
Hey Google, What Exactly Do Your Security Patches Tell Us?
A Large-Scale Empirical Study on Android Patched Vulnerabilities

Sadegh Farhang ∗

Pennsylvania State University
smf5604@psu.edu

Mehmet Bahadir Kirdan ∗

Technical University of Munich
bahadir.kirdan@tum.de

Aron Laszka
University of Houston
alaszka@uh.edu

Jens Grossklags
Technical University of Munich
jens.grossklags@in.tum.de

Abstract
Android has the largest market share among smartphone plat-
forms worldwide with more than one billion active devices.
Like other platforms, security patches play a pivotal role in
keeping Android devices safe from the exploitation of known
vulnerabilities. Previous research efforts have documented
many attacks, vulnerabilities, and defenses in the Android
ecosystem. However, no previous work has studied Android
vulnerabilities and their implications on consumers, public
vulnerability disclosure, and the Android ecosystem together.

In this paper, we perform a comprehensive study of 2,470
patched Android vulnerabilities that we collect from different
data sources such as Android security bulletins, CVEDetails,
Qualcomm Code Aurora, AOSP Git repository, and Linux
Patchwork. In our data analysis, we focus on determining
the affected layers, OS versions, severity levels, and common
weakness enumerations (CWE) associated with the patched
vulnerabilities. Further, we assess the timeline of each vulner-
ability, including discovery and patch dates.

We find that (i) even though the number of patched vul-
nerabilities changes considerably from month to month, the
relative number of patched vulnerabilities for each severity
level remains stable over time, (ii) there is a significant de-
lay in patching vulnerabilities that originate from the Linux
community or concern Qualcomm components, even though
Linux and Qualcomm provide and release their own patches
earlier, (iii) different AOSP versions receive security updates
for different periods of time, (iv) for 94% of patched Android
vulnerabilities, the date of disclosure in public datasets is not
before the patch release date, (v) there exist some inconsis-
tencies among public vulnerability data sources, e.g., some
CVE IDs are listed in Android Security bulletins with detailed
information, but in CVEDetails they are listed as unknown,
(vi) many patched vulnerabilities for newer Android versions
likely also affect older versions that do not receive security
patches due to end-of-life.

∗Sadegh Farhang and Mehmet Bahadir Kirdan equally contributed to this
work.

1 Introduction

Modern mobile phones have become an integral part of our
lives. They are the central information hub for many users, har-
boring deeply personal information, and are also the conduit
for many economically relevant transactions, such as mobile
banking or healthcare. As a result, the focus of cybercriminals
and other attackers has also shifted towards this context. Thus,
it is essential to keep smartphones secure with particular em-
phasis given to central key functions such as the operating
system (OS), like Android and iOS.

In our work, we focus on Android, the mobile operating
system developed by Google and released under open-source
licenses as the Android Open Source Project (AOSP). The
first commercial Android device was launched in September
2008, and Android now has the largest market share among
smartphone platforms worldwide with more than one billion
active devices [8].

Similar to other software vendors, Google provides
(monthly) security bulletins, which contain the details of
patched vulnerabilities affecting multitudes of Android de-
vices. Google has been publishing its Android security bul-
letins starting from August 2015 to the present [40]. Similar
to Google Android security bulletins, some other vendors ini-
tiated their own security bulletins. For instance, Samsung and
LG started to publish security bulletins in October 2015 and
in May 2016, respectively [61, 69].

There has been extensive work to find vulnerabilities in
the Android ecosystem, such as [92, 93, 101], in addition to
enhancing its security, e.g., [79, 91]. Despite these efforts,
we observe an increase in the number of attacks and vul-
nerabilities. In 2016, the total number of publicly disclosed
vulnerabilities for all platforms (i.e., all vendors and product
versions) reached 6,447. However, the number increased to
14,714 in 2017 and maintained this upward trend in 2018 by
reaching 16,555 [72].

In this paper, we perform the most comprehensive analysis
of Android vulnerabilities, to the best of our knowledge. We
create a dataset containing 2,470 patched vulnerabilities with

1



their detailed information by scraping multiple data sources,
e.g., Android security bulletins, CVEDetails, Google Gits.
This dataset enables us to perform multiple analyses to better
understand security in the Android ecosystem. In the follow-
ing, we summarize our findings.

• We document the expected behavior that Google does
not provide updates for all affected OS versions due to
end-of-life (EOL), which is the point in time at which a
company ceases to create any further updates (including
patches) for a given OS version. However, many patched
vulnerabilities are likely common among different OS
versions. Therefore, OS versions that reached their EOL
are vulnerable to many vulnerabilities, which are patched
for newer versions. This practice puts consumers of out-
dated operating systems at risk.

• We find that different OS versions receive security up-
dates for different periods of time. For example, the dif-
ference in introduction dates of versions 4.4 and 4.4.4 is
about 8 months; however, version 4.4 stopped receiving
updates 22 months before version 4.4.4 reached EOL.
This difference in duration of receiving security support
differentiates among its consumers. Consumers who up-
date their OS are rewarded by receiving security support
for a longer period of time.

• Some Android vulnerabilities originate from other re-
sources, e.g., Qualcomm and Linux. We observe a sig-
nificant delay from the Android security team to provide
patches for these vulnerabilities, while Qualcomm and
Linux provide and release their own patches earlier. The
average delays for Qualcomm and Linux are 307.8 and
324.9 days, respectively.

• We study the patch release dates, fix-commit dates, and
public repository disclosure dates for patched vulnera-
bilities. We find that for the majority, i.e., 94%, the patch
release date occurs before or in the same month as the
public disclosure date, which can be considered a pru-
dent, secure practice. We discuss whether disclosure that
predates fixing and patching places consumers at risk.

• We determine the time difference between the introduc-
tion of the first line of code associated with a vulnerabil-
ity and the publication time of a security bulletin, which
is called maximum vulnerability lifetime. We find that the
average maximum vulnerability lifetime is about 1350
days, which provides an understanding of how good the
state of the art security tools are in terms of detecting
and fixing Android vulnerabilities.

• Even though the monthly number of patched vulnerabil-
ities for each severity level1 changes considerably, we

1Google uses the name severity ratings. Here, we use severity levels
instead of severity ratings.

find that the relative number of patched vulnerabilities
for each severity level has a similar distribution mean
each year.

• We observe some inconsistencies between Android secu-
rity bulletins and CVEDetails. Some CVE IDs are listed
in Android Security bulletins with detailed information,
while in CVEDetails those CVEs often remain unknown.

The remainder of this paper is organized as follows. In
Section 2, we discuss related work. In Section 3, we pose our
research questions. We describe our data collection method-
ology and our dataset in Section 4, which is followed by
the presentation of our results in Section 5. We discuss our
findings in Section 6 and limitations in Section 7. We offer
concluding remarks in Section 8.

2 Related Work

Mobile devices contain lots of sensitive and private informa-
tion. As a result, security should be an integral part of the
Android ecosystem. Significant research efforts have been
spent on investigating attack techniques on Android, finding
vulnerabilities, and designing a more secure infrastructure in
Android [79, 93, 98, 99]. Similar to other platforms, within
the Android ecosystem security patches are developed and
issued in a regular fashion to maintain device security. Con-
trary to previous works, we follow a different approach to
investigate the overall practices related to vulnerability dis-
closure and security patching in the Android ecosystem by
gathering and analyzing Android security bulletins. While
the previous research on Android-related vulnerabilities and
their implications is sparse [87], software updates, as well
as Android security, have been investigated from different
perspectives [77, 83, 84].

2.1 Android-Related Vulnerabilities

Most closely related to our work, Linares-Vásquez et al. [87]
conducted an empirical study based on the collection of 660
Android-related vulnerabilities mined from Android security
bulletins, CVEDetails and XML feeds provided by NVD.
They investigated three issues. First, they studied the CWE
hierarchies and the types of vulnerabilities affecting Android.
Second, they studied the Android layers affected by vulner-
abilities. Third, they investigated the time intervals between
the introduction date of the vulnerability and its fix date. Note
that they mined the patched vulnerabilities up to November
2016. On the contrary, we collect 2,470 patched vulnerabili-
ties in Android from August 2015 up to January 2019, which
is more comprehensive. Moreover, our study not only covers
all of their analysis with a more comprehensive dataset, but
also studies new issues. These new investigations include, but
are not limited to, the duration of security support for different

2



versions and the delay in patching vulnerabilities originating
from Linux and Qualcomm.

2.2 Software Updates

Several works investigate the delivery and installation of
patches across devices. Nappa et al. [90] analyzed the life
cycle of vulnerabilities in client applications by observing
the deployment of patches on users’ devices. They used the
Worldwide Intelligence Network Environment (WINE) as
their data source and found that the patching rates differ
among applications. Mathur and Chetty [89] studied the issue
of semi-automatic updates in Android mobile devices and
the impact of user experiences on update behavior. Taking
a similar research focus, Edwards et al. reported that purely
automatic updates are subject to failure [78]. Considering the
issues related to full security automation, human behavior
and vendor policies (in our case, we mostly focus on Google)
remain an integral part of the security decision-making pro-
cess [74, 96].

From the user perspective, there are several works that study
the role of humans regarding software updates and upgrades.
Vaniea and Rashidi [97] found six stages that users go through
during their software updates. These six stages are awareness,
deciding to update, preparation, installation, troubleshooting,
post-state of the update. Farhang et al. [81] conducted a survey
to better understand the relevant factors for upgrade decisions
in Microsoft operating systems by recruiting 239 participants.
They studied how users perceive privacy issues associated
with OS upgrade decisions, and whether security constitutes
a significant decision-making factor.

Frei et al. [82] also investigated the life cycle of Microsoft
and Apple vulnerabilities by defining a new metric called
0-day patch rate. They defined it as the number of vulnera-
bility patches that a vendor releases when the vulnerabilities
are publicly disclosed. Using this metric, they compared Ap-
ple with Microsoft in terms of their security performance
and concluded that while Apple shows an ascending trend,
Microsoft is more stable than Apple with regard to the av-
erage number of unpatched vulnerabilities. Further, Li and
Paxson [86] scraped 3,000 vulnerabilities that belong to 682
different open-source software projects and studied the patch
development life cycle.

Shahzad et al. [94] conducted an exploratory measurement
study of 46,310 vulnerabilities disclosed from 1988 to 2011
concerning different software vendors. Their main goals were
to analyze disclosure trends, as well as the evolution of CVSS
scores and so-called vector metrics such as confidentiality
impact, access complexity, and availability impact. One of
their findings was that the annual number of disclosed vulner-
abilities has stopped increasing since 2008, which is opposite
to what we are observing now in the Android context.

2.3 Economics of Software Updates and An-
droid Security

Arora et al. [76] investigated the relation between software
vulnerability disclosure and patch release time. They found
that disclosure accelerates patch release, and open source
vendors are quicker in releasing the patches. Alhazmi and
Malaiya [75] focused on different vulnerability discovery
models in operating systems and compared the results of the
models with each other by performing statistical tests. One of
the limitations of their model was that it did not differentiate
among vulnerabilities with different severity levels.

Jo [84] proposed a model for examining competition in-
tensity in the context of patching security vulnerabilities for
free-of-charge software products. She found that an increase
in market concentration improves vendor response in patch-
ing vulnerabilities. To test the model, she focused on the
web browser market. Farhang et al. [80] studied the issue of
competition in a different domain, i.e., the competition in the
Android ecosystem and customization of different vendors’
offerings which may result in security issues. To solve that is-
sue, they proposed a regulatory fine model, which incentivizes
a certain level of investment in security while decreasing the
price of products.

A set of studies also investigates the ecosystem around
so-called bug bounty platforms, which host vulnerability dis-
covery programs for different companies and offer (monetary)
incentives for white hat hackers to participate [85, 88, 102].
While a number of companies offering IoT and mobile ser-
vices participate in bug bounty programs, Android is not a
primary focus of these platforms.

3 Study Design

To have a better and systematic understanding of Android se-
curity vulnerabilities and patches from different perspectives,
we focus on the following five research questions.

RQ1: How have severity distribution and root causes of
patched Android vulnerabilities evolved over time?

Google has published 42 monthly Android security bul-
letins since August 2015 until the time of data collection,
January 2019. Each of these monthly security bulletins con-
sists of several Android vulnerabilities and their patch details.
To have a better understanding of these vulnerabilities, it is
essential to investigate their overall distribution over time. To
achieve this, we first investigate the severity levels of patched
Android vulnerabilities.We also study the trend in the number
of patched vulnerabilities. Next, we classify the vulnerabili-
ties based on their Common Weakness Enumerations (CWE).
This enables us to recognize what the common causes of vul-
nerabilities are. These results can help Android developers
to identify problematic practices and areas that necessitate
heightened attention to prevent such common causes of vul-
nerabilities.

3



RQ2: Is the duration of security support equal for differ-
ent AOSP versions?

Google has 28 Android API levels and has released 63
different AOSP versions since 2008 [1]. Most of these ver-
sions are still used by consumers. For example, at the time of
writing (January 2019), the market shares of versions Froyo
and Ginger are 0.02% and 0.25%, respectively [63]. However,
Google stops providing security updates for each version after
some time. For instance, Google’s policy for Pixel devices
is as follows: “Pixel phones get security updates for at least
3 years from when the device first became available on the
Google Store, or at least 18 months from when the Google
Store last sold the device, whichever is longer. After that, we
cannot guarantee more updates” [66]. In this question, we
investigate how long each Android version receives security
patch updates. As a result of this investigation, we observe
that Google has provided security patch updates for some
versions for shorter periods of time than for other versions.
For example, the difference in introduction dates of version
4.4 and version 4.4.4 is about 8 months. However, version
4.4 stopped receiving updates 22 months earlier. We also in-
vestigate the patched AOSP versions and the affected AOSP
versions over time. We can demonstrate that the Android se-
curity team does not provide security patch updates for all
affected versions because older versions have reached their
end-of-life. Considering that most AOSP versions are still
used by consumers, this practice leaves many devices and
consumers unprotected.

