ln Λi

ci
δi
, (16)

where Λi denotes player i’s discount factor for costs, λi
denotes player i’s discount factor for gains and ci denotes
player i’s immediate move cost.
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Figure 3. Contour lines of player gains and utilities for periodic play and λD = λA = ΛD = ΛA = 0.5 and cD = cA = 0.18.

Proof. The total cost of flips for a player i, who plays
periodically with period δi and phase ϕi, is given by:

Ci|ϕi = − lnλi

∞∑
i=0

ciΛ
ϕi+nδi = − lnλi

ciΛ
ϕi

1− Λδi
.

The total cost of moves by player i is then the expected
value of Ci|ϕi , taking expectations over the phases ϕi in
player i’s strategy. Phases are drawn uniformly from the
interval [0, δi), yielding:

Ci =

δi∫
0

1

δi
Ci|ϕi dϕi = − lnλi

ci
δi

1

1− Λδi

δi∫
0

Λϕi dϕi,

which is equal to Equation (16).

Note that the formula for the cost is the same as for
the exponential strategy with the same move rate. We can
make the same remark about the impact of the discount
factor for gains (λi) and the discount factor for costs (Λi).
Since using different discount rates has the same effect as
changing the immediate flip cost for periodic as well as
exponential play, we will assume that gains and costs are
discounted at the same rate in the remainder of this paper.

Lemma 4 (Anonymous gain for periodic play). In a dis-
counted game of timing where both the defender and the
attacker are playing a periodic strategy, the anonymous
gain function is given by:

Gi =

{
Gf if δi ≤ δj and
Gs otherwise,

(17)

where subscripts f and s refer to “fast” and “slow”,
implying δf ≤ δs, and

Gf =
−1

δiδj lnλi

(
δj −

λδii − 1

lnλi
− (δj − δi)λδii

)
(18)

Gs =
−1

δiδj lnλi

(
δj −

λ
δj
i − 1

lnλi

)
, (19)

and where δi denotes player i’s move rate and λi denotes
player i’s discount factor for gains.

Proof outline. Players only receive anonymous gain after
their moves. We can divide time in intervals that are de-
fined by a player’s moves and express the total anonymous
gain of a player as the sum of the gains she obtains over
the course of those intervals. By linearity of expectation,
a player’s expected gain equals the sum of expected gains
between moves.

Consider player i and define interval In as the time
between her nth and (n + 1)th move. We make the
following observations:

• At the beginning of the interval, player i is always
in control of the resource. If player j moves during
In, then player j takes control of the resource
starting from her fist move until the end of the
interval. If player j does not move during the in-
terval, then player i retains control of the resource
for the entire interval.

• Depending on whether player i is the faster or the
slower player, player j will always or sometimes
move over the course of In. If player j moves
faster, she flips at least once between any two flips
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by the slower player. If player j moves slower, she
moves once during In with probability δi/δj .

• If player j moves, she moves at a uniformly ran-
dom time between the start of the interval and the
point in time that is min{δi, δj} later.

We formalize these observations and obtain expressions
for player i’s expected gain over In given a phase ϕi.
We then take expectations over ϕi to obtain the expected
gain over the course of In. The sum of the expected
gains over all intervals forms a geometric series, yielding
Equations (18) and (19).

The full derivation is in Appendix A.

Notice that for λi → 1, the formulae for the anony-
mous player gains simplify significantly:

lim
λf→1

Gf = 1− δi
2δj

lim
λs→1

Gs =
δj
2δi

.

These equations confirm the results presented in van Dijk,
Juels, Oprea, et al. [12].

Theorem 2 (Utilities for periodic play). In a discounted
game of timing where both the defender and the attacker
are playing a periodic strategy, player utilities are given
by:

uD = 1−GA|λD −
lnλD
ln ΛD

cD (20)

uA = GA −
lnλA
ln ΛA

cA, (21)

where Gi|λ is the anonymous gafunction for periodic play
(Lemma 4), λi is player i’s discount factor for gains, Λi
is player i’s discount factor for costs and ci is player i’s
instantaneous move cost.

Proof. This follows directly from Lemmas 3 and 4, the
definition of utility as the difference between gains and
costs (see Equation (5)), and Equations (9) and (11) that
express the utility of the attacker and the defender in terms
of the anonymous gain function.

Figure 3 illustrates the gains and utilities of defenders
and attackers for periodic play. For similar attack rates,
the periodic strategies allow the attacker to obtain the re-
source significantly faster than the exponential strategies.
Consequently, the defender advantage is generally smaller
for periodic play.

4.3. Player incentives

This subsection provides several results which de-
scribe how player utilities change with respect to their
actions. We derive formulae for and properties of the
player incentives, which we define as the partial deriva-
tives of player utilities to their play rates. We consider
first exponential play and then move on to periodic play.

The results of this section will prove useful in our
discussion of best responses. Roots of the player incen-
tive function are locally optimal player strategies. Best
responses, which are the globally optimal player strategies
within players’ strategy spaces, must therefore be at such
roots.

4.3.1. Player incentives for exponential play. Here we
suppose that the attacker and defender both play ex-
ponential strategies with choice parameters ηA and ηD
respectively.

Lemma 5. Players’ incentives are strictly decreasing in
their play rates.

Proof. The partial derivatives of player utilities to their
play rate are given by:

∂uD
∂ηD

=
ηA

(ηD + ηA − lnλA)2
− cD (22)

∂uA
∂ηA

=
ηD − lnλA

(ηD + ηA − lnλA)2
− cA. (23)

Clearly, ∂ui
∂ηi

is strictly decreasing in ηi, since ηi is only
in its denominator and play rates cannot be negative.

4.3.2. Player incentives for periodic play. Here we
suppose that the defender and attacker both play periodic
strategies with play rates αD and αA respectively. Expres-
sions for player incentives and proofs of all of the lemmas
in this section can be found in Appendix B.

In the periodic strategy regime, the formula expressing
a player’s utility depends on whether she is the faster or
the slower player. Nevertheless, utility functions are still
continuous as a function of the players’ play rates. The
same turns out to be true for the player incentives.

Lemma 6. Players’ incentives are finite and incentive
functions are continuous in all their arguments, including
the players’ play rates.

Although players’ incentives are not strictly decreasing
in their play rates like incentives for exponential play, we
can show that they are also non-increasing.

Lemma 7. Players’ incentives are independent of their
play rate if they are the slower moving player, and strictly
decreasing in their play rate otherwise.

Given an opponent’s play rate, a player’s incentive for
any play rate of hers is therefore upper bounded by her
incentive when not playing. We will refer to this incentive
as her base incentive and to ∂ui

∂αi

∣∣∣
αi≤αj

as player i’s base

incentive function. We refer to the αj for which player
i’s base incentive is zero as the roots of player i’s base
incentive function.

Figure 4 illustrates the defender’s base incentive for
different values of λD and indicates the values of αD for
which her incentive is negative if λD = 0.6 ( ) by green
and red areas.

For periodic play, we are also interested in the change
in incentive with respect to the opposing player’s play
rate. This change depends on whether the defender is the
faster or the slower moving player.

Lemma 8. If the defender is the faster moving player
(αD > αA), then

• the defender’s incentive is strictly increasing in
αA, and

• the attacker’s (base) incentive is strictly decreas-
ing in αD.
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Lemma 9. If the defender is the slower moving player
(αD < αA), then

• the defender’s (base) incentive is first strictly in-
creasing, then strictly decreasing in αA, and

• the attacker’s incentive is decreasing, independent
of or increasing in αD, depending on αA.

