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Abstract

Stack Overflow is the most popular discussion platform for
software developers. However, recent research identified a
large amount of insecure encryption code in production sys-
tems that has been inspired by examples given on Stack
Overflow. By copying and pasting functional code, de-
velopers introduced exploitable software vulnerabilities into
security-sensitive high-profile applications installed by mil-
lions of users every day.
Proposed mitigations of this problem suffer from usability
flaws and push developers to continue shopping for code
examples on Stack Overflow once again. This motivates
us to fight the proliferation of insecure code directly at the
root before it even reaches the clipboard. By viewing Stack
Overflow as a market, implementation of cryptography be-
comes a decision-making problem. In this context, our goal
is to simplify the selection of helpful and secure examples.
More specifically, we focus on supporting software develop-
ers in making better decisions on Stack Overflow by apply-
ing nudges, a concept borrowed from behavioral economics
and psychology. This approach is motivated by one of our
key findings: For 99.37% of insecure code examples on
Stack Overflow, similar alternatives are available that serve
the same use case and provide strong cryptography.
Our system design that modifies Stack Overflow is based on
several nudges that are controlled by a deep neural network.
It learns a representation for cryptographic API usage pat-
terns and classification of their security, achieving average
AUC-ROC of 0.992. With a user study, we demonstrate that
nudge-based security advice significantly helps tackling the
most popular and error-prone cryptographic use cases in An-
droid.

1 Introduction

Informal documentation such as Stack Overflow outperforms
formal documentation in effectiveness and efficiency when
helping software developers implementing functional code.

The fact that 78% of software developers primarily seek help
on Stack Overflow on a daily basis1 underlines the usability
and perceived value of community and example-driven doc-
umentation [2].

Reuse of code examples is the most frequently observed
user pattern on Stack Overflow [17]. It reduces the effort for
implementing a functional solution to its minimum and the
functionality of the solution can immediately be tested and
verified. However, when implementing encryption, its secu-
rity, being a non-functional property, is difficult to verify as
it necessitates profound knowledge of the underlying crypto-
graphic concepts. Moreover, most developers are unaware of
pitfalls when applying cryptography and that misuse can ac-
tually harm application security. Instead, it is often assumed
that mere application of any encryption is already enough
to protect private data [13, 14]. Stack Overflow users also
cannot rely on the community to correctly verify the secu-
rity of available code examples [9]. Security advice given
by community members and moderators is mostly missing
and oftentimes overlooked. This is due to only a few se-
curity experts being available as community moderators and
a feedback system which is not sufficient to communicate
security advice effectively. Consequently, highly insecure
code examples are frequently reused in production code [17].
Exploiting these insecure samples, high-profile applications
were successfully attacked, leading to theft of user creden-
tials, credit card numbers and other private data [13].

While mainly focused on the negative impact of Stack
Overflow on code security, recent research has also reported
that there is a full range of code snippets providing strong
security for symmetric, asymmetric and password-based en-
cryption, as well as TLS, message digests, random number
generation, and authentication [17]. However, it was previ-
ously unknown whether useful alternatives can be found for
most use cases. In our work, we show that for 99.37% of in-
secure encryption code examples on Stack Overflow a sim-
ilar secure alternative is available that serves the same use

1https://insights.stackoverflow.com/survey/2016#
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case. So, why are they not used in a consistent fashion?
We take a new perspective and see implementation of

cryptography as a decision-making problem between avail-
able secure and insecure examples on Stack Overflow. In
order to assist developers in making better security deci-
sions, we apply nudges, a concept borrowed from experi-
mental economics and psychology to attempt altering indi-
viduals’ behaviors in a predictable way without forbidding
any options or significantly changing their economic incen-
tives. Nudging interventions typically address problems as-
sociated with cognitive and behavioral biases, such as an-
choring, loss aversion, framing, optimism, overconfidence,
post-completion errors, and status-quo bias [5, 31]. They
have been applied in the security and privacy domain in a
successful fashion [4,5,7,19,22,32]. In contrast to these ap-
proaches, which focused on systems for end-users, we trans-
late the concept of nudges to the software developer domain
by modifying the choice architecture of Stack Overflow. It
nudges developers towards reusing secure code examples
without interfering with their primary goals.

Our designed security nudges are controlled by a code
analysis system based on deep learning. It learns general fea-
tures that allow the separation of secure and insecure crypto-
graphic usage patterns, as well as their similarity-based clus-
tering and use-case classification. Applying this system, we
can directly derive a choice architecture that is based on pro-
viding similar, secure, and use-case preserving code exam-
ples for insecure encryption code on Stack Overflow.

In summary, we make the following contributions:

• We present a deep learning-based representation learn-
ing approach of cryptographic API usage patterns that
encodes their similarity, use case and security.