RQ3: How long does it take for Google to patch vulnera-
bilities originating from other resources?

Besides vulnerabilities that are specific to Android, there
are vulnerabilities that affect other related key software build-
ing blocks. For instance, kernel development is driven by
the Linux community, which patches kernel-related vulner-
abilities separately. Qualcomm components are used in An-
droid and Qualcomm also patches their Qualcomm-related
vulnerabilities by itself. In our Android dataset, we find 1092
Qualcomm-related and 213 kernel-related patched vulnera-
bilities, and they all have references that point to their cor-
responding repositories. These repositories provide detailed
information about the patch including the fix-commit date.
We investigate the time gaps between the last fix-commit date
and the published date on Android security bulletins. Thus,
we can calculate how long it takes for Google to publish Qual-
comm and Linux patched vulnerabilities in Android security
bulletins.

RQ4: Are vulnerabilities in Android patched before their
public disclosure?

Google publishes the patched vulnerabilities on its monthly
security bulletins with an exact bulletin publication date. This
date can also be considered as patch release date. For exam-
ple, in the January 2019 security bulletin, it is remarked that
“the Android security bulletin contains details of security vul-
nerabilities affecting Android devices. Security patch levels

of 2019-01-05 or later address all of these issues” [39]. As a
result, we use a term called patch release date that indicates
the publishing date of a patched vulnerability on its security
bulletin as well as the patch release for that vulnerability. We
also use public disclosure date to specify when vulnerability
details are publicly available in public datasets like CVEDe-
tails. Considering that some of the patched vulnerabilities
have references that navigate to Git repositories, we also re-
trieve the last commit dates that fix the vulnerability and we
refer to it as last commit date or short commit date. In an
ideal and secure situation, the ordering of these three notions
should typically be as follows. The last commit date should
be first and the public disclosure time should not be earlier
than the patch release date. We investigate the actual ordering
of these three notions in Android and their respective frequen-
cies. For example, we can evaluate whether a patch is released
no later than the public disclosure date of the corresponding
vulnerability.

RQ5: How long does it take to patch a vulnerability?
We use a term called vulnerability lifetime that indicates

the time difference between a vulnerability introduction and
its publishing time on the bulletin. The aim of this research
question is to find the distribution of vulnerability lifetime
for vulnerabilities with different severity levels. This gives
us a better implicit understanding of how good the state of
the art security tools are in terms of detecting and fixing
Android vulnerabilities. Likewise, this analysis provides an
indication whether we invest enough resources to reduce the
vulnerability lifetime considering the huge market share and
impact of Android devices in our daily lives.

4 Data Collection Methodology

In this section, we describe the collection process for the
dataset to provide answers to the research questions posed
in Section 3. The research questions shape our data collec-
tion methodology and indicate what information we need to
provide answers.

Our main source of data are the Android security bulletins
for the date range from August 2015 to January 2019 [40].
Note that August 2015 is also the start date for publication
of the security bulletins. However, the security bulletins do
not provide all our required information regarding Android
vulnerabilities, like CWE types and public disclosure dates.
Therefore, we also crawl the website CVEDetails [50]. In the
following, we describe the details of our web scraper.

4.1 Web Scraper

Considering that the mentioned websites do not provide
JSON, XML or any exportable formats for the vulnerabil-
ities and their details, it is essential to implement a web
scraper. Our scraper is implemented in Python 3.6 [68], with

4



the help of its libraries called BeautifulSoup [44] and Sele-
nium Browser Automation [70]. During the scraping, there
is a possibility that the server blocks the client if the server
receives lots of consecutive requests from one particular IP
address. We choose Selenium as it opens a web browser and
navigates between the pages like a normal user does. Since it
provides a small time gap between each consecutive request,
it decreases the likelihood of blocking.

4.1.1 Security Bulletins Dataset

Figure 1 shows an example snippet from our JSON document,
which illustrates its general structure. At the first level, we use
three keys for each security bulletin object. The first key is
timestamp, which shows the Unix timestamp when a bulletin
was published. The second key is formatted_date, which rep-
resents timestamp in a human-readable time format. The last
key is cves, which contains the details of all vulnerabilities
and their patches that are published in a particular security
bulletin. Under the cves key, all vulnerabilities are grouped by
their severity levels. There are four different severity levels in
Android security bulletins: low, moderate, high, and critical.
For example, if the severity level of a vulnerability is critical,
then this vulnerability is placed under the critical key. An-
droid has its own security team, who define their own metrics
for severity levels of Android vulnerabilities [41]. As a result,
these severity levels are different from commonly used sever-
ity levels such as version 2 and version 3 CVSS scores [67].
In our security bulletin dataset, we use the Android security
team’s severity levels.

We also scrape the following information from Android
security bulletins: CVE, which is the ID of a vulnerability;
Type; Updated AOSP Versions; Date reported; and Refer-
ences. Note that these fields might have different names on
different security bulletins. For instance, the field Updated
AOSP Versions has different names, such as Affected Versions
used in August 2015 [14] and Updated Versions used in De-
cember 2015 [16]. To avoid confusion, we use the same name
updated AOSP versions throughout this paper.

Similarly, the field References also has more than one name.
In early security bulletins, some of the following names have
been used: “Bug(s)” [17], “Bug(s) with AOSP Links” [16], and
“Bugs with AOSP links” [18]. In the latest security bulletins,
the term References is used. As a result, we use references
throughout the paper for all above terms. Each reference is a
link that navigates to a corresponding code repository. Note
that there can be multiple references for a patched vulnerabil-
ity that navigate to different branches of AOSP Git reposito-
ries. For instance, CVE-2017-18159, published in June 2018,
has 9 different references [35]. In the security bulletins, each
of them is listed with brackets in a separate row in the tables
that consist of patched vulnerabilities. However, in early secu-
rity bulletins, there are vulnerabilities whose references have
multiple rows. Some of these different rows have even differ-

ent severity levels and updated AOSP versions. For example,
CVE-2015-3873, published in October 2015 [15], has 14 dif-
ferent separate rows. Except for the last row, all rows have the
same severity level and the same updated AOSP versions and
still belong to the same patched vulnerability. In such cases,
where a vulnerability has more than one row, we check the
severity level and the updated AOSP versions for each row. If
a row has the same severity level and updated AOSP versions
as previous rows, then we only add the new row’s references
into the existing references. Otherwise, we create a new entry
for this particular row and consider this entry as a different
patched vulnerability.

Another issue is that some vulnerabilities are patched on
multiple security bulletins. For instance, CVE-2016-2059
is first patched in September 2016, which is followed by
another mentioning in October 2016 [24, 25]. Similarly,
CVE-2017-0391 is patched in both January 2017 [26] and
June 2017. In such cases, we count them as different patched
vulnerabilities in our dataset.

There are 80 vulnerabilities with these two consistency is-
sues. 36 of them have multiple rows, however, with the same
severity levels and the same updated AOSP versions with
multiple references. We count each of these 36 vulnerabilities
only once. In contrast, we count the remaining 44 vulnera-
bilities multiple times, since they are on multiple different
security bulletins or have multiple references with different
severity levels and/or updated AOSP versions.

Furthermore, the attributes Date Reported and Type are
not even used in some of the security bulletins, like Septem-
ber 2018 and July 2017 [22, 37]. In particular, for the at-
tribute Date Reported, Google stopped publishing it since
June 2017 [28]. For this reason, in such cases, we leave the
respective data fields empty. Hence, for certain analyses, we
can only analyze the patched vulnerabilities that contain the
necessary attributes.

We add the attributes that we scrape from CVEDetails to
the key named details. Under this key, there are vulnerabil-
ity details such as public disclosure date, CVSS score, and
products affected, which are added to their corresponding key
names.

4.1.2 Mining Code Repositories

Since RQ3, RQ4, and RQ5 are related to patching times of
the vulnerabilities, we need to find the last fix-commit date of
a vulnerability and the log of all changed lines on branches
of each patched vulnerability. In such cases where Google
does not provide references publicly, some vulnerabilities
do not have any references. For the patched vulnerabilities
that have references, there are three different reference types,
which link to different code repositories. The first one is the
AOSP Git repository [5], which is referenced by the majority
of patched vulnerabilities. The second one is the Qualcomm
Code Aurora page for Qualcomm-related vulnerabilities [45].

5



1 {
2 "timestamp": 1538344800.0,
3 "formatted_date" : ISODate("2018-10-01T00:00:

00.000+0000"),
4 "cves": {
5 "critical": [
6 {
7 "id": "CVE -2018-9490",
8 "type" : "EoP",
9 "updated_aosp_versions" : "7.0, 7.1.1,

7.1.2, 8.0, 8.1, 9",
10 "category" : "Framework",
11 "references" : [
12 {
13 "name" : "A-111274046",
14 "link" : "https://android.googlesource

.com/platform/external/chromium -
libpac /+/948d..."

15 },
16 {
17 "name" : "2",
18 "link" : "https://android.googlesource

.com/platform/external/v8/+/
a24543157..."

19 }
20 "details": {
21 "cvss_score" : 0.0,
22 "confidentiality_impact" : null,
23 ...
24 }
25 }
26 {
27 ...
28 }
29 ]
30 "high": [
31 ...
32 ]
33 }
34 }

Figure 1: Example snippet from our security bulletin dataset

The third reference type is the Linux Patchwork page, which is
used for kernel-related vulnerabilities [62]. Note that although
there are vulnerabilities related to other vendors and third-
parties (e.g., MediaTek and libxml), Google only published
references to Qualcomm and Linux.

We scrape the AOSP Git branches, directories of all
changed files, the last commit dates, and the last commit
IDs from AOSP Git repositories. If a vulnerability has more
than one reference, we scrape all of them. By collecting the
above information, we can find which Android stack layer
is affected by which vulnerability. We describe the details
of our approach for finding the corresponding layer for each
vulnerability in Appendix A.

For patched vulnerabilities that originate from Qualcomm
and Linux kernel, we only scrape the last fix-commit dates.
However, not all vulnerabilities related to Qualcomm and
Linux kernel have Qualcomm Code Aurora or Linux Patch-
work pages, respectively. For example, CVE-2018-10882,

published in January 2019 [39], has a reference that points to
a bug tracking tool called Bugzilla. In such cases, we use the
ticket closing time.

After scraping the Android security bulletins, Git reposito-
ries and CVEDetails, we transfer all the retrieved data into
a JavaScript Object Notation (JSON) document. JSON is
an open-standard format that uses human-readable text to
transmit data objects consisting of key-value pairs and ar-
ray data types [60]. After formatting, we store the data in
MongoDB [64]. For querying, displaying, and exporting our
collected dataset in a JSON format, we use Studio 3T as a
graphical user interface (GUI), which is a technology part-
ner with MongoDB [71]. In total, we collect 2,470 patched
vulnerabilities from Android security bulletins that are pub-
lished from August 2015 to January 2019 as well as their
details from CVEDetails and Git repositories. Hereafter, we
refer to our collected dataset that contains all Android security
bulletins and CVEDetails as security bulletins.

5 Results

In this section, we analyze the collected data with a focus on
the posed research questions.

5.1 RQ1: Evolution of Severity Distributions
and Root Causes

5.1.1 Severity Levels

We first investigate how severity levels of patched vulner-
abilities evolve over time, and we examine the similarities
of the severity level trend between the years. Note that we
use severity levels that are defined by the Android security
team [41], which are different from other used severity level
calculations, such as V2 and V3 CVSS score. For instance,
the Android security team classifies the severity level of a
vulnerability as critical if one of the following conditions is
met: (i) Arbitrary code execution in the Trusted Execution
Environment2, (ii) Remote arbitrary code execution in a privi-
leged process, Bootloader, or the Trusted Computing Base3,
(iii) Remote permanent denial of service (device inoperability:
completely permanent or requiring re-flashing the entire oper-
ating system). For the severity level of high, the criteria are as
follows: (i) Local secure Boot bypass, (ii) Remote arbitrary
code execution in an unprivileged process, (iii) Local bypass
of user interaction requirements on package installation or
equivalent behavior.

Only one of the patched vulnerabilities does not have a
severity level, CVE-2016-2842, which is published in August
2016 with the severity level of None* [23]. We exclude this

2Trusted Execution Environment is a component that is designed to be
protected even from a hostile kernel.

3Trusted Computing Base is a part of the kernel, and it responsible for
loading scripts into a kernel component.

6



patched vulnerability from our security bulletins dataset only
for this analysis. Therefore, for our severity level analysis, we
have 2,469 patched vulnerabilities. Table 1 shows the annual
number of patched vulnerabilities. In 2015, the number of
patched vulnerabilities is for only 5 months. In subsequent
years, the number of patched vulnerabilities is at least 7 times
higher than 2015.