We can make the following statements as corollaries
of Lemmas 8 and 9.

Corollary 1. The defender’s base incentive function has
zero, one or two roots. It is positive only for attacker play
rates that lie between these roots.

Corollary 2. The attacker’s base incentive function has
zero roots or one root. It is positive only for defender play
rates that lie between zero and its root.

4.4. Best responses

Building on the results of the previous subsection, this
subsection characterizes the best response strategies for
the attacker and defender. We begin with a discussion of
non-participatory responses and characterize when they
are optimal. These results apply equally to both strategy
regimes. We then characterize participatory best responses
for the exponential strategy regime. Finally we character-
ize participatory best responses for the periodic strategy
regime.

4.4.1. Best responses to a non-participating player.
Here we derive best strategies for attackers and defenders
in response to a non-participating opponent.

We start by nothing that while his opponent’s absence
makes the attacker likely to play, the opposite is true for
the defender.

Lemma 10. The unique best response of the defender to
a non-participating attacker is always not to play.

Proof. Suppose that the attacker does not play. If the
defender were to play at any strictly positive rate, she
would incur a strictly positive cost, without receiving any
increase in gain. It is therefore a strictly best response for
the defender not to play.

Lemma 11. If the attacker’s best response to a non-
participating defender is not to play, not playing is a best
response of his to any play rate by the defender.

Proof. If the defender does not participate, then the first
flip by the attacker results in full control of the resource
from that flip until the end of time. Supposing that the
attacker evaluates this first flip not to be a worthwhile
investment, then it is still not a worthwhile investment
when the defender is playing. In that case, the cost to the
attacker is the same as before, while the total value that
can be accumulated is still bounded by the total value
that can be accumulated after his first flip. Therefore,
not playing is still a best response for the attacker if the
defender is participating.

Further, we note that not participating being a best
response is related to both a player’s immediate move
cost and her discount rate.

Lemma 12. If player i’s move cost is high and/or her
valuation of future gains is low such that

ci ≥
−1

lnλi
, (24)

then not moving is a best response. If the inequality is
strict, then there cannot be other best responses.

Proof. A flip at any time t costs the player (− lnλi)λ
t
ici.

Irrespective of player i’s strategy space, the upper bound
on the gain that can result because of this flip is

(− lnλi)

+∞∫
τ=t

λτi dτ = λti.

Since the cost is greater than or equal to the potentially-
achievable gain, not participating is a best response. In the
case of a strict inequality, the the cost is strictly greater
than the potentially-achievable gain and not participating
is the only best response.

Lemma 13. For periodic or exponential play, not playing
being a best response for the attacker implies

cA ≥
−1

lnλA
.

Proof. A flip at time t costs (− lnλA)λtAcA. We will show
that by playing very infrequently, the total increase in gain
that can be attributed to every flip reaches λtA, where the
gain attributed to a flip is the gain that a player loses if he
does not perform that flip. Therefore, not playing being a
best response implies cA ≥ −1

lnλA
.

Formally, for any duration ∆ and probability p, there
exists a play rate such that the probability of two flips
happening within ∆ of each other is smaller than p. By
taking ∆ → +∞ and p → 0, a flip at time t causes
the attacker’s gain to increase by a value that approaches
λtA.

Note that Lemma 12 applies independent of any re-
strictions on player strategies. Lemma 13 similarly applies
to many general strategic environments, including the
environment with no restrictions on player strategies. A
restrictive space that includes either all exponential or all
periodic strategies is more than sufficient. The Lemma
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requires roughly that attacker be able to play arbitrarily
infrequently.

While outside the scope of this work, there do exist
more restrictive conditions under which the lemma would
not apply, such as variations requiring only periodic strate-
gies with a fixed maximum period.

4.4.2. Best responses for exponential play. Here we
consider the regime where both players are playing an
exponential strategy and at least one player is moving at
a non-zero rate. Our first result says that in this regime,
each player always has a unique best response to the action
of the other player.

Corollary 3. A player’s best response to any play rate by
the opposing player is always single-valued, and situated
at the (positive) root of her incentive function. If there is
no such root, her best response is to not move.

Proof. This follows from Lemma 5: since players’ incen-
tives are strictly decreasing in their own play rates, the
local optima of uD and uA are global optima.

The roots of the partial derivatives of players’ utilities
for exponential play to their play rates (Equations (22)
and (23)) have closed-form solutions and allow a fairly
simple analytic description of the best-response functions
for exponential play. We denote the best response of player
i to the strategy ηj by BRi(ηj).

Lemma 14 (Best-response functions for exponential play).
The attacker’s and defender’s best-response functions for
discounted exponential play are as follows:

BRD(ηA) = max

{
0,−ηA + lnλD +

√
ηA
cD

}
and

(25)

BRA(ηD) = max

{
0,−ηD + lnλA +

√
ηD − lnλA

cA

}
.

(26)

Proof. The best-response function follows directly from
Corollary 3. Solving Equation (22) for zeroes yields two
roots, one of which is always negative and the other one
equal to:

−ηA + lnλD +

√
ηA
cD
.

Solving Equation (23) for roots yields the attacker’s best-
response function.

Figure 5 shows an example of best-response curves for
parameters that yield three Nash equilibria. By inspecting
Equation (26) we can see that a decrease of λA simply
causes the attacker’s best-response curve to shift to the
left. Looking at Figure 5, we see that for large enough
λA the attacker’s best response first increases and then
decreases for increasing ηD. Decreasing λA shifts the red
curve to the left; once λA becomes small enough, the
attacker’s best-response curve becomes strictly decreasing
in ηD. For the defender’s best response, decreasing λD
increases the length of the vertical line at the bottom of
her best-response curve, increasing the minimum attack
rate that incites the defender to defend her resource.
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η A

cA = 0.75, λA = 0.995, cD = 0.16, λD = 0.42

(a) On a small scale
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cA = 0.75, λA = 0.995, cD = 0.16, λD = 0.42

(b) Zoomed in on the origin

Figure 5. Example of a set of attacker and defender best-response curves
for exponential play and parameters that yield three Nash equilibria ( ).

4.4.3. Best responses for periodic play. Here, we con-
sider the regime in which attacker and defender each play
a periodic strategy with play rates αA and αD respectively.

We know player i’s best response must always be a
root of the partial derivative of her benefit to her play
rate. From the properties stated in Lemma 7, we can
characterize the best-response function in terms of player
incentives.

Corollary 4. Player i’s best response to an opponent play
rate ᾱj can be characterized in terms of her base incentive
as follows.

• If her base incentive is strictly negative, then her
unique best response is not to play.

• If her base incentive is zero, then moving at any
play rate αi ∈ [0, ᾱj ] is a best response.

• If her base incentive is strictly positive, then her
unique best response is to play at the rate αi > ᾱj
for which her incentive is zero.

Proof. Player i’s utility when moving at rate ᾱi against a
player moving at rate ᾱj is equal to

ᾱi∫
α=0

∂ui
∂αi

∣∣∣∣∣αi=α
αj=ᾱj

dα.
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The first two implications therefore directly follow from
Lemma 7. The third implication also follows from
Lemma 7, provided that the player’s incentive becomes
negative for some play rate. This can easily be verified by
inspection of the incentive functions.

Corollary 4 and Lemmas 7 to 9 together indicate that
the players’ best-response curves are shaped like one of
the curves in Figures 6 and 7.

Corollary 5. The attacker’s best response to a defender
who does not move, BRA(0), is always single-valued.