• Our trained security classification model which uses the
learned representations achieves average AUC-ROC of
0.992 for predicting insecure usage patterns.

• We design and implement several security nudges on
Stack Overflow that apply our similarity, use case and
security models to help developers make better deci-
sions when reusing encryption code examples.

• We demonstrate the effectiveness of nudge-based secu-
rity advice within a user study where participants had to
implement the two most popular and error-prone cryp-
tographic use cases in Android [13, 17]: nudged par-
ticipants provided significantly more secure solutions,
while achieving the same level of functionality as the
control group.

We proceed as follows. After reviewing related work (Sec-
tion 2), we present our system design that combines deep
learning-based representation learning with nudge-based se-
curity advice (Sections 3 – 6). Then, we present our model
evaluation and user study (Sections 7 & 8), as well as limita-
tions, future work, and conclusions (Sections 9 – 11).

2 Related Work

2.1 Getting Cryptography Right

Acar et al. [2] have investigated the impact of formal and in-
formal information sources on Android application security.
With a lab study, they found that developers prefer informal
documentation such as Stack Overflow over official Android
documentation and textbooks when implementing encryp-
tion code. Solutions based on advice from Stack Overflow
provided significantly more functional – but less secure –
solutions than those based on formal documentation. Work
by Fischer et al. [17] showed that 30% of cryptographic code
examples on Stack Overflow were insecure. Many severely
vulnerable samples were reused in over 190,000 Android ap-
plications from Google Play including high-profile applica-
tions from security-sensitive categories. Moreover, they have
shown that the community feedback given on Stack Over-
flow was not helpful in preventing reuse of insecure code.

Chen et al. studied the impact of these community dynam-
ics on Stack Overflow in more detail [9]. Based on manual
inspection of a subset of posts, they found that (on average)
posts with insecure snippets garnered higher view counts and
higher scores, and had more duplicates compared to posts
with secure snippets. Further, they demonstrated that a siz-
able subset of posts from trusted users were insecure. Taken
together, these works show that developers (by copying and
pasting insecure code) are imposing negative externalities on
millions of users who eventually bear the cost of apps harbor-
ing vulnerabilities [8].

Oliveira et al. focus on developers’ misunderstandings of
ambiguities in APIs (including cryptography), which may
contribute to vulnerabilities in the developed code [26]. They
studied the impact of personality characteristics and con-
textual factors (such as problem complexity), which impact
developers’ ability to identify such ambiguities. Likewise,
Acar et al. [1] investigated whether current cryptographic
API design had an impact on cryptographic misuse. They
selected different cryptographic APIs; including some par-
ticularly simplified APIs in order to prevent misuse. How-
ever, while indeed improving security, these APIs produced
significantly less functional solutions and oftentimes were
not applicable to specific use cases at all. As a consequence,
developers searched for code examples on Stack Overflow
again.

Nguyen et al. [25] developed FixDroid, a static code anal-
ysis tool integrated in Android Studio which checks crypto-
graphic code flaws and suggests quick fixes.

2.2 Security Nudges

Wang et al. [32] implemented privacy nudges on Facebook
in order to make users consider the content and audience
of their online publications more carefully, as research has



shown that users eventually regret some of their disclosure
decisions. They found that a reminder nudge about the au-
dience effectively and non-intrusively prevents unintended
disclosure. Almuhimedi et al. [6] implemented an app per-
missions manager that sends out nudges to the user in order
to raise awareness of data collected by installed apps. With
the help of a user study they were able to show that 95% of
the participants reassessed their permissions, while 58% of
them further restricted them. Liu et al. [23] created a per-
sonalized privacy assistant that predicts personalized privacy
settings based on a questionnaire. In a field study, 78.7% of
the recommendations made by the assistant were adopted by
users, who perceived these recommendations as usable and
useful. They were further motivated to review and modify
the proposed settings with daily privacy nudges.

2.3 Deep Learning Code

Fischer et al. [17] proposed an approach based on machine
learning to predict the security score of encryption code snip-
pets from Stack Overflow. They used tf-idf to generate fea-
tures from source code and trained a support vector machine
(SVM) using an annotated dataset of code snippets. The re-
sulting model was able to predict the security score of code
snippets with an accuracy of 0.86, with precision and recall
of 0.85 and 0.75, respectively. However, security predictions
were only available for the complete code snippet. It did not
allow indicating and marking specific code parts within the
snippet to be insecure. This lack of explainability is detri-
mental for security advice.