Year 2015 2016 2017 2018 2019
No. of Vulnerabilities 94 662 939 747 27

Table 1: Annual number of patched vulnerabilities

Figure 2 shows the annual number of patched vulnerabili-
ties for each severity level from 2015 to 2018. Figure 3 also
shows the annual percentage of each severity level (as a frac-
tion of all vulnerabilities). Note that we do not consider the
patched vulnerabilities in 2019 as we scrape only the Jan-
uary security bulletin. As we see in Figure 2, the number of
patched vulnerabilities with high severity level is increasing
from 2015 to 2018. Furthermore, they are the majority among
all patched vulnerabilities, except for 2015. In 2017, 507 of
939 patched vulnerabilities have a high severity level. In 2018,
while the total number of patched vulnerabilities decreases
from 939 to 747, the number of patched vulnerabilities with
high severity level increases from 507 (54%) to 629 (84%).
Similarly, the number of both moderate and critical sever-
ity levels rise slightly between 2016 and 2017. However, the
number of moderate severity level patched vulnerabilities falls
sharply between 2017 and 2018, from 211 to 17. In general,
the number of low severity level patched vulnerabilities is
close to zero. In 2015 and 2016, there are only 5 and 3 of
them, respectively, and their number rises to only 7 in 2017.
In 2018, we do not have any (reported) patched vulnerabilities
with low severity level.

Figure 2: Annual number of patched vulnerabilities by sever-
ity levels

Figure 4 depicts the number of patched vulnerabilities for
each month from August 2015 to January 2019 grouped by

Figure 3: Annual ratio of patched vulnerabilities by severity
levels

severity levels. In this figure, we observe that starting from
March 2016, the high severity level patched vulnerabilities are
always the most frequent. In April 2018, we see the most pro-
nounced peak of high severity level patched vulnerabilities;
to a lesser degree there is also a peak in July 2017. In both
these security bulletins, there is a separate section that men-
tions cumulative updates of Qualcomm closed-source com-
ponents. For example, in April 2018, there are 286 patched
vulnerabilities that belong to the cumulative update [34]. 240
out of 286 are high severity patched vulnerabilities.Similarly,
there are 94 patched vulnerabilities that belong to the cu-
mulative update of Qualcomm closed-source components in
July 2017 [29]. Table 2 and Table 3 show the mean and stan-
dard deviation values, respectively, of the monthly number of
patched vulnerabilities for each severity level annually.

Severity Level 2015 2016 2017 2018
Critical 3.5 11.5 17.83 8.41

High 3 30.5 42.25 52.41
Moderate 0.91 13 17,58 1,41

Low 0.41 0.25 0.58 0

Table 2: Mean of monthly number of patched vulnerabilities
for each severity level annually

Severity Levels 2015 2016 2017 2018
Critical 6.23 6.05 10.20 4.05
High 4.11 21.61 22.55 74.22

Moderate 1.37 8.89 12.13 2.67
Low 0.90 0.45 0.99 0

Table 3: Standard deviation of monthly number of patched
vulnerabilities for each severity level annually

To check whether each of moderate, high, and critical
severity levels has statistically significant differences in their

7



Figure 4: Number of monthly patched vulnerabilities from August 2015 to January 2019 grouped by their severity levels

Severity Level F-value p-value
Critical 8.85566 0.00001048

High 3.35922 0.0270576
Moderate 14.2759 0.0000012

Table 4: F and p-values of ANOVA test performed on absolute
values for different severity levels of all patched vulnerabili-
ties

monthly means between years, we perform several different
Analysis of Variance (ANOVA) tests. Note that we exclude
low severity patched vulnerabilities as we do not have enough
samples to justify a meaningful result. Our null hypothesis
for all of our tests is the same: For each of these three severity
levels, the population means of their monthly patched vulner-
abilities are the same in every year, given confidence level
α = 0.05. For the first ANOVA test, we consider the absolute
number of patched vulnerabilities in each month for a severity
level and compare between different years. Table 4 depicts the
results of our ANOVA analysis. F-values are relatively high
and p-values are lower than our confidence level, so we can
reject the null hypothesis. This means that the mean number
of patched vulnerabilities in each year is different from other
years for moderate, high, and critical severity levels.

We also perform an ANOVA test on the monthly percent-
age of each severity level (as a fraction of all vulnerabilities)
whose results are shown in Table 5. Here, we cannot reject
our null hypothesis. This means that if we consider the per-
centages of patched vulnerabilities of a severity level (as a
fraction of all vulnerabilities) instead of their absolute values,
the means of each severity level are uniform over the years.

Severity Level F-value p-value
Critical 1.36501 0.99999999
High 4.65718 0.99999999

Moderate 2.02166 0.99999999

Table 5: F and p-values of ANOVA test performed on percent-
age values for different severity levels of all patched vulnera-
bilities

To examine whether Qualcomm-related vulnerabilities
have a significant effect on the mean numbers, we also per-
form ANOVA tests by excluding these vulnerabilities. Based
on Figure 4, there are peak points that Qualcomm patched
vulnerabilities cause. Table 6 and Table 7 show the ANOVA
test results for absolute and percentage values, respectively.
Here, we observe results that are similar to those including the
Qualcomm vulnerabilities. For absolute values, the means are
not equal, while for percentage values, the population means
are equal in different years. In sum, our analysis shows that
even though the average number of patched vulnerabilities for
each severity level changes annually, their average percentage
(as a fraction of all vulnerabilities) is the same over years.
Therefore, we can expect distributions with the same average
percentages in the future.

5.1.2 Common Weakness Enumerations

CWE is a formal list which describes a common lan-
guage to classify software security weaknesses. Buffer
Overflows, Structure and Validity Problems, and
Authentication Errors are some examples of enumera-

8



Severity Level F-value p-value
Critical 6.60945 0.00087576

High 11.28015 0.00087576
Moderate 14.14615 0.00087576

Table 6: F and p-values of ANOVA test performed on abso-
lute values for different severity levels by excluding patched
Qualcomm vulnerabilities from the security bulletin dataset

Severity Level F-value p-value
Critical 4.51910 0.99999999

High 4.51910 0.99999999
Moderate 3.99611 0.99999999

Table 7: F and p-values of ANOVA test performed on percent-
age values for different severity levels by excluding patched
Qualcomm vulnerabilities from the security bulletin dataset

tion categories [52]. We analyze these enumerations because
they specify what causes vulnerabilities. Therefore, we can
determine what are the common software weaknesses among
the patched vulnerabilities. Note that CWE information is
not indicated on security bulletins. Thus, we use the field
CWE ID and its details, which we scrape from the web page
CVEDetails.

Among the 2,470 patched vulnerabilities, 109 do not have
any details listed on the CVEDetails web page. In addition, 58
vulnerabilities have details but do not have any CWE. After
excluding these, we continue our analysis with the remaining
2,303 patched vulnerabilities.

Among the common weakness enumeration categories,
there is a parent-child hierarchy [53]. For instance, CWE-306:
Missing Authentication for Critical Function is a
child of CWE-285: Improper Authorization. Further-
more, this relation can be one-to-many. In other words,
there are enumerations that are a child of more than one
other enumeration. For instance, CWE-358: Improperly
Implemented Security Check for Standard is a child
of both CWE-693: Protection Mechanism Failure and
CWE-254: Security Features. Moreover, CWE-693 is a
child of CWE-254: Security Features. Hence, CWE-254
should also be considered when a vulnerability belongs to the
CWE category of CWE-358.

For a concrete example, consider CVE-2017-0757, which
was published in September 2017 [30]. According to the
CVEDetails web page, this vulnerability has the enumer-
ation of CWE-284: Access Control (Authorization)
Issues. Since CWE-284 has three different parent enu-
merations, which are CWE-693: Protection Mechanism
Failure, CWE-264: Permissions, Privileges and
Access Control, and CWE-664: Improper Control of
a Resource Through its Lifetime, we also consider
these three parent enumerations.

Figure 5: Distribution of CWEs of Patched Vulnerabilities

The overall distribution of CWE categories among the An-
droid patched vulnerabilities and the annual percentage of the
four most frequent CWE categories are plotted in Figure 5
and Figure 6, respectively.

Based on Figure 5, the four most frequent CWE categories
make up more than 50% of all the vulnerabilities patched.
The reason for patching mostly these CWE categories might
be that the developers—especially those who lack coding
experience or familiarity with language features—tend to
introduce such weaknesses quite often.

Figure 6 shows the annual percentages of the four
most frequently patched CWE categories. According to
Figure 6, in contrast with the stability of the severity
level ratios, there is more variation in the occurrence
of the four most frequent CWE categories. For instance,
although CWE 119: Failure to Constrain Operations
within the Bounds of a Memory Buffer is the most fre-
quently patched category in 2015 and 2018, it is only the
second most frequent one in 2016 and 2017.

Figure 6: Annual ratios of the four most frequent CWEs

9



5.2 RQ2: Security Support Duration

The Android Open Source Project (AOSP) is a ready to be
released version of Android. The source code of AOSP can be
customized and adapted by original equipment manufacturers
(OEMs) to run on their devices [1]. In this subsection, we
investigate the number of patched vulnerabilities that affect
each AOSP versions. Android has 28 different API levels and
63 different AOSP versions. In our security bulletins dataset,
there exist 15 different AOSP versions. Note that Android was
released in 2008 and the first security bulletin was published in
August 2015. Thus, some AOSP versions have reached their
end of life before the first bulletin, so we only see a limited
number of AOSP versions in the Android security bulletins.
Further, we exclude AOSP version 6.1 from our analysis be-
cause we only see two patched vulnerabilities for this version:
CVE-2016-2496 and CVE-2016-3843, which were published
in June 2016 and August 2016, respectively [21, 23]. There-
fore, in our analysis, we consider only 14 different AOSP
versions.

Early Android security bulletins do not specify AOSP ver-
sions but instead use the terms 5.1 and below, 6.0 and below,
5.0 and above, and 6.0 and above. As a result, we first need to
map the terms below and above to AOSP versions. We use a
conservative approach which is as follows: For the term X and
below, we consider version X as well as versions that were
introduced earlier than version X . For the term X and above,
on the other hand, we consider version X as well as versions
that were introduced later than version X but earlier than the
security bulletin that we are studying. For example, we re-
place the expressions 5.1 and below and 5.0 and above with
{4.4, 4.4.4, 5.0, 5.0.2, 5.1} and {5.0, 5.0.2, 5.1}, respectively.

As we mentioned earlier, there are 2,470 patched vulner-
abilities. Among these, 889 have an entry in the field for
updated AOSP versions in the Android security bulletins. Fig-
ure 7 shows the number of vulnerabilities for each AOSP
version from August 2015 to January 2019.

Figure 7: The number of patched vulnerabilities for each
AOSP version

5.2.1 Release Date and Update Duration

In this subsection, we conduct pairwise comparisons for con-
secutive AOSP versions focusing on the gap in release time
between the two versions vs. the gap in the time when the
final patch for a particular version was released. If all versions
are treated equally in terms of support, we would expect that
these two gaps are identical. Also, we would expect that the
data is similar over time for different pairs of versions.

In our analysis, we exclude the versions 7.0, 7.1.1, 7.1.2,
8.0, 8.1, and 9 because these versions are still receiving up-
dates at the time of our data collection (January 2019). The
result of our analysis is presented in Figure 8. In this figure,
the horizontal axis shows the time difference of end-of-life
(EOL) between two versions in months. Note that we calcu-
late the EOL based on the last time that we see an update for
an AOSP version on Android security bulletins. The vertical
axis represents the time difference in the release time of two
versions in months. Each point indicates these two differences
for two versions. The blue line represents the point where the
time difference of EOL and release time for the two versions
are equal.

According to Figure 8, the pair consisting of version 5.0.2
and version 5.1.1 is the only one located on the blue line.
Version 5.1.1 was introduced 4 months after version 5.0.2.
Also, version 5.0.2 stopped receiving updates 4 months sooner
than version 5.1.1.

Points that are under the blue line are those pairs of ver-
sions where the newer version continues receiving updates
comparatively longer than the difference in their release dates
would indicate.

There are three points in that region. We describe each of
them in detail in the following.

• The difference in introduction date of version 4.4 and
4.4.4 is about 8 months. However, version 4.4 stopped
receiving updates 22 months sooner.

• Version 5.0.2 was introduced one month after 5.0. Ver-
sion 5.0.2 continued receiving updates 21 months after
the last update date of version 5.0.

• Version 5.1 was introduced one month before version
5.1.1. The former stopped receiving updates 27 months
sooner than version 5.1.1.

The points above the blue line are those pairs of versions
where the gap between release times is larger than the gap
between EOL times. We have 4 pairs of such situations that
are also plotted in Figure 8.

• Version 6.0 and version 6.0.1 stopped receiving updates
at the same time while 6.0.1 was introduced 2 months
after version 6.0.

10



• Version 5.0.2 was introduced 6 months after version
4.4.4. However, version 4.4.4 stopped receiving updates
just one month sooner than version 5.0.2.

• Version 4.4.4 was introduced 18 months sooner than
version 6.0.1. But, it stopped receiving updates just 10
months before version 6.0.1.

• Version 6.0.1 was introduced one year after version 5.0.2.
But, version 6.0.1 continues receiving updates only 9
months after version 5.0.2.

Figure 8: Pairwise comparison of time differences in release
time and end-of-life in Android security bulletins. Here, the
blue line shows that the difference in release time and end-of-
life is equal for two versions

For our sample, we can deduce that newer pairs of versions
tend to have shorter gaps between EOL times in comparison
to their release time gaps. In contrast, service for some older
OS versions was abandoned comparatively early (i.e., for 4.4,
5.0, and 5.1), when compared to the gaps in release times with
their successors.