Proof. This follows from Lemma 7, which states that
∂uA
∂αA

∣∣∣
αA≥αD

(and therefore ∂uA
∂αA

∣∣∣
αD=0

) is strictly decreas-

ing in αA.

Corollary 6. BRA(0) is strictly positive iff cA < −1
lnλA

.

Proof. This follows from Corollary 5 and Lemmas 12
and 13, which state the conditions under which not mov-
ing is a best response for the attacker.

Figure 8 offers insight into the properties of BRA(0).
The function illustrates the attacker’s incentive when he
is the faster player and the defender does not move. Con-
sistent with Lemma 7, we see that the attacker’s incentive
is strictly decreasing in αA, attaining its maximum value
of −1/ log λA for αA → 0. Circles ( ) indicate non-
zero BRA(0) at the intersection of the derivative of the
gain and the derivative of the cost. We see that higher
costs always lead to lower best responses until at some
point the best response is to drop out, as is the case for
λA = 0.3 ( ) and cA = 1.0. Higher or lower λA do not
always correspond to higher or lower best responses: for
cA = 0.4 the best response is faster for λA = 0.3 ( )
than for λA = 0.6 ( ), but for cA = 0.7 the opposite is
true.

There is no closed-form expression for BRA(0). How-
ever, locating its roots numerically can be very fast as
the player incentive function is easy to evaluate and well-
behaved.

4.5. Nash equilibria

4.5.1. Nash equilibria with non-participating player(s).
In this section we characterize all Nash equilibria in which
at least one player is not participating.

Theorem 3. If the attacker is playing a periodic or
exponential strategy, there is a Nash equilibrium in which
neither player moves iff

cA ≥
−1

lnλA
.

Proof. This follows from the fact that an exponential or
periodic attacker’s best response to a non-participating
defender is not to play iff cA ≥ −1/ lnλA (Lemmas 12
and 13), and the fact that the unique best response of the
defender to an absent attacker is not to play (regardless
of her strategy space) (Lemma 10).

Theorem 4. There is never a Nash equilibrium in which
the defender plays, but the attacker does not.

Proof. This follows immediately from Lemma 10.

The two previous theorems continue to hold for more
general strategy spaces, as mentioned after the proofs of
the relevant lemmas. However, for the remaining equilib-
ria, our characterizations require that both players adhere
to the same restricted strategy space, either exponential or
periodic.

Theorem 5. For exponential play, there exists at most one
equilibrium in which only the attacker moves at non-zero
rates. It exists iff cA < −1/ lnλA and

−η?A + lnλD +

√
η?A
cD
≤ 0,

where

η?A = − lnλA +

√
− lnλA
cA

.

Proof. This follows from the best response functions for
exponential play (Lemma 14).

Theorem 6. For periodic play, there exists at most one
equilibrium in which only the attacker moves at non-
zero rates. It exists iff BRA(0) > 0 and BRA(0) is not
strictly between the roots of the defender’s base incentive
function.

Proof. This follows from the fact that the defender’s best
response to BRA(0) is not to play iff her base incentive
is negative (Corollary 4) and the fact that this function is
only negative for attacker play rates that are not between
its roots (Corollary 1).

4.5.2. Nash equilibria with exponential strategies.
Now, we turn our attention to the equilibria in which
both players move at non-zero rates, beginning with Nash
equilibria in the exponential strategy regime.

Theorem 7. If η?D is a strictly positive root of
BRD(BRA(ηD)), and if BRA(η?D) is strictly positive,
then (η?D, η

?
A) := (η?D,BRA(η?D)) is a Nash equilibrium

in which both players play. There are up to two such η?D.
There are no other Nash equilibria in which both players
play.

Proof. The fact that (η?D, η
?
A) is a Nash equilibrium

and that there exist no other equilibria follows from
the definition of a Nash equilibrium and the single-
valuedness of BRD and BRA (Corollary 3). Looking at
BRD(BRA(ηD)), which under the assumption that η?D
and η?A are strictly positive is equal to

lnλD − lnλA −
√
ηD − lnλA

cA
(27)

+

√√√√ lnλA − ηD +
√

ηD−lnλA
cA

cA
,

we can see that finding the roots boils down to finding the
roots of a quadratic equation while keeping track of some
additional constraints that ensure the flipping rate is a real
number. This equation has up to two positive roots.

There is a closed-form solution for the values of η?D,
i. e. the roots of Equation (27). It is unsightly so we do
not list it here. Also note that the choice in Theorem 7
to look for the roots of BRD(BRA(ηD)) is arbitrary; we
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Figure 9. Example of a set of attacker and defender best-response curves
for periodic play and parameters that yield three Nash equilibria ( ).

could also look for the roots η?A of BRA(BRD(ηA)) for
which η?D = BRD(η?A) is strictly positive. This yields the
same result.

4.5.3. Nash equilibria with periodic strategies. Here we
address Nash equilibria in the periodic strategy regime.

Figure 9 gives an example of a set of best-response
curves for periodic play corresponding to parameters
yielding three Nash equilibria: one in which the attacker
moves and the defender does not and two where both
players move, one where the defender moves faster and
one where the attacker moves faster.

Characterizing all equilibria comes down to looking
for conditions for which the defender’s and the attacker’s
best response curves intersect. Some possibilities for in-
tersections were discussed in Section 4.5.1.

• Theorem 3 gave the condition under which there is
a Nash equilibrium in which neither player moves.
In terms of Figure 7, Theorem 3 describes when
the attacker’s best-response curve looks like Fig-
ure 7d. It also shows that there is an intersection
at (0, 0) iff it looks like Figure 7d, irrespective
of what the defender’s best-response curve looks
like.

• Theorem 6 gave the conditions for an equilibrium
where only the attacker moves. In terms of the
best-response curves of Figure 6 and Figure 7,
this corresponds to the case where BRA(0) — the
leftmost point on the attacker’s curve — is located
on one of the vertical parts of the defender’s best-
response curve.

As a step towards characterizing the equilibria in
which both players move, observe that moving at a rate
that is non-zero but still slower than the other player’s play
rate αj is only a best response for very specific values
of αj – those corresponding to the horizontal lines of
Figure 6 and the vertical line of Figure 7.

Corollary 7. In any Nash equilibrium where both players
play at non-zero rates, the faster player f plays at a rate
αf that is a root of the slower player’s base incentive
function. Player s is then indifferent between playing at
any rate in [0, αf ].

Proof. Let (αi, αj) be a Nash equilibrium. By Corol-
lary 4, playing at a lower rate than αf is a best response
for s only if she drops out or if player s’s base incentive
is zero for αf . The first possibility is ruled out by the
condition that both players move at non-zero rates.

Since the roots of the players’ base incentive functions
are the only play rates that can potentially be part of
an equilibrium, all that remains is to characterize the
conditions under which one of the slower player rates αs
makes playing αf a best response for player f . It turns
out that these conditions depend on whether player f is
the defender or the attacker.

Lemma 15 (Best-response with faster defender). Let ᾱD
be any strictly positive defender play rate. Then the fol-
lowing statements are equivalent:

• There exists a unique attacker play rate ᾱA ≤ ᾱD
to which ᾱD is a best response.

• The defender’s base incentive function is positive
for attack rate αA = ᾱD.