Please note that our observations are based on a reduced
sample size. On the one hand, AOSP versions 7.0 and higher
are still receiving security updates and we cannot make any
claim about them. On the other hand, Google started Android
security bulletins in August 2015 and does not provide infor-
mation before that.

5.2.2 Updated AOSP Versions vs. Affected Versions

In our security bulletin dataset, there are 782 CVEs that have
AOSP versions on both the Android Security bulletin and
CVEDetails. Among these 782 CVEs, different OS versions
are listed on the bulletin and on CVEDetails for 483 of them.
In this part, we do not focus on the quantitative analysis
of these differences between Android security bulletins and
CVEDetails. Rather, we focus on two examples and the im-
plications of these differences.

The first example that we study is CVE-2016-5348, which
was mentioned in the October 2016 Android security bulletin
[25]. According to the Android security bulletin, the updated
AOSP versions are as follows: 4.4.4, 5.0.2, 5.1.1, 6.0, 6.0.1,
7.0. However, according to CVEDetails, the affected products
for this CVE are as follows: 4.0, 4.0.1, 4.0.2, 4.0.3, 4.0.4, 4.1,
4.1.2, 4.2, 4.2.1, 4.2.2, 4.3, 4.3.1, 4.4, 4.4.1, 4.4.2, 4.4.3, 4.4.4,
5.0, 5.0.1, 5.1, 6.0, 6.0.1, 7.0. As we can see, the affected
products in CVEDetails are more comprehensive and contain
some older versions that are not in the list of updated AOSP
versions in Android security bulletins, such as 4.0. Hence,
this shows that Google does not provide security updates for
all affected versions.4 The underlying reason is that a version
has reached its end-of-life and does not receive security patch
updates anymore. Therefore, the older versions of Android
are at risk.

The second example is CVE-2017-0807, published in De-
cember 2017 [33]. On Android security bulletin, the updated
AOSP versions are listed as follows: 5.1.1, 6.0, 6.0.1, 7.0,
7.1.1, 7.1.2. However, in CVEDetails, the affected products
are mentioned as follows: 4.0, 4.0.1, 4.0.2, 4.0.3, 4.0.4, 4.1,
4.1.2, 4.2, 4.2.1, 4.2.2, 4.3, 4.3.1, 4.4, 4.4.1, 4.4.2, 4.4.3, 4.4.4,
5.0, 5.0.1, 5.0.2, 5.1, 5.1.1, 6.0, 6.0.1, 7.0, 7.1.1, 7.1.2. Similar
to the first example, Google does not provide security updates
for all affected versions that are mentioned on CVEDetails,
which puts many older devices at risk.

In the following subsection, we investigate the common
CVEs among different versions and the possibility that some
of them are applicable to older versions.

5.2.3 Common Vulnerabilities Among AOSP Versions

Before starting the analysis of common vulnerabilities among
different versions, we introduce the term latent CVEs for an
AOSP version. The latent CVEs for an AOSP version are all
CVEs that affect that version but do not receive security up-
dates like newer versions since the AOSP version has reached
its end-of-life.

We analyze the number of common vulnerabilities among
different AOSP versions based on the information in Android
security bulletins (see Figure 9), however, paying attention
to the fact that different versions receive security updates for
a different amount of time. The Android security bulletins
provide related information about patches, but note that the
number of vulnerabilities for different versions varies a lot,
see Figure 7. As a result, it is highly likely that some Android
versions that already receive common patches have even more
common vulnerabilities than is reflected in the bulletins. This

4We assume that information on the Android security bulletins correctly
reflects the released patches. It is possible that some information about
patched vulnerabilities is not communicated correctly on the Android security
bulletins. In particular, that information about released patches for versions
that have reached EOL is incorrect. However, we have found no evidence of
such practices so far.

11



suggests that many CVEs for a newer version are also appli-
cable for older versions. In the following, we consider the
information related to version 4.4 for further analysis.

Figure 9: Heatmap of common vulnerabilities among the 14
AOSP versions

To understand latent vulnerabilities in version 4.4, we limit
ourselves to versions 4.4.4, 5.0, 5.0.2, 5.1, 5.1.1, and 6.0 for
comparison purposes. The reason why we do not consider
version 6.0.1 and later versions is that we only see updates
for version 4.4 until December 2015. Version 6.0.1, on the
other hand, was introduced on December 7, 2015. Hence, it
is obvious that there should be no common updates between
6.0.1 and versions after that with version 4.4 in our dataset.
Note that version 4.4 has 73 patched vulnerabilities.

Version 4.4.4 has 328 patched vulnerabilities in total and
70 of them are in 2015. All these 70 vulnerabilities are com-
mon with version 4.4, while version 4.4 has 3 vulnerabilities
which are not reported as common with version 4.4.4. On
the other hand, version 4.4.4 continues receiving updates 22
months longer than version 4.4. Therefore, based on our pre-
vious discussion and definition of latent CVEs, it is likely that
most of the remaining vulnerabilities in version 4.4.4 are also
applicable to version 4.4.

The above observation might suggest that it is only applica-
ble to sub-versions. To extend our analysis to more significant
version changes, we take AOSP 4.4 and 5.x versions as exam-
ples. All patched vulnerabilities of version 4.4 are common
with version 5.1. With respect to versions 5.0 and 5.0.2, all
CVEs are also common (except 1 for 5.0, and 3 for 5.0.2).
On the other hand, these three 5.x sub-versions have more
vulnerabilities in the observed time period. Therefore, these
three sub-versions of version 5 Android have almost all ver-
sion 4.4 and 4.4.4 vulnerabilities, but also many other CVEs
which are not reported as common with the older Android
versions (which had an earlier EOL). In other words, version
4.4 CVEs are a subset of the vulnerabilities of versions 5.0,
5.0.2, and 5.1 (while all these versions received updates). This
also suggests that many vulnerabilities that were patched later

are likely common among versions 4.4 and 5.x.
Based on the exploratory analysis above, many CVEs are

likely common among different versions. Once Google stops
providing patches for older versions, publishing Android secu-
rity bulletins provides information to attackers about possible
vulnerabilities in these older versions. If the market share of
older versions is still non-trivial, this may place many users
at risk.

5.2.4 Unknown CVE ID

There are 107 CVEs in the Android security bulletins that
do not have corresponding entries in CVEDetails. For these
CVEs, the CVEDetails website reports “Unknown CVE
ID,” which means that the corresponding CVE has been re-
served, but no information has been provided for it. Other
public data sources also return similar results. For instance,
cve.mitre.org describes these unknown CVE IDs as fol-
lows: “This candidate has been reserved by an organization
or individual that will use it when announcing a new secu-
rity problem. When the candidate has been publicized, the
details for this candidate will be provided.” We believe that
this discrepancy is due to the delay in updating these pub-
licly available datasets. To evaluate the role of such delay, we
study CVEs in Android bulletins that have unknown CVE
IDs. Table 8 shows the number of CVEs with unknown CVE
IDs for each year from 2015 to 2019. Most of these CVEs are
in bulletins from 2018 and 2019. Note that for 2019, we have
only the January bulletin. In this month, there are 27 CVEs
in total and only 7 of them have corresponding information
on the CVEDetails website. Moreover, all of these 7 CVEs
are related to the kernel component, which means that these
CVEs are not specific to Android but to Linux.

Year 2015 2016 2017 2018 2019
No. Of CVEs 0 5 6 76 20

Table 8: Number of CVEs with unknown CVE ID in CVEDe-
tails website for each year

5.3 RQ3: Vulnerabilities Originating from
Qualcomm and Linux

To study how long it takes for Google to patch vulnerabili-
ties in components from other vendors and organizations, we
focus on kernel and Qualcomm-related vulnerability patches
that affect Android. In total, there are 1,092 Qualcomm-
related and 210 kernel layer patches in the Android security
bulletins. However, only 414 Qualcomm and 144 kernel layer
patched vulnerabilities have references. For these vulnerabili-
ties, we calculate the time difference of the published date on
the respective Android security bulletin and the fix-commit
date, which is shown in Figure 10. According to this fig-
ure, there is only one patched vulnerability, CVE-2017-8281,

12

cve.mitre.org


whose publication date (September 2017 [30]) precedes its fix-
commit date (December 2017 [46]). For all other vulnerability
patches, the time difference is positive (see Figure 10). In
other words, both Qualcomm and Linux patch vulnerabilities
before Google publishes them on its security bulletins. The
time differences vary mostly between roughly 120 and 450
days (i.e., between 4 months and 15 months). Table 9 shows
the mean and standard deviation of these time differences for
both Qualcomm and kernel layer patched vulnerabilities. The
mean values are 307 and 324 days for Qualcomm and kernel
layer patches, respectively, and the standard deviations are
relatively high for both. These results indicate that there ex-
ists a considerable delay from Google to provide patches for
vulnerabilities originated from Qualcomm and Linux. This
issue is even more daunting considering that these fix-commit
dates are publicly available. Hence, this delay from Google
puts many devices at risk. In other words, some of these vul-
nerabilities originating from Qualcomm and Linux may be
interpreted as zero-day vulnerabilities for Android devices.

Figure 10: Time differences for patched vulnerabilities be-
tween the published dates in the Android security bulletins
and fix-commit dates of both Qualcomm and Linux patches.

Vendor Mean Standard Deviation
Qualcomm 307.80 323.53

Linux 324.86 310,54

Table 9: Mean and standard deviation of the time difference
between the Android security bulletin time and the fix-commit
date for Qualcomm and Linux patched vulnerabilities

We perform a Mann-Whitney U test to see whether there
exists a statistical difference between Qualcomm and Linux
when Google handles the vulnerabilities originating from
them. Since the p-value of the test result is 0.033 and is lower
than our confidence level which is p = 0.05, these two distri-
butions are statistically different from each other. Therefore,
this shows that Google handles vulnerabilities originated from
open source platforms differently from the closed source plat-

forms, i.e., Qualcomm. In this case, the mean time for Linux
is higher than for Qualcomm. The underlying reason might be
the more open, but diverse, software community in the Linux
ecosystem, which corresponds to a longer time for Google to
identify and address relevant vulnerabilities. As a result, it is
crucial for the Android security team to closely monitor the
Linux-related CVEs.

5.4 RQ4: Public Disclosure vs Patch Release

To investigate this question, we compare three different times.
The first one is the patch release date, which indicates when
a vulnerability patch is published on an Android security
bulletin. The second one is the public repository disclosure
date representing when a vulnerability detail is available in
public repositories like CVEDetails. The third one is the last
commit date indicating when the last fix-commit is made.
Having the first commit and the bug creation date would also
help us to understand the entire timeline of a vulnerability.
However, since these dates are not publicly available, we focus
on the aforementioned three dates. The relation between these
three dates in an ideal setting should be as follows. The first
date should be the last commit date, which should then be
followed by the patch release date. The patch release date is
the point in time where Android releases its security patches.
If a public repository disclosure date is sooner than the patch
release date, this may place many Android devices at risk. As
a result, the public repository disclosure date should be after
the patch release date.

We limit our analysis to those patched vulnerabilities that
have (only) AOSP Git repository references. In other words,
we do not consider other external references/repositories like
Qualcomm and Linux, since those vulnerabilities are patched
in other repositories in addition to AOSP Git repositories.
Note that a patch release date does not exactly correspond
to the time of disclosing a patched vulnerability. Only 632
patched vulnerabilities fall into this criterion, i.e., having
AOSP Git repository references. Also note that a patched
vulnerability can have multiple references. Therefore, the
time sequence can change since each reference has its own
last fix-commit date.

Given that, we separately analyze the following two differ-
ent groups: Patched vulnerabilities that have only one refer-
ence and the others that have more than one reference. For
the public repository disclosure date, we use the date that is
indicated as publish date on the CVEDetails web page. Our
level of granularity to capture these three dates are year and
month. Therefore, we do not consider the exact calendar day
of release/publication in our analysis.

In our analysis, we use the symbols B, C and D to denote
the patch release date, fix-commit date, and public repository
disclosure date, respectively. To express the sequence of these
three dates, we separate them with “-” if they happened at
different times. The date on the left side of “-” is earlier than

13



the date on the right side. For example, C−B−D means that
the commit occurred first; then, the patch was released, which
was later followed by public repository disclosure. If two dates
are not separated by “-” (e.g., BC), then they are in the same
month. For instance, BC−D means that patch release and
last commit are in the same month, and the public repository
disclosure is after them. Table 10 shows the frequency of all
the time sequences that we observe in the Android ecosystem.

Time Sequence Frequency
BC−D 1

C−B−D 66
C−D−B 3
C−BD 530
CBD 2

D−C−B 19
DC−B 11

Table 10: The frequencies of the time sequences of patched
vulnerabilities that have only one AOSP reference

According to Table 10, of 632 patched vulnerabilities, only
66 followed the ideal time sequence C−B−D. However,
530 of them follow a near ideal sequence, the only differ-
ence being that the patches are released and publicly dis-
closed in the same month. Therefore, 94% of the vulnerabili-
ties are patched no later than their disclosure date in public
repositories. The remainder, on the other hand, have differ-
ent timelines. The most problematic one is the vulnerability
being disclosed in public repositories and then receiving a
patch, which is represented by D−C−B and DC−B in our
dataset (4%). For instance, CVE-2017-6983 was published in
September 2017 [30] and its last commit date is on August
2018. However, it was disclosed in public repositories on May
2017. Similarly, CVE-2017-13078 was published in Novem-
ber 2017 [32], but its disclosure date in public repositories
and its last commit data are in October 2017.

Similarly, Table 11 shows the frequencies of time se-
quences for patched vulnerabilities that have more than one
AOSP reference. In other words, in this table, each patched
vulnerability has more than one last commit date. Based on Ta-
ble 11, the majority of the patched vulnerabilities still follow
the same timeline. Sequences C−BD and C−B−D contain
304 out of 321, i.e., 94% of total commits that belong to 125
different patched vulnerabilities. This shows that for the ma-
jority of patched vulnerabilities we do not see potentially dan-
gerous practices. Particularly, the disclosure date is not sooner
than the patch time. CVE-2014-6060, published in April 2016,
is the one vulnerability corresponding to C−D−B [20]. This
vulnerability was disclosed in public repositories in Septem-
ber 2014, and one of its two references has June 2014 as the
last commit date. The other reference is in September 2014,
which is the same as the public repository disclosure date. In
addition, vulnerability CVE-2014-6060 is the only one that

fits more than one time sequence. Since the first commit is in
June 2014, it fits C−D−B. It also fits CD−B because the
second commit is in September 2014, which is the same as
its public repository disclosure date. The other vulnerabilities
fit only one time sequence each.

Time Sequence Frequency
C−B−D 34
C−D−B 1
C−BD 270

D−C−B 15
DC−B 1

Table 11: The frequencies of the time sequences among the
patched vulnerabilities that have more than one AOSP refer-
ence

Considering these two tables, the majority falls into
C−B−D and C−BD which is a secure practice. However,
there are some exceptions. For example, CVE-2014-6060
follows the following two time sequences: C−D−B and
CD−B. For this patched vulnerability, the difference be-
tween disclosure date in public repositories and patch release
date is around 1.5 years. However, these two aforementioned
tables do not indicate the actual time gaps. Therefore, we
further analyze the last commit, public repository disclosure,
and patch release dates. The main goal is to determine the
distribution of time gaps between these three points in time.
Figure 11 shows these dates for all patched vulnerabilities
that have public repository disclosure dates and have at least
one AOSP reference. Note that, if there is more than one refer-
ence, we calculate the time differences for each of them. For
example, if a patched vulnerability has two references, there
are two different time results that specify the comparison
of both patch release date and disclosure date in the public
repository. Table 12 shows the means and standard deviations
of the results represented in Figure 11. For the analysis of
disclosure date of the public repository and patch release
date, we analyze 758 patched vulnerabilities. For both analy-
sis of patch release date - last commit date and disclosure
date of public repository - last commit date, we analyze
954 patched vulnerability references. The reason for having
more patched vulnerabilities for the last two analyses is due
to multiple references for some patched vulnerabilities.

Time Gap Analyze Mean Standard Deviation
Disclosure Date - Patch Release date -2.43 68.2071
Disclosure Date - Last Commit Date 54.26 81.5345

Patch Release date - Last Commit Date 61.84 43.7562

Table 12: Means and standard deviations of time differences
among patch release date, last commit date, and disclosure
date in public repository

According to the Figure 11, there are no negative values

14



Figure 11: Time gaps between the last commit, publicly dis-
closure and patch release dates

for the time differences between the patch release date and
the commit date. In other words, patch release dates occur
after the commit date for all patched vulnerabilities. This is
expected since a patch release date indicates when a patch is
available for a particular vulnerability; it should also occur
after its last fix-commit date. The mean of this time gap is
61.84 days. In other words, for publishing a vulnerability
patch after making the last fix-commit, Google spends an
average of around 62 days (2 months). However, there are
some extreme cases. The longest time gap is 640 days which
belongs to CVE-2014-6060, which we already mentioned
above. The second longest time gap is 639 days belonging
to CVE-2016-1621. It is published in March 2016 [19] and
disclosed in a public repository in the same month. However,
it has 3 different references. Although two of them have the
same last commit dates (January 2016), the third one has a
date of June 2014.

For the time differences between the disclosure date in
a public repository and the patch release date, even though
we see large variation, from lower than -600 days to around
488 days, the majority of them, i.e., for 639 vulnerabilities,
occurs at the same time. In other words, 84% of them are
disclosed at the same time in a security bulletin as in a public
repository. 10% of them have positive values which means
that they are disclosed in public repositories after the patch
release date. In total, around 95% of them are disclosed in
a public repository after or at the same date as the patch
release date. The mean of this time difference is equal to
-2.43, i.e., very close to zero. Around 5% of them have a
negative value. In other words, they are publicly disclosed
before Android published them on its security bulletins, which
is the same date when Google provides its patches. Even
though this occurs for a limited number of vulnerabilities, it is
a potentially dangerous case which puts many devices at risk

considering that a vulnerability has been published publicly
but the patch has not been provided.

Lastly, we investigate the time difference of disclosure time
in a public repository and the last commit date. 94% of them
have a positive value meaning that they are publicly disclosed
in a repository after the last commit is made. For 66% and
12% of our total samples, the time differences are 60 and 30
days, respectively, which we can also see in Figure 11. The
mean value for this time difference is equal to 54.26. Hence,
it takes around 2 months for public repositories to disclose
a vulnerability after its last commit date. Note that for 3%,
i.e., 34 of them, the disclosure time in a public repository
is even sooner than the last commit date. This means that a
vulnerability has been disclosed in a public repository while
the fix has not been yet finalized. This gives an attacker an
advantage to compromise Android devices.

Based on our above analysis, for the majority of vulnera-
bilities, these three time sequences follow the pattern which
can be considered secure. However, there are some instances
that put the security of Android devices at risk. All of these
instances show that a vulnerability has been introduced in
public repositories when the patch is not available or even
before the last fix-commit in Google Git. Even though these
instances are not common, i.e., about 5%, the potential conse-
quences might be significant. It follows that we need better
coordination between Google and public repositories with re-
spect to their time management in announcing vulnerabilities.

5.5 RQ5: Vulnerability Lifetime

Vulnerability lifetime means the time difference between the
introduction of vulnerability in the code and when the vul-
nerability is eventually patched [87]. It is difficult to find an
actual patching time for Android vulnerabilities, i.e., when
Google releases the security patches for a vulnerability. For
this reason, the published time of a security bulletin gives the
upper bound for when a patch is released; and we consider
this as the patching date. In order to calculate the introduction
time of a vulnerability in the code, we use an algorithm called
SZZ [95]. The general idea behind the SZZ algorithm is to
identify the changed lines for fixing a bug and then identify
when these lines were added for the first time. By doing so,
first, we manually clone all the AOSP Git repository branches
being used for patching the vulnerabilities.

After cloning the branches, for each reference, we take the
commit ID. With this commit ID, we issue the command
diff [55] under the corresponding branch in order to detect
which lines are changed from the previous revision to last
revision. Since the algorithm relies on only the line deletions,
we have to find when these deleted lines were added in the first
place. Hence, we use the command annotate on the previous
revision for each changed file where the changes were made
[54]. Following this process, we can find the first time when
the lines were added to the code. Note that there can be

15



more than one deleted line. Furthermore, it is possible that
each deleted line is added at different times. As a result, we
use the terms maximum lifetime and minimum lifetime for
better understanding of this time interval. These terms are in
agreement with the original SZZ paper [87]. The maximum
lifetime shows the time interval between the line addition
time of the first deleted line and the time of publishing the
vulnerability patch on the security bulletin. On the other hand,
the minimum lifetime is the time interval between the line
addition time of the last deleted line and the time of publishing
the vulnerability patch on the security bulletin.

As mentioned before, this algorithm only checks the
deleted lines. As a result, it excludes the cases where only
additions are made. To identify that, a static code analysis
must be done which is not the focus of this work. Besides, we
also exclude the patched vulnerability that do not have any
references. After excluding all of them, we have 549 patched
vulnerabilities for which we are able to identify the maximum
and minimum lifetimes. Among them, we notice 133, 300,
112, and 4 patched vulnerabilities with critical, high, moder-
ate, and low severity levels, respectively. The result of our
analysis for both maximum lifetime and minimum lifetime is
represented in Figure 12.

As we see in Figure 12, both minimum and maximum
patched vulnerability lifetimes are very high. In particular,
there are patched vulnerabilities with high and low severity
levels that have a maximum vulnerability lifetime of more
than 6000 days, which is longer than the lifetime of Android.
The reason is that the algorithm also checks files and lines that
might be irrelevant for the vulnerability like a log, build files
and even comments. For instance, if the fix-commit includes a
comment deletion, then the algorithm takes this into consider-
ation. Therefore, the above outcomes can occur, for example,
when a build file or log file has not been changed for 7-8
years and then has been changed in the last fix-commit. Fur-
ther, since this issue might also happen on external branches
that have older commit histories than Android AOSP, we
can observe these outliers. In general, the minimum patched
vulnerability lifetimes fluctuate between 300 and 800 days,
which is still high. On the contrary, the maximum vulnera-
bility lifetimes vary from 700 to 2200 days (including the
aforementioned outliers).

Table 13 and Table 14 report the mean, and standard devi-
ation results for both maximum and minimum vulnerability
lifetimes.

In order to see whether these data are statistically differ-
ent, we perform a Mann Whitney U test for all minimum
and maximum vulnerability lifetime data with each other. In
other words, each minimum/maximum vulnerability lifetime
set is compared to another dataset of a minimum/maximum
vulnerability lifetime with different severity levels. Our null
hypothesis, HO, is that all minimum/maximum vulnerability
lifetime datasets are equally distributed. Table 15 and Table 16
depict the p-values of the Mann-Whitney U tests.

Severity Rankings Mean Standard Deviation
All Vulnerabilities 1350.2 981.69

Critical 1254.49 860.21
High 1366.49 1042.53

Moderate 1386.66 949.10
Low 2295.25 391.20

Table 13: Mean and standard deviation values of maximum
vulnerability lifetimes

Severity Rankings Mean Standard Deviation
All Vulnerabilities 882.78 789.59

Critical 868.53 697.47
High 890.68 796.92

Moderate 876 871.68
Low 954 1018.65

Table 14: Mean and standard deviation values of minimum
vulnerability lifetimes

According to the results, the p-values of all pairs are larger
than the significant level, i.e., p = 0.05. This means that the
null hypothesis cannot be rejected. In other words, there are
no statistical differences between the datasets.

Maximum Lifetime U-value p-value
Critical-High 18994.5 0.497

Critical-Moderate 6760.0 0.204
Critical-Low 99.5 0.396

High-Moderate 16267.5 0.168
High-Low 203.5 0.399

Moderate-Low 90.0 0.375

Table 15: Comparison results of Mann Whitney U test per-
formed on maximum lifetime values for each severity levels

6 Discussion

We believe that our work represents important steps in under-
standing the security practices in the Android ecosystem, as
well as its likely impact on users. We now present the emerg-
ing themes and practical security policy recommendations
based on our study.

6.1 Comprehensive Security Bulletins

The first commercialized version of Android was released
on September 23, 2008. Since then, Google has released 63
different AOSP versions with 28 API levels [1]. Due to the
openness of the platform, Android has been adopted by dif-
ferent vendors, like Samsung, LG, etc., which results in the

16



Figure 12: Green and red bar represents the minimum and
maximum vulnerability lifetime, respectively

Minimum Lifetime U-value p-value
Critical-High 19943.0 0.497

Critical-Moderate 6992.0 0.204
Critical-Low 245.0 0.346

High-Moderate 15765.0 0.168
High-Low 555.0 0.399

Moderate-Low 202.5 0.375

Table 16: Comparison results of Mann Whitney U test per-
formed on minimum lifetime values for each severity levels

highest market share among mobile phone devices. Consider-
ing the large and widespread use of Android devices and their
impact on humans lives, it is vital to keep Android devices
secure over time. Because of that, Google provides monthly
security patch updates to fix security vulnerabilities. Based on
data from the CVEDetails website [12], the Android-related
CVEs existed back in 2009. However, Google started its An-
droid security bulletins only in August 2015. Subsequently,
also some vendors began releasing their own security bul-
letins. For instance, Samsung started in October 2015 and LG
started in May 2016.

According to the CVEDetails website, there are 2,146
Android-related vulnerabilities by the end of 2018. However,
the recorded number of Android-related vulnerabilities from
2009 to the end of 2014 is only equal to 43 [12]. That means,
from 2015 (start of Android security bulletins), the number of
Android CVEs has increased drastically. Therefore, it seems
that releasing Android security bulletins has certainly pro-
vided better knowledge about Android security. In contrast,
we do not have too much information about the early days
of Android (2008) until 2015. From a research perspective, it
would be useful if Google starts adding also security bulletins
that belong to the time before August 2015 to enable a com-
prehensive overview of security patches from the introduction
of Android to the present day.

6.2 Coherent Security Platforms

There are many different platforms providing detailed infor-
mation of CVEs, like CVEDetails [50], MITRE [51] and the
National Vulnerability Database (NVD) [65]. These three are
general purpose databases and are not limited to one vendor
or platform. Therefore, we can potentially find any vendor-
related as well as Android-related vulnerabilities on them. In
this paper, we use CVEDetails and Android security bulletins
to investigate Android patched vulnerabilities. The expecta-
tion is that all of these publicly available platforms should be
consistent with each other; and that there are no contradic-
tions. In other words, only checking one of them should be
sufficient for the majority of problems.