Proof. If ᾱD is a best response to ᾱA then

0 =
∂uD
∂αD

∣∣∣∣∣αD=ᾱD
αA=ᾱA

≤ ∂uD
∂αD

∣∣∣∣∣αD=ᾱD
αA=ᾱD

=
∂uD
∂αD

∣∣∣∣∣αD≤αA
αA=ᾱD

,

that is, the defender’s base incentive function is positive
for attack rate αA = ᾱD. The first step follows from the
definition of a best-response and the second step follows
from the fact that the defender’s incentive for defender
faster play is strictly increasing in the attackers play rate
(Lemma 8).

Now, assume that the attacker’s base incentive function
is positive for attack rate αA = ᾱD. We then know

0 ≤ ∂uD
∂αD

∣∣∣∣∣αD≤αA
αA=ᾱD

=
∂uD
∂αD

∣∣∣∣∣αD=ᾱD
αA=ᾱD

,

that is, the attacker’s incentive is positive when both
players move at rate ᾱD. We also know that

0 ≤ ∂uD
∂αD

∣∣∣∣∣αD=0
αA=0

≤ ∂uD
∂αD

∣∣∣∣∣αD=ᾱD
αA=0

,
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that is, for an attack rate of αA = 0, the defender’s incen-
tive is strictly negative when she moves at rate ᾱD. The
first step is due to not playing being the defender’s best
response to an attacker who is not playing (Lemma 10)
and the second step is due to the defender’s incentive for
faster play being strictly decreasing in αD (Lemma 8).
The defender’s incentive when playing at rate αD = ᾱD
is positive for an attack rate of αA = ᾱD and negative
for an attack rate of αA = 0. Continuity and strict
monotonicity of her incentive function in αA (Lemmas 6
and 8) then implies that her incentive is zero for some
unique ᾱA ∈ [0, ᾱD], implying that ᾱD is a best response
to this unique ᾱA.

Lemma 16 (Best-response with faster attacker). Let ᾱA be
any strictly positive attacker play rate. Then the following
statements are equivalent:

• There exists a defender play rate ᾱD ≤ ᾱA to
which ᾱA is a best response.

• The attacker’s base incentive function has a posi-
tive root α?D, and

ᾱA ∈ [min{BRA(0), α?D}, max{BRA(0), α?D}].

If α?D = BRA(0), then ᾱD can be any value in [0, ᾱA].
Otherwise, ᾱD is unique.

Proof outline. The proof of Lemma 16 is similar to the
proof of Lemma 15, but requires taking cases on the incen-
tive for faster play being strictly increasing, independent
of or strictly decreasing in the defender’s play rate. Which
of these cases applies is determined by the relative size of
BRA(0) to that of α?D. Appendix B lists the full proof.

The following theorems can be stated as corollaries to
Corollary 7 and Lemmas 15 and 16.

Theorem 8 (Equilibrium with faster defender). If the
attacker’s base incentive function has a root ᾱD > 0 and
the defender’s base incentive function is positive for attack
rate αA = ᾱD, then there exists a unique α?A ≤ ᾱD for
which (ᾱD, α

?
A) is an equilibrium. There are no other

equilibria in which both players move at non-zero rates,
and where the defender is the faster-moving player.

Theorem 9 (Equilibria with faster attacker). If the at-
tacker’s base incentive function has a strictly positive
root ᾱD, then for every strictly positive root α?A of the
defender’s base incentive function, the following implica-
tions hold:

• If BRA(0) = ᾱD = α?A, then all strategy profiles
in {(i, α?A)}i≤α?A are Nash equilibria.

• If BRA(0) < ᾱD, then α?A ∈ [BRA(0), ᾱD]
implies that there exists a unique ᾱD ≤ α?A such
that (ᾱD, α

?
A) is a Nash equilibrium.

• If BRA(0) > ᾱD, then α?A ∈ [ᾱD,BRA(0)]
implies that there exists a unique ᾱD ≤ α?A such
that such that (ᾱD, α

?
A) is a Nash equilibrium.

There are no other equilibria in which both players move
at non-zero rates, and where the attacker is the faster-
moving player.

5. Discussion

This section discusses the results from the previous
sections and their impact. Specifically, we look at how
discounting affects optimal player behavior (Section 5.1),
the challenges associated with selecting one equilibrium
out of many (Section 5.2), the possibility of achieving
perfect security by raising an attacker’s costs (Section 5.3),
and some advantages and disadvantages for adopting a
periodic strategy in a timing game. (Section 5.4).

5.1. The impact of discounting

For both the defender and the attacker, increasing
impatience has the effect of increasing the ‘effective’
cost of moving, because move costs have to be paid up
front whereas gains are accrued over time. Discounting
also breaks the symmetry between attacker and defender
behavior, because the defender is always the player who
starts out in control of the resource. As such, the defender
always receives gain when the resource is most valuable
even if she does not move.

In contrast, the attacker has to attack at reasonably
high rates if he wants to obtain the resource near the
beginning of the game, when it is most valuable. This
was illustrated by Figures 2 and 3. For equal move costs
(cA = cD) and impatience (λA = λD), the best response
of the defender to a certain attack rate α is therefore
always strictly lower than the best response of the attacker
to the same rate of play α by the defender.

Figure 10 illustrates the effect of increasing impatience
on optimal attacker and defender behavior for periodic
play. Discounting always causes the defenders to move
more slowly. Both the increase in effective flip cost and the
fact that she starts out in control cause the best-response
attack rate to decrease when the discount rate increases.
She starts playing only at higher attack rates, drops out
at lower attack rates and optimal flip rates are lower for
all attack rates in between. For attackers, the effect is
more subtle. The increase in effective flip cost and the
need to obtain the resource while it still has value work
against each other. For low attack rates by the defender,
decreasing λA can increase the best response; this is also
illustrated by Figure 8. For some higher attack rate by
the defender, the increased flip cost effect is always the
stronger effect. The best response then always decreases
with increased impatience. The same observations hold
for exponential play.

5.2. The equilibrium selection problem

In undiscounted FlipIt, there is exactly one equilib-
rium solution for periodic and for exponential play. When
discounting, there can be up to three equilibria, giving rise
to the equilibrium selection problem [35]. As an example,
Table 2 and Table 3 give the Nash equilibrium payoffs
for the equilibria for periodic and exponential play that
are visible on Figure 9 and Figure 5.

For periodic play, Table 2 shows that equilibrium #1 is
the preferred outcome for the attacker. Equilibrium #2 is
the preferred outcome for the defender. Equilibrium #3 is
not preferred by either player; in fact, both players prefer
equilibrium #2 over equilibrium #3. For exponential play,
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Figure 10. Attacker and defender best-response curves for periodic play for varying values of λi.

TABLE 2. NASH EQUILIBRIA AND THE CORRESPONDING ATTACKER
AND DEFENDER BENEFITS FOR PERIODIC PLAY,

cA = 0.18, λA = 0.99, cD = 0.101 AND λD = 0.069.

# αD αA Defender utility Attacker utility
1 0 0.16 0 0.94
2 0.30 0.92 0.69 0.67
3 2.30 2.52 0.38 0.09

TABLE 3. NASH EQUILIBRIA AND THE CORRESPONDING ATTACKER
AND DEFENDER BENEFITS FOR EXPONENTIAL PLAY,
cA = 0.75, λA = 0.995, cD = 0.16 AND λD = 0.42.

# ηD · 100 ηA · 100 Defender utility Attacker utility
1 0 7.67 91.87/100 88.11/100
2 3.54 19.17 81.92/100 68.21/100
3 23.31 32.54 73.45/100 33.34/100

Table 3 shows that the equilibrium in which the defender
does not move is preferred by both players.

Notice that especially for the parameters for exponen-
tial play, the attacker and the defender can both obtain a
good outcome in equilibrium (considering that a benefit of
1 corresponds to the player being in charge of the resource
100% of the time at no cost, a benefit of around 0.9 is
very high). This is because competition for the resource
is limited, since the players value the resource differently
over time (λD � λA).

Although multiple equilibria can exist, most combina-
tions of λD, λA, cD and cA yield just a single equilibrium.
Notably, if there are multiple equilibria, there is at least
one equilibrium in which the defender does not move. This
can be verified visually by looking at the best-response
curves of Figure 9; if BRA(0) does not fall on one of
the vertical parts of the defender’s best-response curve,
the attacker’s and the defender’s curve only intersect at a
single point.

This does not necessarily mean that the possibility for
multiple equilibria is generally unimportant. The situation
where the defender does not move is quite common in
real-world systems. While this could be an equilibrium
outcome, there might be other equilibria and it is unlikely
to be the optimal outcome from the defender’s point of
view; it is only a good outcome for both players when λA
and λD are very different.

5.3. Raising costs for perfect security

One of the main results in timing-based security games
is that it is possible to disincentivize attacking the resource
to such an extent that perfect security is achieved by
performing defensive moves so quickly that the attacker
drops out. Discounting adds to this the possibility that the
resource’s defenses (proportional to cA) are strong enough
to dissuade attackers even if the resource is not otherwise
defended – giving rise to an equilibrium at (0, 0).

An advantage of such a defense is that it is very
strong. Firstly, if there is an equilibrium at (0, 0), it is
always the only one. Secondly, not playing is the strictly
dominant strategy for the attacker even when considering
a wide array of sensible strategies, not just periodic or
exponential or even renewal strategies. Thirdly and lastly,
the equilibrium at (0, 0) remains even if the attacker were
to obtain information during the game. The only caveat
is that cA is not only proportional to the (expected) cost
to breach the resource’s defenses, but is also inversely
proportional to the value that the resource has to the
attacker.

In our opinion, the existence of equilibria at (0, 0) is
not just a gimmick but an essential property of a model
that claims to be representative of real-world security
interactions. In practice, most attackers do not attack most
systems, e. g. because they do not consider them valuable
enough. This situation is captured when discounting: an
uninteresting resource would give rise to a high cA and
an equilibrium at (0, 0). Without discounting an attacker
will always attack any undefended resource even if doing
so is costly and the resource has low value, albeit at low
rates.

Even if cA is not high enough to induce the equi-
librium (0, 0), a higher cA will increase the defender’s
control over the resource and/or decrease the need for
her to perform defensive moves. Discounting limits the
total value of the resource and player benefits to finite
numbers that allow economic interpretation: what value
can we expect to extract from the resource in terms of
present-day units of value. This allows the exploration of
whether an initial security investment that increases the
intrinsic security of the resource (for example, installing
a firewall or having an external firm audit a system’s
security settings) makes economic sense or not – such
an investment would increase cA, which can increase the
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expected fraction of time during which the defender is in
control of the resource or can decrease the need for her to
perform defensive moves. Similarly, an initial investment
in a more streamlined security mechanism might make it
easier to perform a defensive move, decreasing cD.

If we only allow the defender to invest, we can
optimize her benefit by using her equilibrium benefits
as the outcome of an investment level that determines
cA. Considering an initial investment phase for both the
defender and the attacker gives rise to a two-stage game,
in which players first pick their investment levels, fixing
the parameters ci for the timing game that follows.

5.4. Advantages of periodic play

One of the major theoretical results for games of
timing without discounting is that the class of periodic
strategies strictly dominates the class of non-arithmetic
renewal strategies (see Sect. 3.7.2). This theoretical result
has been a major motivator for the interest in periodic
strategies. In this section, we discuss this result in the
context of discounted games. We conclude that although
the periodic strategy still performs well, the result as stated
for games without discounting no longer holds and the
good performance of the periodic strategy is partly due
to an “unfair” advantage it holds over the exponential
strategy regarding the timing of the first move.

We start by noting that the periodic strategy still seems
to perform well compared to many renewal strategies,
among them the exponential strategy. By a derivation
similar to the proof of Theorem 2, we find that the
discounted gain of a periodic attacker with period δA
facing an exponential defender with play rate ηD is equal
to:

GA =
1− e−δAηDλδAA
δAηD − δA lnλA

. (28)

Comparison of the periodic attacker and the benefit of the
exponential attacker (Theorem 1) shows that the benefit
of the periodic attacker is always strictly higher, for any
play rate.

Theorem 10. An attacker with discount rate λA who is
playing an exponential strategy with play rate ηA that is
facing a defender who is playing an exponential strategy
with play rate ηD, can strictly increase her benefit by
playing a periodic strategy with play rate αA = ηA
instead.

Proof. The gain of the exponential attacker is equal to the
anonymous gain given by Theorem 1. The gains for the
periodic attacker facing an exponential attacker are given
by Equation (28). For equal play rates, the cost of an
exponential strategy and a periodic strategy are the same.
Proving the theorem comes down to showing that the gain
for the periodic attacker is strictly greater than the gain
for the exponential attacker:

αA
ηD + αA − lnλA

< αA
1− e−ηD/αAλ1/αA

A

ηD − lnλA
.

By moving the first term of the right hand side to the left
hand side, multiplying both sides by −(ηD − lnλA) and

substituting x = 1
αA

(ηD − lnλA), the inequality becomes
1

1+x > e−x, which strictly holds since x > 0.

We do not, however, think this result indicates that
the periodic strategy is really inherently superior to the
exponential strategy (or other renewal strategies). The
periodic strategy differs from the exponential strategy in
that the phase (the time of the first move) is not drawn
from the same distribution as the inter-arrival times (see
Section 3.7). In fact, for the periodic strategy the average
time until the first move is only half the average inter-
arrival time. This is an obvious advantage for the attacker,
who wants to take control of the resource as fast as
possible. If we lift the restriction on the first move for the
exponential distribution and allow the attacker to move
at t = 0, the attacker can essentially “switch positions”
with the defender, obtaining the defender advantage at
a fixed cost of cA. Depending on the game parameters,
such an “immediate exponential strategy” can again yield
higher gains than the periodic strategy of Equation (28).
Picking the phase from a uniform distribution U [0, 2δ]
“fixes” the average time until the first move, but is is
unclear why such an artificial change — which would
decrease the attacker’s benefit — is the right one to
make. Why would the attacker play according to this
changed periodic strategy if she can increase her gain by
playing the unchanged periodic strategy? Changing the
distribution of the phase would also mean that the periodic
and exponential strategies with the same move rates no
longer cost the same to execute.

When discounting, allowing both players to play
strategies like “flip at t = 0” would prevent us from defin-
ing a sensible outcome for all strategy combinations; and
this motivates our use of randomness for the attacker’s first
move. Because it is unclear what is the “right” way to flip
periodically or restrict strategies, we chose to work with
versions of periodic and exponential strategies that seemed
most consistent with those introduced in the original FlipIt
paper, and used in numerous extensions. Future work can
motivate alternative restrictions on strategy spaces within
the context of discounting.

6. Conclusions

The timing of security decisions is an aspect of se-
curity policy-making that is generally under-appreciated.
The models that do consider the timing of offensive and
defensive actions, do not usually consider the impact
that the passing of time can have on the valuation of
a resource. In this paper, we have extended games of
timing to allow for exponential discounting of gains and
costs over time. We derived formulae for player gains
and benefits for exponential and periodic player strategies
and characterized the Nash equilibria for exponential and
periodic play.