However, based on our results in Section 5.2.2, we notice
inconsistencies between the Android security bulletins and
CVEDetails. These inconsistencies included but are not lim-
ited to different information regarding updated and affected
AOSP versions, and unknown CVE IDs on the CVEDetails
website. Due to these inconsistencies, for example, if a per-
son only relies on CVEDetails, s/he might miss some of the
Android-related vulnerabilities on Android security bulletins
considering that they are unknown in CVEDetails. Further-
more, Google provides updated versions while CVEDetails
provide affected versions. In some cases, these two seem to
systematically differ from each other. As a result, an observer
cannot rely on only one of them. We believe it is essential
that different publicly available websites that explain the vul-
nerabilities in detail should strive to be consistent with each
other. Consistency would help security practitioners to find
reliable information easily and they would not have to check
different resources.

6.3 User-Centric Security Policy and Security
after End-Of-Life (EOL)

Each vendor stops providing software updates after some pe-
riod of time. Microsoft clearly states the end of support for its
Windows operating systems [73]. For example, for Windows
7, the end of mainstream support was January 13, 2015, and
the end of extended support is January 14, 2020. Microsoft
provides the exact date of support clearly on their website. Un-
like Microsoft, Google does not mention these dates exactly
[66]; however, clearly announcing such a schedule would be a
desirable practice for developers that work within the Android
ecosystem as well as consumers.

Further, there are still a considerable number of consumers
who use Android devices that do not receive security updates
anymore. By taking our analysis and results in Section 5.2
into account, many CVEs are common among different ver-
sions including versions that have reached EOL. As a result,
out-of-date versions are vulnerable as they do not receive se-
curity patch updates. Hence, we believe that in order to have
a more secure Android ecosystem, the EOL policy should

17



take the consumers more directly into account. Our propo-
sition is that the EOL date should be related to the market
share of an Android version. For example, if the market share
of an Android version (e.g., 4 or 4.x) drops below a certain
threshold, then an EOL date can be announced and notifica-
tions should be sent to the users. The other advantage of our
proposed policy is that when a market share of an Android
version is lower than a threshold, it might not be beneficial (in
terms of cost-benefit analysis) for rational attackers to exploit
a vulnerability.

7 Limitations

In the following, we discuss limitations of our work. The first
security bulletin was published in August 2015 by Google
while Android was commercialized in 2008. As a result, our
analysis and investigation are limited to the last four years
(version 4.4 and above) and cannot be extended to 2008-
2015. However, we believe that our study and analysis are
representative of the current practices of Android and can lead
to better policy design in this ecosystem.

Another limitation of our work is that we have asymmetric
information for different CVEs. For example, for some CVEs
in Android security bulletins, we have a reference link which
gives some information about the commit date, etc. But, for
other CVEs, there are no such references. Another example
is the reported date. Only a limited number of CVEs have
this attribute. As a result, our analysis for these attributes
works with a reduced sample size of those CVEs that have
that information.

The SZZ algorithm has its own limitations as well. First,
the algorithm only considers code deletions when it tries to
find the first commit that might cause a particular vulnera-
bility. However, there are other commits that only have code
additions and analyzing code additions needs static code anal-
ysis to find the cause of vulnerabilities. Furthermore, the SZZ
algorithm also checks the files that might not cause a vulnera-
bility. Log files and build files are examples of them. Since
there might be lots of different types of files to exclude, we did
not do anything further in this case and leave a more nuanced
analysis to future work.

The algorithm also proposes to draw information from
the issue tracker [95] such as bug creation date. However,
while there is an Android issue tracker [6], we were not able
to identify relevant information about patched vulnerabili-
ties. Therefore, it is very likely that these bugs are internally
tracked.

8 Conclusion

Our paper provides, what we believe to be the most detailed
and comprehensive study on patched Android vulnerabilities.
We have collected 2,470 vulnerabilities with their detailed

information from both Android security bulletins and the
CVEDetails website for August 2015 to January 2019.

First, we investigated the overall trend of the patched vulner-
abilities by analyzing the number of vulnerabilities per year
for each severity level. Second, we analyzed the distribution
of the root causes of patched vulnerabilities by studying their
common weakness enumerations (CWE). Third, we studied
the duration of support for different AOSP versions. Fourth,
we calculated the time gap between the fix-commit and the
published date of vulnerabilities that originate from Linux and
Qualcomm. Fifth, we examined the sequences of the public
disclosure, the patch release, and the last commit dates of the
patched vulnerabilities. Last, but not least, we analyzed the
maximum and minimum vulnerability lifetimes.

For example, our findings demonstrate that the most
common root cause of patched vulnerabilities is CWE
119: Failure to Constrain Operations within the
Bounds of a Memory Buffer. Further, we showed that
the length of security support varies for different AOSP
versions. In addition, there are versions that are affected
by Android-related vulnerabilities but not updated due to
Google’s patch policy, which leaves users unprotected after
an Android version has reached EOL status.

We hope that our research contributes to a better under-
standing of the security practices in the Android ecosystem,
and helps to develop better policies for security management
in the future.

Acknowledgments: We thank the anonymous reviewers
for their constructive comments and feedback. We further
want to thank Ikra Gizem Yildiz and Ece Kubilay for their
feedback. This work was supported by the German Institute
for Trust and Safety on the Internet (DIVSI).

References

[1] All AOSP versions. https://en.wikipedia.
org/wiki/Android_version_history. Accessed:
01/19/2019.

[2] Android architecture. https://source.android.
com/devices/architecture. Accessed:
01/29/2019.

[3] Android audio. https://source.android.com/
devices/audio. Accessed: 01/30/2019.

[4] Android bluetooth. https://source.android.com/
devices/bluetooth. Accessed: 01/30/2019.

[5] Android Git repo. https://android.
googlesource.com. Accessed: 02/15/2019.

[6] Android issue tracker. https://issuetracker.
google.com/issues. Accessed: 03/02/2019.

18

https://en.wikipedia.org/wiki/Android_version_history
https://en.wikipedia.org/wiki/Android_version_history
https://source.android.com/devices/architecture
https://source.android.com/devices/architecture
https://source.android.com/devices/audio
https://source.android.com/devices/audio
https://source.android.com/devices/bluetooth
https://source.android.com/devices/bluetooth
https://android.googlesource.com
https://android.googlesource.com
https://issuetracker.google.com/issues
https://issuetracker.google.com/issues


[7] Android kernel stack layer. https://source.
android.com/devices/architecture/kernel/
android-common. Accessed: 01/19/2019.

[8] Android market share. https://www.idc.com/
promo/smartphone-market-share/os. Accessed:
02/17/2019.

[9] Android media. https://source.android.com/
devices/media. Accessed: 01/30/2019.

[10] Android namespace libraries. https:
//source.android.com/devices/tech/config/
namespaces_libraries. Accessed: 01/29/2019.

[11] Android NDK native APIs. https://developer.
android.com/ndk/guides/stable_apis. Ac-
cessed: 01/29/2019.

[12] Android related vulnerabilities. https:
//www.cvedetails.com/product/19997/
Google-Android.html?vendor_id=1224. Ac-
cessed: 02/17/2019.

[13] Android runtime. https://en.wikipedia.org/
wiki/Android_Runtime. Accessed: 01/30/2019.

[14] Android security bulletin 2015-08. https://source.
android.com/security/bulletin/2015-08-01.
Accessed: 01/30/2019.

[15] Android security bulletin 2015-10. https://source.
android.com/security/bulletin/2015-10-01.
Accessed: 01/26/2019.

[16] Android security bulletin 2015-12. https://source.
android.com/security/bulletin/2015-12-01.
Accessed: 01/26/2019.

[17] Android security bulletin 2016-01. https://source.
android.com/security/bulletin/2016-01-01.
Accessed: 01/26/2019.

[18] Android security bulletin 2016-02. https://source.
android.com/security/bulletin/2016-02-01.
Accessed: 02/17/2019.

[19] Android security bulletin 2016-03. https://source.
android.com/security/bulletin/2016-03-01.
Accessed: 02/17/2019.

[20] Android security bulletin 2016-04. https://source.
android.com/security/bulletin/2016-04-02.
Accessed: 02/17/2019.

[21] Android security bulletin 2016-06. https://source.
android.com/security/bulletin/2016-06-01.
Accessed: 02/02/2019.

[22] Android security bulletin 2016-07. https://source.
android.com/security/bulletin/2016-07-01.
Accessed: 01/29/2019.

[23] Android security bulletin 2016-08. https://source.
android.com/security/bulletin/2016-08-01.
Accessed: 02/17/2019.

[24] Android security bulletin 2016-09. https://source.
android.com/security/bulletin/2016-09-01.
Accessed: 01/26/2019.

[25] Android security bulletin 2016-10. https://source.
android.com/security/bulletin/2016-10-01.
Accessed: 01/26/2019.

[26] Android security bulletin 2017-01. https://source.
android.com/security/bulletin/2017-01-01.
Accessed: 01/26/2019.

[27] Android security bulletin 2017-02. https://source.
android.com/security/bulletin/2017-02-01.
Accessed: 01/30/2019.

[28] Android security bulletin 2017-06. https://source.
android.com/security/bulletin/2017-06-01.
Accessed: 01/27/2019.

[29] Android security bulletin 2017-07. https://source.
android.com/security/bulletin/2017-07-01.
Accessed: 01/30/2019.

[30] Android security bulletin 2017-09. https://source.
android.com/security/bulletin/2017-09-01.
Accessed: 01/19/2019.

[31] Android security bulletin 2017-10. https://source.
android.com/security/bulletin/2017-10-01.
Accessed: 01/29/2019.

[32] Android security bulletin 2017-11. https://source.
android.com/security/bulletin/2017-11-01.
Accessed: 01/19/2019.

[33] Android security bulletin 2017-12. https://source.
android.com/security/bulletin/2017-12-01.
Accessed: 02/09/2019.

[34] Android security bulletin 2018-04. https://source.
android.com/security/bulletin/2018-04-01.
Accessed: 02/03/2019.

[35] Android security bulletin 2018-06. https://source.
android.com/security/bulletin/2018-06-01.
Accessed: 01/30/2019.

[36] Android security bulletin 2018-08. https://source.
android.com/security/bulletin/2018-08-01.
Accessed: 01/29/2019.

19

https://source.android.com/devices/architecture/kernel/android-common
https://source.android.com/devices/architecture/kernel/android-common
https://source.android.com/devices/architecture/kernel/android-common
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://source.android.com/devices/media
https://source.android.com/devices/media
https://source.android.com/devices/tech/config/namespaces_libraries
https://source.android.com/devices/tech/config/namespaces_libraries
https://source.android.com/devices/tech/config/namespaces_libraries
https://developer.android.com/ndk/guides/stable_apis
https://developer.android.com/ndk/guides/stable_apis
https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
https://en.wikipedia.org/wiki/Android_Runtime
https://en.wikipedia.org/wiki/Android_Runtime
https://source.android.com/security/bulletin/2015-08-01
https://source.android.com/security/bulletin/2015-08-01
https://source.android.com/security/bulletin/2015-10-01
https://source.android.com/security/bulletin/2015-10-01
https://source.android.com/security/bulletin/2015-12-01
https://source.android.com/security/bulletin/2015-12-01
https://source.android.com/security/bulletin/2016-01-01
https://source.android.com/security/bulletin/2016-01-01
https://source.android.com/security/bulletin/2016-02-01
https://source.android.com/security/bulletin/2016-02-01
https://source.android.com/security/bulletin/2016-03-01
https://source.android.com/security/bulletin/2016-03-01
https://source.android.com/security/bulletin/2016-04-02
https://source.android.com/security/bulletin/2016-04-02
https://source.android.com/security/bulletin/2016-06-01
https://source.android.com/security/bulletin/2016-06-01
https://source.android.com/security/bulletin/2016-07-01
https://source.android.com/security/bulletin/2016-07-01
https://source.android.com/security/bulletin/2016-08-01
https://source.android.com/security/bulletin/2016-08-01
https://source.android.com/security/bulletin/2016-09-01
https://source.android.com/security/bulletin/2016-09-01
https://source.android.com/security/bulletin/2016-10-01
https://source.android.com/security/bulletin/2016-10-01
https://source.android.com/security/bulletin/2017-01-01
https://source.android.com/security/bulletin/2017-01-01
https://source.android.com/security/bulletin/2017-02-01
https://source.android.com/security/bulletin/2017-02-01
https://source.android.com/security/bulletin/2017-06-01
https://source.android.com/security/bulletin/2017-06-01
https://source.android.com/security/bulletin/2017-07-01
https://source.android.com/security/bulletin/2017-07-01
https://source.android.com/security/bulletin/2017-09-01
https://source.android.com/security/bulletin/2017-09-01
https://source.android.com/security/bulletin/2017-10-01
https://source.android.com/security/bulletin/2017-10-01
https://source.android.com/security/bulletin/2017-11-01
https://source.android.com/security/bulletin/2017-11-01
https://source.android.com/security/bulletin/2017-12-01
https://source.android.com/security/bulletin/2017-12-01
https://source.android.com/security/bulletin/2018-04-01
https://source.android.com/security/bulletin/2018-04-01
https://source.android.com/security/bulletin/2018-06-01
https://source.android.com/security/bulletin/2018-06-01
https://source.android.com/security/bulletin/2018-08-01
https://source.android.com/security/bulletin/2018-08-01


[37] Android security bulletin 2018-09. https://source.
android.com/security/bulletin/2018-09-01.
Accessed: 01/27/2019.

[38] Android security bulletin 2018-10. https://source.
android.com/security/bulletin/2018-10-01.
Accessed: 01/23/2019.

[39] Android security bulletin 2019-01. https://source.
android.com/security/bulletin/2019-01-01.
Accessed: 02/18/2019.

[40] Android security bulletins. https://source.
android.com/security/bulletin. Accessed:
01/23/2019.