Discounting allows the interpretation of gains and
costs over time in terms of present-day units of value,
allowing a more straight-forward interpretation of gains
and costs. We have shown that discounting significantly
influences optimal player behavior, and that it impacts
defenders and attackers in different ways, breaking the
symmetry between them. Discounting allows the model
to predict a very common equilibrium outcome, in which
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the attacker does not attack an uninteresting resource
even if the defender does not perform defensive moves.
Somewhat surprisingly, we have also seen that discounting
can give rise to solutions with multiple equilibria.

In future work, we plan to analyze other, descriptive
ways of discounting as well as classes of strategies that
can change over time.
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Appendix A.
Derivation of anonymous player gains

This appendix gives detailed derivations of the anony-
mous player gains for exponential and periodic play.

A.1. Exponential play

Lemma 2 (Anonymous gain for exponential play). In
a discounted game of timing where both the defender
and the attacker are playing an exponential strategy, the
anonymous gain function is given by:

Gi =
ηi

ηi + ηj − lnλi
, (13)

where ηi denotes player i’s move rate and λi denotes
player i’s discount factor for gains.

Proof. Remember that t0 denotes the time at which the
first move by either player happens (Section 3.3) and that
the anonymous gain of player i is the expected value of
i’s gain over the interval [t0,+∞).

The probability of player i being the first player to flip
is equal to the probability of player j performing her flip
after the first flip of player i, computable as:

pi =

+∞∫
τi=0

ηie
−ηiτi

+∞∫
τj=τi

ηje
−ηjτj dτj dτi

=
ηi

ηi + ηj
.

Because the exponential distribution is memoryless,
this probability is equal to the chance with which i was the
last player to execute a flip at any point in time following
the first flip. Consequently, at any point in time in the
interval [t0,+∞), the probability of player i being in
control of the resource is equal to pi.

Player i’s gain when in control during the entire
interval [t0,+∞) is equal to

− lnλi

+∞∫
tD=0

ηDe
−ηDtD

+∞∫
tA=0

ηAe
−ηAtA

+∞∫
τ=min{tD,tA}

λτi dτ dtA dtD

= − (lnλi) ηDηA

+∞∫
tD=0


tD∫

tA=0

e−ηAtA−ηDtD
+∞∫

τ=tA

λτi dτ dtA

+

+∞∫
tA=tD

e−ηAtA−ηDtD
+∞∫

τ=tD

λτi dτ dtA

 dtD

=
ηA + ηD

ηA + ηD − lnλi
. (29)

Multiplying pi and Equation (29) yields player i’s
anonymous gain:

Gi =
ηi

ηi + ηj − lnλi
. (30)

A.2. Periodic play

For periodic play, we derive the gain of the slower and
the faster player separately. In the proofs below, s refers
to the slower moving player and f to the faster moving
player, by which we mean that δf ≤ δs.
Lemma 17. For periodic play, the expected anonymous
gain of the slower player is given by:

−1

δsδf lnλs

(
δf −

λ
δf
s − 1

lnλs

)
.

Proof. We can express the total anonymous gain of the
slower player as the sum of the gains that she gets
between her moves (she does not get any anonymous
gain before her first move). By linearity of expectation,
we can therefore derive the slower player’s expected total
anonymous gain as the sum of expected gains between
her moves.

Consider any interval between two subsequent moves
of the slower player. At the beginning of the interval, the
slower player is always in control. At some point during
the interval, the faster player moves, and the slower player
loses control. Assuming phase ϕs for the slower player
and assuming that it takes the faster player ∆n units of
time to re-take control after the slower player’s nth move
(∆n ≤ δs), the gain obtained by the slower player between
her nth and (n+ 1)th move equals:

− ln(λs)

ϕs+nδs+∆n∫
τ=ϕs+nδs

λτs dτ = λϕs+nδss (1− λ∆n).
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Since the faster player moves periodically with random
phase, ∆n is a random variable that is uniformly dis-
tributed between 0 and the δf . Assuming phase ϕs, the
expected gain obtained by the slower player between her
nth and (n+ 1)th move is therefore:

1

δf

δf∫
∆n=0

λϕs+nδss (1− λ∆n) d∆n

=λϕs+nδss

(
1− λδf − 1

δf ln(λs)

)
.

Taking expectations over ϕs yields the expected gain of
the slower player between her nth and (n+ 1)th move:

1

δs

δs∫
ϕs=0

λϕs+nδss

(
1− λ

δf
s − 1

δf ln(λs)

)
dϕs

=
λnδss

δs

(
1− λ

δf
s − 1

δf lnλs

) δs∫
ϕs=0

λϕss dϕs

=
λnδss

δsδf lnλs

(
δf −

λ
δf
s − 1

lnλs

)(
λδss − 1

)
Finally, compute the total expected gain of the slower
player as a geometric series by summing up the expected
gains of all intervals:

+∞∑
n=0

λnδss

δsδf lnλs

(
δf −

λ
δf
s − 1

lnλs

)(
λδss − 1

)
=

1

δsδf lnλs

(
δf −

λ
δf
s − 1

lnλs

)(
λδss − 1

) +∞∑
n=0

λnδss

=
−1

δsδf lnλs

(
δf −

λ
δf
s − 1

lnλs

)
.

Lemma 18. For periodic play, the expected anonymous
gain of the faster player is given by:

−1

δsδf lnλf

δs − (δs − δf )λ
δf
f −

λ
δf
f − 1

lnλf

 .

Proof. This proof follows along the lines of the proof of
Lemma 17: we compute the faster player’s expected gain
between her nth and (n + 1)th flip and her total gain as
the sum over the expectations of all such intervals.

Consider any interval between two subsequent moves
of the faster player. At the beginning of the interval, the
faster player is always in control. During some intervals,
the slower player moves once; during others she does
not move. If the slower player does not move during the
interval, the faster player is in control of the resource for
its entire duration. Assuming phase ϕs, she then obtains
a gain of:

− lnλf

ϕf+(n+1)δf∫
τ=ϕf+nδf

λτf dτ = λ
ϕf+nδf
f (1− λδff ).

Assuming that the slower player does move and that she
does so ∆n units of time after the beginning of the
interval, the faster player obtains a gain of:

− lnλf

ϕf+nδf+∆n∫
τ=ϕf+nδf

λτf dτ = λ
ϕf+nδf
f (1− λ∆n

f ).

Taking expectations over the slower player’s strategy,
we see that she does not move during an interval with
probability (1− δf

δs
). If she does move, she does so exactly

once at a point in time that is distributed uniformly random
over the interval. Assuming phase ϕf , the expected gain
obtained by the faster player between her nth and (n+1)th
move is therefore:

λ
ϕf+nδf
f

(1− δf
δs

)
(1− λδff ) +

δf
δs

δf∫
∆n=0

1− λ∆n

f

δf
d∆n


=λ

ϕf+nδf
f

(1− δf
δs

)
(1− λδff ) +

δf
δs

1−
λ
δf
f − 1

δf lnλf




=λ
ϕf+nδf
f

1−
(

1− δf
δs

)
λ
δf
f −

1

δs

λ
δf
f − 1

lnλf


=
λ
ϕf+nδf
f

δs

δs − (δs − δf )λ
δf
f −

λ
δf
f − 1

lnλf

 .

Take expectations over ϕs to obtain the expected gain of
the faster player between her nth and (n+ 1)th move:

λ
nδf
f

δs

δs − (δs − δf )λ
δf
f −

λ
δf
f − 1

lnλf

 δf∫
ϕf=0

λ
ϕf
f

δf
dϕf

=
λ
nδf
f

δsδf lnλf

δs − (δs − δf )λ
δf
f −

λ
δf
f − 1

lnλf

(λδff − 1
)
.

Finally, compute the total anonymous gain of the faster
player as a geometric series by summing up the expected
gains of all intervals:

+∞∑
n=0

λ
nδf
f

δs − (δs − δf )λ
δf
f −

λ
δf
f −1

lnλf

δsδf lnλf

(
λ
δf
f − 1

)

=
δs − (δs − δf )λ

δf
f −

λ
δf
f −1

lnλf

δsδf lnλf

(
λ
δf
f − 1

) +∞∑
n=0

λ
nδf
f

=−
δs − (δs − δf )λ

δf
f −

λ
δf
f −1

lnλf

δsδf lnλf

Lemma 4 simply combines Lemmas 17 and 18.
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Appendix B.
Equilibria for periodic play

B.1. Player incentives

This section lists the player incentive functions for
periodic play and provides proofs for the properties that
are listed in Section 4.3.2.

B.1.1. Incentive functions. Remember that we defined a
player’s incentive as the partial derivative of her utility to
her play rate.

Defender incentives. The defender incentives for
both faster and slower play are as follows:

∂uD
∂αD

∣∣∣∣∣
αD≥αA

=
−αA
lnλD

h(αD)− cD (31)

∂uD
∂αD

∣∣∣∣∣
αD≤αA

=
−αA
lnλD

h(αA)− cD (32)

where

h(α) =
λ

1/α
D − 1

lnλD
− λ

1/α
D

α
.

Attacker incentives. The attacker incentives both
faster and slower play are as follows:

∂uA
∂αA

∣∣∣∣∣
αA≥αD

=
−αD
lnλA

(
1

αD
− f(αA)

)
− cA (33)

+
(αA − αD)(αA − lnλA)

α2
A lnλA

λ
1/αA
A

∂uA
∂αA

∣∣∣∣∣
αA≤αD

=
−αD
lnλA

(
1

αD
− f(αD)

)
− cA, (34)

where

f(α) =
λ

1/α
A − 1

lnλA
.

From these expressions, continuity and finiteness fol-
lows directly.

Lemma 6. Players’ incentives are finite and incentive
functions are continuous in all their arguments, including
the players’ play rates.

Proof. Simply verify that verify that Equations (33)
and (34) yield finite values and the same value for
αA = αD, and that the same goes for Equations (31)
and (32).

B.1.2. Incentive changes with respect to own play rate.

Lemma 7. Players’ incentives are independent of their
play rate if they are the slower moving player, and strictly
decreasing in their play rate otherwise.

Proof. To see that the defender’s and attacker’s incentive
for slower play is constant with respect to αD and αA
respectively, simply note that αD and αA are not part of
their respective function definitions.

To see that the defender’s incentive for faster play is
strictly decreasing in αD when she is the faster player,
compute its partial derivative to αD:

∂2uD
∂α2

D

∣∣∣∣∣
αD>αA

= −αA
α3
D

λ
1/αD
D .

This function is strictly negative.
To see that the attacker’s incentive for faster play is

strictly decreasing in αA, compute its partial derivative to
αA:

∂2uA
∂α2

A

∣∣∣∣∣
αA>αD

= −λ
1/αA
A

α4
A

(
αAαD − (αA − αD) lnλA

)
.

This function is strictly negative.

B.1.3. Incentive changes with respect to opponent play
rate. This section lists the properties of incentive changes
with respect to the opponent’s play rate.
Remark 1 (Constant total gain). The resource is always
under the control of either the defender or the attacker.
If both players have the same discount rates, the sum of
player gains is therefore constant. Because we normalize
gains, this constant is equal to one. Writing i’s and j’s gain
as a function of play rates and discounting parameters, we
have:

Gi(αi, αj , λ) +Gj(αi, αj , λ) = 1,

for arbitrary λ. Specifically, this also means that we can
write i’s gain as a function of j’s gain:

Gi(αi, αj , λi) = 1−Gj(αi, αj , λi).
In the remainder of this section, we will simply state that
player gains sum to one under the understanding that Gj
should be evaluated using i’s discounting parameters.
Remark 2 (Opposite incentive changes). Given equal dis-
counting parameters of the defender and the attacker, the
sum of player gains is constant (see Remark 1). Therefore,
a change of one player’s gain then causes an equal but
opposite change of the other player’s gain. In other words,
we can write:

∂ui
∂αj

∣∣∣∣∣
αi≥αj

= − ∂uj
∂αj

∣∣∣∣∣
αj≤αi

+ cj − ci.

We can consequently also write the change of player i’s
incentive with respect to player j’s move rate as:

∂2ui
∂αj∂αi

∣∣∣∣∣
αi≥αj

=
∂2ui
∂αi∂αj

∣∣∣∣∣
αi≥αj

= − ∂2uj
∂αi∂αj

∣∣∣∣∣
αj≤αi

.

Note that this, together with Lemma 7, immediately im-
plies that the rate of change of player i’s incentive with
respect to player j’s play rate, is constant with respect to
player j’s play rate.

Lemma 8. If the defender is the faster moving player
(αD > αA), then

• the defender’s incentive is strictly increasing in
αA, and

• the attacker’s (base) incentive is strictly decreas-
ing in αD.
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Proof. To see that the attacker’s base incentive is strictly
decreasing in αD, compute its first partial derivative to
αD:

∂2uA
∂αD∂αA

∣∣∣∣∣
αA<αD

= −1 + g(αD, λA)

(lnλA)2
,

where

g :

R+
0 × (0, 1)→ (−1, 0)

(α, λ) 7→
(

lnλ
α − 1

)
λ1/α.

(35)

The partial derivative of Equation (34) is strictly negative,
because g is bounded between -1 and 0. One way to see
this is by verifying that g(α, λ) is strictly decreasing in
α,1 limited by 0 for αD → 0+ and limited by −1 for
αD → +∞.

The statement about the defender’s incentive function
follows from Remark 2.

Lemma 9. If the defender is the slower moving player
(αD < αA), then

• the defender’s (base) incentive is first strictly in-
creasing, then strictly decreasing in αA, and

• the attacker’s incentive is decreasing, independent
of or increasing in αD, depending on αA.

Proof. To see that the defender’s base incentive is first
strictly increasing, then strictly decreasing in αA, compute
its first and second partial derivative to αA:

∂2uD
∂αA∂αD

∣∣∣∣∣
αD<αA

=
1 + g(αA, λD)

(lnλD)2
− λ

1/αA
D

α2
A

(36)

∂3uD
∂α2

A∂αD

∣∣∣∣∣
αD<αA

=
αA + lnλD

α4
A

λ
1/αA
D . (37)

In Equation (36), g is as in Equation (35). The second
partial derivative (Equation (37)) starts out negative, has
a single root at αA = − lnλD and then becomes positive,
or equivalently the first partial derivative (Equation (36))
is decreasing in αA for αA ∈ [0,− lnλD) and increasing
in αA for αA ∈ (− lnλD,+∞). To see that the first
derivative is first positive and then negative, compute its
value for αA → 0, at αA = − lnλD and for αA → +∞:

lim
αA→0+

∂2uD
∂αA∂αD

∣∣∣∣∣
αD<αA

=
1

(lnλD)2
> 0

∂2uD
∂αA∂αD

∣∣∣∣∣
αA=− lnλD
αD<αA

=
e− 3

e

1

(lnλD)2
< 0

lim
αA→+∞

∂2uD
∂αA∂αD

∣∣∣∣∣
αD<αA

= 0.