[41] Android severity rankings. https://
source.android.com/security/overview/
updates-resources.html#severity. Accessed:
02/02/2019.

[42] Android stack layers. https://source.android.
com/setup. Accessed: 01/19/2019.

[43] Android stagefright media player.
https://quandarypeak.com/2013/08/
androids-stagefright-media-player-architecture/
a. Accessed: 01/30/2019.

[44] Beautifulsoup. https://www.
pythonforbeginners.com/beautifulsoup/
beautifulsoup-4-python. Accessed: 01/23/2019.

[45] Code Aurora. https://www.codeaurora.org. Ac-
cessed: 02/17/2019.

[46] Code Aurora. https://source.codeaurora.
org/quic/la/kernel/msm-3.18/commit/?id%
3D9be5b16de622c2426408425e3df29e945cd21d37&
sa=D&usg=AFQjCNHuM63XOo5Y0C7bMJQIIedBHSDKjw.
Accessed: 02/17/2019.

[47] CVE-2016-5131 git repository. https:
//android.googlesource.com/
platform/external/libxml2/+/
0eff71008becb7f2c2b4509708da4b79985948bb.
Accessed: 01/27/2019.

[48] CVE-2018-9440 first git repository.
https://android.googlesource.
com/platform/frameworks/av/+/
2870acaa4c58cf59758a74b6390615a421f14268.
Accessed: 01/27/2019.

[49] CVE-2018-9440 second git reposi-
tory. https://android.googlesource.
com/platform/frameworks/av/+/
8033f4a227e03f97a0f1d9975dc24bcb4ca61f74.
Accessed: 01/27/2019.

[50] CVE details. https://www.cvedetails.com. Ac-
cessed: 01/23/2019.

[51] CVE Mitre. https://cve.mitre.org/. Accessed:
02/03/2019.

[52] CWE. https://cwe.mitre.org/about/. Accessed:
01/28/2019.

[53] CWE hierachy. ’https://nvd.nist.gov/vuln/
categories/cwe-layout#’. Accessed: 01/27/2019.

[54] Git annotate. https://git-scm.com/docs/
git-annotate. Accessed: 03/02/2019.

[55] Git diff. https://git-scm.com/docs/git-diff.
Accessed: 03/02/2019.

[56] Google kernel git. https://android.
googlesource.com/kernel/. Accessed:
01/30/2019.

[57] HAL. https://source.android.com/devices/
architecture/hal. Accessed: 01/29/2019.

[58] HAL & HIDL package and interfaces.
https://source.android.com/devices/
architecture/hidl/interfacesl. Accessed:
01/29/2019.

[59] HIDL. https://source.android.com/devices/
architecture/hidl. Accessed: 01/29/2019.

[60] Json. https://en.wikipedia.org/wiki/JSON. Ac-
cessed: 01/23/2019.

[61] LG security bulletin. https://lgsecurity.
lge.com/security_updates.html. Accessed:
02/17/2019.

[62] Linux patchwork. https://patchwork.kernel.
org. Accessed: 02/17/2019.

[63] Mobile Android Version Market Share
Worldwide. http://gs.statcounter.
com/android-version-market-share/
mobile-tablet/worldwide. Accessed: 02/10/2019.

[64] Mongodb. https://www.mongodb.com/
what-is-mongodb. Accessed: 01/23/2019.

[65] National Vulnerability Database. https://nvd.nist.
gov/. Accessed: 02/03/2019.

[66] Nexus Device Update. https://support.google.
com/nexus/answer/4457705?hl=en. Accessed:
02/09/2019.

[67] NVD severity rankings. https://nvd.nist.gov/
vuln-metrics/cvss. Accessed: 02/02/2019.

20

https://source.android.com/security/bulletin/2018-09-01
https://source.android.com/security/bulletin/2018-09-01
https://source.android.com/security/bulletin/2018-10-01
https://source.android.com/security/bulletin/2018-10-01
https://source.android.com/security/bulletin/2019-01-01
https://source.android.com/security/bulletin/2019-01-01
https://source.android.com/security/bulletin
https://source.android.com/security/bulletin
https://source.android.com/security/overview/updates-resources.html#severity
https://source.android.com/security/overview/updates-resources.html#severity
https://source.android.com/security/overview/updates-resources.html#severity
https://source.android.com/setup
https://source.android.com/setup
https://quandarypeak.com/2013/08/androids-stagefright-media-player-architecture/a
https://quandarypeak.com/2013/08/androids-stagefright-media-player-architecture/a
https://quandarypeak.com/2013/08/androids-stagefright-media-player-architecture/a
https://www.pythonforbeginners.com/beautifulsoup/beautifulsoup-4-python
https://www.pythonforbeginners.com/beautifulsoup/beautifulsoup-4-python
https://www.pythonforbeginners.com/beautifulsoup/beautifulsoup-4-python
https://www.codeaurora.org
https://source.codeaurora.org/quic/la/kernel/msm-3.18/commit/?id%3D9be5b16de622c2426408425e3df29e945cd21d37&sa=D&usg=AFQjCNHuM63XOo5Y0C7bMJQIIedBHSDKjw
https://source.codeaurora.org/quic/la/kernel/msm-3.18/commit/?id%3D9be5b16de622c2426408425e3df29e945cd21d37&sa=D&usg=AFQjCNHuM63XOo5Y0C7bMJQIIedBHSDKjw
https://source.codeaurora.org/quic/la/kernel/msm-3.18/commit/?id%3D9be5b16de622c2426408425e3df29e945cd21d37&sa=D&usg=AFQjCNHuM63XOo5Y0C7bMJQIIedBHSDKjw
https://source.codeaurora.org/quic/la/kernel/msm-3.18/commit/?id%3D9be5b16de622c2426408425e3df29e945cd21d37&sa=D&usg=AFQjCNHuM63XOo5Y0C7bMJQIIedBHSDKjw
https://android.googlesource.com/platform/external/libxml2/+/0eff71008becb7f2c2b4509708da4b79985948bb
https://android.googlesource.com/platform/external/libxml2/+/0eff71008becb7f2c2b4509708da4b79985948bb
https://android.googlesource.com/platform/external/libxml2/+/0eff71008becb7f2c2b4509708da4b79985948bb
https://android.googlesource.com/platform/external/libxml2/+/0eff71008becb7f2c2b4509708da4b79985948bb
https://android.googlesource.com/platform/frameworks/av/+/2870acaa4c58cf59758a74b6390615a421f14268
https://android.googlesource.com/platform/frameworks/av/+/2870acaa4c58cf59758a74b6390615a421f14268
https://android.googlesource.com/platform/frameworks/av/+/2870acaa4c58cf59758a74b6390615a421f14268
https://android.googlesource.com/platform/frameworks/av/+/8033f4a227e03f97a0f1d9975dc24bcb4ca61f74
https://android.googlesource.com/platform/frameworks/av/+/8033f4a227e03f97a0f1d9975dc24bcb4ca61f74
https://android.googlesource.com/platform/frameworks/av/+/8033f4a227e03f97a0f1d9975dc24bcb4ca61f74
https://www.cvedetails.com
https://cve.mitre.org/
https://cwe.mitre.org/about/
'https://nvd.nist.gov/vuln/categories/cwe-layout#'
'https://nvd.nist.gov/vuln/categories/cwe-layout#'
https://git-scm.com/docs/git-annotate
https://git-scm.com/docs/git-annotate
https://git-scm.com/docs/git-diff
https://android.googlesource.com/kernel/
https://android.googlesource.com/kernel/
https://source.android.com/devices/architecture/hal
https://source.android.com/devices/architecture/hal
https://source.android.com/devices/architecture/hidl/interfacesl
https://source.android.com/devices/architecture/hidl/interfacesl
https://source.android.com/devices/architecture/hidl
https://source.android.com/devices/architecture/hidl
https://en.wikipedia.org/wiki/JSON
https://lgsecurity.lge.com/security_updates.html
https://lgsecurity.lge.com/security_updates.html
https://patchwork.kernel.org
https://patchwork.kernel.org
http://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
http://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
http://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
https://www.mongodb.com/what-is-mongodb
https://www.mongodb.com/what-is-mongodb
https://nvd.nist.gov/
https://nvd.nist.gov/
https://support.google.com/nexus/answer/4457705?hl=en
https://support.google.com/nexus/answer/4457705?hl=en
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss


[68] Python 3.6.0. https://www.python.org/
downloads/release/python-360/. Accessed:
02/02/2019.

[69] Samsung security bulletin. https://security.
samsungmobile.com/securityUpdate.smsb. Ac-
cessed: 02/17/2019.

[70] Selenium. https://www.seleniumhq.org. Ac-
cessed: 01/23/2019.

[71] Studio3t. https://www.mongodb.com/partners/
studio-3t. Accessed: 01/23/2019.

[72] Total number of vulnerabilities. https://www.
cvedetails.com/browse-by-date.php. Accessed:
02/17/2019.

[73] Windows lifecycle fact sheet. https:
//support.microsoft.com/en-us/help/13853/
windows-lifecycle-fact-sheet. Accessed:
02/07/2019.

[74] Devdatta Akhawe and Adrienne Porter Felt. Alice
in warningland: A large-scale field study of browser
security warning effectiveness. In Proceedings of the
USENIX Security Symposium, 2013.

[75] Omar Alhazmi and Yashwant Malaiya. Modeling the
vulnerability discovery process. In Proceedings of the
16th International Symposium on Software Reliability
Engineering, pages 1–10. IEEE, 2005.

[76] Ashish Arora, Ramayya Krishnan, Rahul Telang, and
Yubao Yang. An empirical analysis of software ven-
dors’ patch release behavior: Impact of vulnerability
disclosure. Information Systems Research, 21(1):115–
132, 2010.

[77] Thomas Duebendorfer and Stefan Frei. Why silent
updates boost security. Technical report, 2009.

[78] Keith Edwards, Erika Shehan Poole, and Jennifer Stoll.
Security automation considered harmful? In Proceed-
ings of the 2007 Workshop on New Security Paradigms
(NSPW), pages 33–42. ACM, 2008.

[79] William Enck, Machigar Ongtang, and Patrick Mc-
Daniel. Understanding Android security. IEEE Se-
curity & Privacy, (1):50–57, 2009.

[80] Sadegh Farhang, Aron Laszka, and Jens Grossklags.
An economic study of the effect of android platform
fragmentation on security updates. arXiv preprint
arXiv:1712.08222, 2017.

[81] Sadegh Farhang, Jake Weidman, Mohammad Mahdi
Kamani, Jens Grossklags, and Peng Liu. Take it or
leave it: A survey study on operating system upgrade

practices. In Proceedings of the 34th Annual Computer
Security Applications Conference (ACSAC), pages 490–
504. ACM, 2018.

[82] Stefan Frei, Bernhard Tellenbach, and Bernhard Plat-
tner. 0-day patch exposing vendors (in) security per-
formance. BlackHat Europe, 2008.

[83] Christos Gkantsidis, Thomas Karagiannis, and Milan
Vojnovic. Planet scale software updates. ACM Com-
puter Communication Review, 36(4):423–434, 2006.

[84] Arrah-Marie Jo. The effect of competition intensity
on software security-an empirical analysis of security
patch release on the web browser market. In 16th
Annual Workshop on the Economics of Information
Security (WEIS), 2017.

[85] Aron Laszka, Mingyi Zhao, and Jens Grossklags. Ban-
ishing misaligned incentives for validating reports in
bug-bounty platforms. In Proceedings of the Euro-
pean Symposium on Research in Computer Security
(ESORICS), pages 161–178, 2016.

[86] Frank Li and Vern Paxson. A large-scale empirical
study of security patches. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 2201–2215. ACM, 2017.

[87] Mario Linares-Vásquez, Gabriele Bavota, and Camilo
Escobar-Velásquez. An empirical study on Android-
related vulnerabilities. In IEEE/ACM 14th Interna-
tional Conference on Mining Software Repositories
(MSR), pages 2–13. IEEE, 2017.

[88] Thomas Maillart, Mingyi Zhao, Jens Grossklags, and
John Chuang. Given enough eyeballs, all bugs are
shallow? Revisiting Eric Raymond with bug bounty
programs. Journal of Cybersecurity, 3(2):81–90, 2017.

[89] Arunesh Mathur and Marshini Chetty. Impact of user
characteristics on attitudes towards automatic mobile
application updates. In Proceedings of the Symposium
on Usable Privacy and Security (SOUPS), 2017.

[90] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan
Caballero, and Tudor Dumitras. The attack of the
clones: A study of the impact of shared code on vulner-
ability patching. In Proceedings of the IEEE Sympo-
sium on Security and Privacy (S&P), pages 692–708.
IEEE, 2015.

[91] Chuangang Ren, Peng Liu, and Sencun Zhu. Window-
guard: Systematic protection of GUI security in An-
droid. In Proceedings of the Network and Distributed
Systems Security Symposium (NDSS), 2017.

21

https://www.python.org/downloads/release/python-360/
https://www.python.org/downloads/release/python-360/
https://security.samsungmobile.com/securityUpdate.smsb
https://security.samsungmobile.com/securityUpdate.smsb
https://www.seleniumhq.org
https://www.mongodb.com/partners/studio-3t
https://www.mongodb.com/partners/studio-3t
https://www.cvedetails.com/browse-by-date.php
https://www.cvedetails.com/browse-by-date.php
https://support.microsoft.com/en-us/help/13853/windows-lifecycle-fact-sheet
https://support.microsoft.com/en-us/help/13853/windows-lifecycle-fact-sheet
https://support.microsoft.com/en-us/help/13853/windows-lifecycle-fact-sheet


[92] Chuangang Ren, Yulong Zhang, Hui Xue, Tao Wei, and
Peng Liu. Towards discovering and understanding task
hijacking in Android. In Proceedings of the USENIX
Security Symposium, pages 945–959, 2015.

[93] Asaf Shabtai, Yuval Fledel, and Yuval Elovici. Secur-
ing Android-powered mobile devices using SELinux.
IEEE Security & Privacy, 8(3):36–44, 2010.

[94] Muhammad Shahzad, Muhammad Zubair Shafiq, and
Alex X Liu. A large scale exploratory analysis of soft-
ware vulnerability life cycles. In Proceedings of the
34th International Conference on Software Engineer-
ing (ICSE), pages 771–781. IEEE, 2012.

[95] Jacek Śliwerski, Thomas Zimmermann, and Andreas
Zeller. When do changes induce fixes? In ACM Sigsoft
Software Engineering Notes, volume 30, pages 1–5.
ACM, 2005.

[96] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi,
Neha Atri, and Lorrie Faith Cranor. Crying wolf: An
empirical study of SSL warning effectiveness. In Pro-
ceedings of the USENIX Security Symposium, pages
399–416, 2009.

[97] Kami Vaniea and Yasmeen Rashidi. Tales of soft-
ware updates: The process of updating software. In
Proceedings of the Conference on Human Factors in
Computing Systems (CHI), pages 3215–3226. ACM,
2016.

[98] Timothy Vidas, Daniel Votipka, and Nicolas Christin.
All your droid are belong to us: A survey of current
Android attacks. In WOOT, pages 81–90, 2011.

[99] Luyi Xing, Xiaorui Pan, Rui Wang, Kan Yuan, and
XiaoFeng Wang. Upgrading your Android, elevating
my malware: Privilege escalation through mobile OS
updating. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), pages 393–408. IEEE,
2014.

[100] Karim Yaghmour. Embedded Android: Porting, Ex-
tending, and Customizing. O’Reilly Media, Inc., 2013.

[101] Guangliang Yang, Jeff Huang, Guofei Gu, and Abner
Mendoza. Study and mitigation of origin stripping
vulnerabilities in hybrid-postmessage enabled mobile
applications. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), pages 742–755. IEEE,
2018.

[102] Mingyi Zhao, Jens Grossklags, and Peng Liu. An em-
pirical study of web vulnerability discovery ecosys-
tems. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security,
pages 1105–1117. ACM, 2015.

A Android Stack Layers

Android stack layers are software components for a wide
array of devices with different form factors. It helps under-
standing where a software component is located. Figure 13
represents all of its five main stack layers and one additional
component [42]. In this section, we investigate the role of
Android stack layers in vulnerabilities.

Figure 13: Android stack layers [42]

It is crucial to examine that which Android stack layer
is affected by which vulnerability. Thus, one can see which
layers are more vulnerable. However, to the best of our knowl-
edge, none of the publicly available platforms provide explicit
information about affected layers for Android-related vulner-
abilities. Thus, a further analysis is essential to determine
them. Note that patched vulnerabilities have references in our
dataset. They contain links that navigate to the code reposito-
ries such as Qualcomm Code Aurora, AOSP Git repository
and Linux Patchwork. In this classification, we only investi-
gate AOSP Git repositories. For instance, CVE-2016-5131,
published in June 2017, has one reference link that navigates
to the AOSP Git repository [28]. In AOSP Git repository,
the followings are published: the branch, the commit id, the
changed files, the author, the commit message and commit
logs. [47].

The references can be more than one as well. For in-
stance, CVE-2018-9440 is published in September 2018 and
has two different references [37]. Although they have the
same branch which is frameworks/av, they have different
commit IDs. Besides, one of the references has one addi-
tional changed file than the other one which is media/libstage-
fright/httplive/M3UParser.h [48, 49]. Moreover, the branches
can also be different among the references that belong to the
same patched vulnerability. For instance, CVE-2017-0831
is published in November 2017 and has two different refer-
ences [32]. The first reference has the branch frameworks/base
while the other one has the branch packages/apps/Settings.
Given this, the changed files can differ from each other as

22



well.
Another issue we notice is that there might be patched

vulnerabilities that do not have any references. According to
the information that is published on each Android security
bulletin, these patched vulnerabilities are marked with the sign
of asterisk * since their references are not publicly available.

For our classification method, only a branch name itself is
not enough to find which layer is affected by a vulnerability.
The reason is that there might be directories on the branch
that might point to the different stack layers. For this reason,
we also need to check the changed files’ directories to achieve
more accurate classification. Since the changed files have
their own directories, we combine the branch path with the
changed file patch to get full path.

Aside from the full paths, we also use component name and
category name to identify the stack layers of patched vulner-
abilities. Component name is presented as a column of each
patched vulnerabilities. Note that there might be such cases
where it does not have the component name. Category name,
on the other hand, is the title of each category on the Android
security bulletins. For instance, in September 2017 [30], the
first category name is Framework which consists of only one
patched vulnerability. The second category name is Libraries
that contains three different patched vulnerabilities. Although
the component and category names do not provide too much
detailed information, we benefit from them to identify exter-
nal components and kernel stack layer vulnerabilities.

The following subsections describe the classification meth-
ods for each stack layers.

A.1 Kernel Layer
All the kernel layer changes are implemented under the branch
name kernel/ [7, 56]. Thus, a patched vulnerability can be
classified as a kernel layer by looking at this branch name.
In case of where a patched vulnerability does not have any
references, then we look at its category name and the compo-
nent name. If either of these names has the name kernel, we
consider it as a Kernel Layer patched vulnerability. For exam-
ple, CVE-2014-9322, published in April 2016, has the branch
name kernel/ [20] which makes it a kernel layer patched vul-
nerability. On the other hand, CVE-2017-0648, published in
June 2017, does not have any references [28]. However, it has
the category name kernel. Thus, this patched vulnerability is
classified as a kernel layer. As a result, we check the branch
name, category name, and component name of the patched
vulnerabilities to classify them as kernel layer.

A.2 Hardware Abstraction Layer
“Hardware Abstraction Layer (HAL) defines a standard in-
terface for hardware vendors to implement, which enables
Android to be agnostic about lower-level driver implemen-
tations” [57]. An interface description language (IDL) that

determines the interface between users and HAL is called
HAL interface definition language (HIDL). This also spec-
ifies types and method calls, collected into interfaces and
packages [59].

Based on the Android source [58], if a patched vulnerability
has the following branch names, then it can be classified as
HAL: hardware/, hidl/ and hwservicemanager/. The branches
vendor/ and device/ can also be counted as HAL-related
branches, according to [58] and [100] Page 88. Moreover, the
branch system/bt/ also indicates a Bluetooth stack located in
HAL [4].

For instance, CVE-2017-0767, published in September
2017, has two references [30]. One of them has the branch
name hardware/. Therefore, we classify this patched vulner-
ability as HAL. The second example, CVE-2017-0812, pub-
lished in October 2017, has the branch name device/ [31].
Hence, we also classify this as HAL.

A.3 External Layer

Android uses external libraries that are developed by third-
parties. These externals might affect different Android stack
layers. However, they need further analyses in order to clas-
sify them as one of the Android Stack Layers. Thus, we con-
sider them separately. External-related patched vulnerabilities
have their own unique branch name external/. Thus, we use
this branch name to classify the patched vulnerabilities as an
external-related one. It consists of all external libraries such
as chromium-libpac and v8. For example, CVE-2018-9490,
published in October 2018, has two references [38]. Both
of them have the branch name external/. Therefore, we clas-
sify this patched vulnerability as an external-related patched
vulnerability.

A.4 Applications Layer

Applications Layer is the top layer on all Android stack lay-
ers. It consists of different stock applications such as Cal-
culator and Email that the end user interacts with. Based
on [100] (page 88, Figure 3.2), we consider all the changes
implemented in the branch packages/apps as application layer
patched vulnerabilities. For instance, CVE-2018-9501, pub-
lished in October 2018, has one reference under the branch
name packages/apps [38].

A.5 Application Framework Layer

Application framework layer consists of abstractions and
APIs in order to provide a communication between the ap-
plications and the native libraries [2]. According to [100]
(page 65, Figures 2-4), there are Java-built services under
the system servers. Java providers and managers are also un-
der the application frameworks layer [100] (page 73). More-

23



over, compatibility test suites (CTS)5 are also considered as
one of the part of this layer. We use the following branches
and directories to classify the patched vulnerabilities as ap-
plication framework layer:platform/packages/providers, plat-
form/frameworks/base/, platform/packages/services/, platfor-
m/frameworks/opt/, platform/cts/, platform/libcore/.

The branch platform/frameworks/base/ shares files which
also belong to the native libraries layer. To address this issue,
the files that have .java file extension are counted as the appli-
cation framework layer while the others that have .c or .cpp
file extensions are considered as native libraries layer.

For example, CVE-2018-9438, published in August 2018,
has platform/packages/providers branch [36]. Another ex-
ample is CVE-2018-9493 which is published in October
2018 [38]. It has branch name platform/frameworks/base/.
Therefore, we count these two patched vulnerabilities as ap-
plication framework layer due to their branch names.

A.6 Native Libraries Layer
Native libraries consist set of native headers and shared li-
brary files in order to provide a solid connection between
the upper layers and lower layers [10, 11]. Audio and Me-
dia are two examples that part of native libraries [3, 9] The
branch /platform/frameworks/av/ indicates the media related
libraries [43]. We also count platform/frameworks/base/ since
it is the old version of platform/frameworks/av/. Further, the
branch platform/frameworks/native/libs/ consists of several
native libraries as well [100] (page 89).

We also consider some parts of the Android architecture,
such as Native Daemons and Init/Toolbox as parts of the na-
tive libraries layer. Since we analyze the patched vulnerabil-
ities by attaching to the Android stack layers and Android
stack layer schema does not explicitly indicate these parts,
we consider these parts as native libraries as well. For in-
stance, CVE-2018-9491, published in October 2018, has the
branch platform/frameworks/av [38] and CVE-2017-0426,
published in February 2017, has the branch /platform/sys-
tem/core/ [27]. Therefore, we consider both of them as native
libraries patched vulnerabilities.

A.7 Android Runtime
Android Runtime (ART) is an application runtime environ-
ment. Replacing Dalvik, the process virtual machine origi-
nally used by Android, ART performs the translation of the
application’s bytecode into native instructions that are later
executed by the device’s runtime environment [13]. Accord-
ing to [100] Page 88 Figure 3.2, /dalvik/ branch is under ART.
Besides, with the investigation of the directories, we also
see files/directory names androidruntime or android_runtime

5CTS tests the overall functionality including the application layer frame-
work

in some references. Therefore, we look at these branches
and directories/file names to consider a patched vulnerability
as ART. For instance, CVE-2015-3865, published in August
2015, has the directory android_runtime in its reference [14].
Similarly, CVE-2016-3758, published in July 2016, has the
branch platform/dalvik [22].

In Appendix A.8, we list all branches and directories that
we use for the classification of the vulnerabilities published
in Android security bulletins.

A.8 All Branches and Directories for the Clas-
sification of the Patched Vulnerabilities

• Kernel Layer Branches and Directories
“platform/kernel/”

• HAL Branches and Directories
“platform/hardware/”,
“platform/device/”,
“platform/vendor/”
“platform/system/bt/”,
“platform/system/nfc/”,

• External-Related Branches and Directories:
“platform/external/”

• Applications Layer Branches and Directories
“platform/packages/apps/”

• Application Framework Layer Branches and Direc-
tories
“platform/packages/providers/”,
“platform/frameworks/base/”,
“platform/packages/services/”,
“platform/frameworks/opt/”,
“platform/cts/”,
“platform/libcore/”,
“platform/frameworks/base/services/”,

• Native Libraries Layer Branches and Directories
“platform/frameworks/av/”,
“platform/frameworks/base/lib/”,
“platform/frameworks/native/”,
“platform/frameworks/base/core/” ,
“platform/frameworks/base/media” ,
“platform/frameworks/minikin/libs/”,
“platform/system/”,
“platform/frameworks/ex/”,
“platform/bionic/” ,
“platform/bootable/” ,

• Android Runtime Layer Branches and Directories
“platform/dalvik/”,

“platform/frameworks/base/include/android_runtime”,

24


	Introduction
	Related Work
	Android-Related Vulnerabilities
	Software Updates
	Economics of Software Updates and Android Security

	Study Design
	Data Collection Methodology
	Web Scraper
	Security Bulletins Dataset
	Mining Code Repositories


	Results
	RQ1: Evolution of Severity Distributions and Root Causes
	Severity Levels
	Common Weakness Enumerations

	RQ2: Security Support Duration
	Release Date and Update Duration
	Updated AOSP Versions vs. Affected Versions
	Common Vulnerabilities Among AOSP Versions
	Unknown CVE ID

	RQ3: Vulnerabilities Originating from Qualcomm and Linux
	RQ4: Public Disclosure vs Patch Release
	RQ5: Vulnerability Lifetime

	Discussion
	Comprehensive Security Bulletins
	Coherent Security Platforms
	User-Centric Security Policy and Security after End-Of-Life (EOL)

	Limitations
	Conclusion
	Android Stack Layers
	Kernel Layer
	Hardware Abstraction Layer
	External Layer
	Applications Layer
	Application Framework Layer
	Native Libraries Layer
	Android Runtime
	All Branches and Directories for the Classification of the Patched Vulnerabilities