The first derivative of defender’s base incentive starts out
positive, decreases until it becomes strictly negative, then
starts increasing again from lnλD at such a slow rate

1. It’s partial derivative to α,

∂g

∂α
(α, λ) = −

(lnλ)2

α3
λ1/α

is strictly negative.

that it does not become positive for any finite αA. In
conclusion, the defender’s base incentive is first strictly
increasing, then forever strictly decreasing in αA.

The statement about the attacker’s incentive function
follows from Remark 2.

B.2. Periodic best responses for faster play

Lemma 19. Assume that BRA(0) > 0 and let α?D be the
root of the attacker’s base incentive function. Then for all
play rates

αA ∈ [min{BRA(0), α?D}, max{BRA(0), α?D}] and
αD < αA,

the following implications hold:

• If BRA(0) < α?D, then the attacker’s incentive is
strictly increasing in αD.

• If BRA(0) = α?D, then the attacker’s incentive is
zero for all αD ∈ [0, α?D].

• If BRA(0) > α?D, then the attacker’s incentive is
strictly decreasing in αD.

Proof. If BRA(0) ≤ α?D, we have from the definitions of
α?D and BRA(0):

0 =
∂uA
∂αA

∣∣∣∣∣αA≤αD
αD=α?D

=
∂uA
∂αA

∣∣∣∣∣αA=BRA(0)
αD=α?D

=
∂uA
∂αA

∣∣∣∣∣αA=BRA(0)
αD=0

,

implying:

α?D∫
ᾱD=0

∂2uA
∂αD∂αA

∣∣∣∣∣αD=ᾱD
αA=BRA(0)

dᾱD = 0.

Because ∂2uA
∂αD∂αA

∣∣∣
αA≤αD

and ∂2uA
∂αD∂αA

∣∣∣
αA≥αD

are both

independent from αD (Remark 2), this is equal to:

BRA(0)
∂2uA

∂αD∂αA

∣∣∣∣∣αA≥αD
αA=BRA(0)

+ (38)

(α?D − BRA(0))
∂2uA

∂αD∂αA

∣∣∣∣∣αA≤αD
αA=BRA(0)

= 0.

If α?D = BRA(0), Equation (38) implies that:

∂2uA
∂αD∂αA

∣∣∣∣∣αA≥αD
αA=BRA(0)

= 0,

and consequently that the attacker’s incentive when play-
ing at rate αA = α?D = BRA(0) is equal to zero for all
αD ∈ [0, α?D].

If α?D > BRA, Equation (38) and the fact that the
attacker incentive for slower play is strictly decreasing in
αD together imply

∂2uA
∂αD∂αA

∣∣∣∣∣αA≥αD
αA=BRA(0)

> 0,

and consequently that the attacker’s incentive is always
strictly increasing in αD if αA ≥ BRA(0) and αD < αA.
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Lastly, if BRA(0) > α?D, we have from the definition
of α?D and the fact that the incentive of the faster player
is decreasing in her play rate that:

0 =
∂uA
∂αA

∣∣∣∣∣αA≤αD
αD=α?D

=
∂uA
∂αA

∣∣∣∣∣αA=α?D
αD=α?D

>
∂uA
∂αA

∣∣∣∣∣αA=BRA(0)
αD=α?D

,

implying:

∂uA
∂αA

∣∣∣∣∣αA=BRA(0)
αD=0

>
∂uA
∂αA

∣∣∣∣∣αA=BRA(0)
αD=α?D

,

which in turn implies:

∂2uA
∂αD∂αA

∣∣∣∣∣αA=BRA(0)
αD≤αA

< 0,

and consequently that the attacker’s incentive is strictly
decreasing in αD for all αD ≤ BRA(0).

Lemma 16 (Best-response with faster attacker). Let ᾱA be
any strictly positive attacker play rate. Then the following
statements are equivalent:

• There exists a defender play rate ᾱD ≤ ᾱA to
which ᾱA is a best response.

• The attacker’s base incentive function has a posi-
tive root α?D, and

ᾱA ∈ [min{BRA(0), α?D}, max{BRA(0), α?D}].
If α?D = BRA(0), then ᾱD can be any value in [0, ᾱA].
Otherwise, ᾱD is unique.

Proof. Assume that ᾱA is a best response to ᾱD. Then,
since the attacker’s incentive for faster play is strictly
decreasing in αA:

0 =
∂uA
∂αA

∣∣∣∣∣αA=ᾱA
αD=ᾱD

≤ ∂uA
∂αA

∣∣∣∣∣αA=ᾱD
αD=ᾱD

=
∂uA
∂αA

∣∣∣∣∣αA≤αD
αD=ᾱD

.

Because the attacker’s base incentive is strictly decreasing
in αD, this implies that the attacker’s base incentive is zero
for some α?D ≥ ᾱD.

Now, assume that BRA(0) ≤ α?D. Then, from the
definition of BRA(0) and the fact that the attacker’s
incentive is non-decreasing in αD by Lemma 19, we have:

0 =
∂uA
∂αA

∣∣∣∣∣αA=BRA(0)
αD=0

≤ ∂uA
∂αA

∣∣∣∣∣αA=BRA(0)
αD=ᾱD

. (39)

Because the attacker incentive for faster play is strictly
decreasing in his play rate, we have:

0 =
∂uA
∂αA

∣∣∣∣∣αA≤αD
αD=α?D

=
∂uA
∂αA

∣∣∣∣∣αA=α?D
αD=α?D

≥ ∂uA
∂αA

∣∣∣∣∣αA=α?D
αD=ᾱD

.

(40)

Since the attacker’s incentive is non-increasing in her
own play rate, these two inequalities imply that the at-
tacker’s incentive is zero for some ᾱA ∈ [BRA(0), ᾱD].
For BRA(0) ≥ α∗D, the reasoning is the same but the
inequalities in Equations (39) and (40) are reversed, so
ᾱA ∈ [ᾱD,BRA(0)].

Now assume that there exists a α?D ≥ 0 for which
the attacker’s base incentive is zero and that ᾱA ∈
[BRA(0), α?D].

Assume BRA(0) = α?D. The fact that any ᾱA is a
best response to any αD in [0, ᾱA] follows directly from
Lemma 19.

Assume BRA(0) < α?D. Since the attacker’s incentive
for faster play is strictly decreasing in her play rate, we
have:

0 =
∂uA
∂αA

∣∣∣∣∣αA=BRA(0)
αD=0

≤ ∂uA
∂αA

∣∣∣∣∣αA=ᾱA
αD=0

.

Since his base incentive is decreasing in αA, we also have:

0 =
∂uA
∂αA

∣∣∣∣∣αA≤αD
αD=α?D

=
∂uA
∂αA

∣∣∣∣∣αA=α?D
αD=α?D

≥ ∂uA
∂αA

∣∣∣∣∣αA=ᾱA
αD=α?D

From Lemma 19, we know that the attacker’s incentive
is strictly increasing in αD. Therefore, there is precisely
one value ᾱD ≤ ᾱA for which the attacker’s incentive
when playing ᾱA is zero and to which ᾱA consequently
is a best response. For BRA(0) > α?D, the reasoning is
identical but the inequalities above are reversed and the
attacker’s incentive is strictly decreasing in αD.
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