Xiaojun et al. [33] introduced neural network-based rep-
resentation learning of control flow graphs (CFGs) gener-
ated from binary code. Using a Siamese network archi-
tecture they learned similar graph embeddings using Struc-
ture2vec [11] from similar binary functions over different
platforms. These embeddings were used to detect vulnera-
bilities in binary blobs by applying code-similarity search.
Their approach significantly outperformed the state-of-the-
art [16] in both, efficiency and effectiveness, by provid-
ing shorter training times and higher area under the curve
(AUC) on detecting vulnerabilities. The approach does not
allow identification and description of code parts within bi-
nary functions that cause the vulnerabilities. To allow better
explainability, we depend on our new approach to provide
statement-level granularity. It enables identifying and classi-
fying multiple code patterns within a single function.

Li et al. [21] developed VulDeePecker, a long short-
term memory (LSTM) neural network that predicts buffer
overflows and resource management error vulnerabilities of
source code gadgets. Code gadgets are backward and for-
ward slices, considering data and control flow, that are gen-
erated from arguments used in library function calls. Fur-
ther, they use word2Vec to create embeddings for the sym-
bolic representation of code gadgets. These embeddings
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Figure 1: Learn-to-Nudge Loop Overview

are then used together with their security label to train
a bi-directional LSTM. VulDeePecker outperforms several
pattern-based and code similarity-based vulnerability detec-
tion systems with respect to false positive and false negative
rates. However, their LSTM model has a very long training
time. Our convolutional approach leverages transfer learning
to achieve much faster training.

3 Overview

We present an overview of our system design for nudge-
and deep learning-based security advice on Stack Overflow
in Figure 1. It depicts a learn-to-nudge loop that represents
the interaction and interference of the community behavior,
classification models and proposed security nudges on Stack
Overflow. The community behavior on Stack Overflow (1)
triggers the loop by continuously providing and reusing code
examples that introduce new use cases and patterns of cryp-
tographic application programming interfaces (APIs). In the
initial step (2), a representative subset of these code exam-
ples is extracted and annotated by human experts. The an-
notations provide ground truth about the use cases and secu-
rity of cryptographic patterns in the given code. Then (3),
a representation for these patterns is learned by an unsuper-
vised neural network based on open source projects provided
by GitHub. In combination with the given annotations, the
pattern embeddings are used to train an additional model to
predict their use cases and security (4). Based on these pre-
dictions, we can apply security nudges on Stack Overflow by
providing security warnings, reminders, recommendations
and defaults for encryption code examples (5). Further, we
allow assigned security moderators2 within the community
to annotate unknown patterns and provide feedback to pre-
dictions of our models (6). Therefore, our system creates a

2https://stackexchange.com/about/moderators
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learn-to-nudge loop that is supposed to iteratively improve
the classification models, which in turn help improving the
security decisions made by the community and the security
of code provided on Stack Overflow.

4 Nudge-Based System Design

We apply five popular nudges [30, 31] and describe their
translation to security advice in this section.

Simplification A simplification nudge promotes building
upon existing and established infrastructures and programs.
We apply this nudge by integrating our system in Stack Over-
flow, a platform that is already used by the majority of soft-
ware developers worldwide. By integrating developer tools
on a platform that is already used by almost everyone, we
unburden developers from installing additional tools. More-
over, it allows us to create awareness of the problem of cryp-
tographic misuse in general.

Warnings A warning nudge aims at raising the user’s at-
tention in order to counteract the natural human tendency
towards unrealistic optimism [5]. We apply this nudge by in-
tegrating security warnings on Stack Overflow. Whenever an
insecure code example has been detected, a warning is dis-
played to the developer to inform about the security problem
and potential risks in reusing the code sample.

Increases in Ease and Convenience (IEC) Research has
also shown that users oftentimes discount security warnings.
However, if they additionally describe available alternative
options to make a less risky decision, warnings tend to be
much more effective [5]. Therefore, our design combines se-
curity warnings with recommendations for similar code ex-
amples with strong cryptography. With this nudge, we make
code examples with better security visible to the user. To
provide an easy choice, we present the recommended code
examples by displaying a list of the related posts. This aims
at encouraging the user to consider the recommendations as
it only demands clicking on a link.

Reminders Users might not engage in the expected con-
duct of paying attention to the warning and following the
recommendations. This might be due to inertia, procrastina-
tion, competing priorities, and simple forgetfulness [5]. Of-
tentimes seeking functional solutions is considered as a com-
peting priority to secure solutions [2]. Therefore, we apply a
reminder nudge, which is triggered whenever the user copies
an insecure code example.

Defaults The default nudge is the most popular and
effective nudge in improving decision-making. Popular
examples are automated enrollment in healthcare plans

or corporate wellness programs, or double-sided printing
which can promote environmental protection [5]. We apply
this nudge by up-ranking posts that only contain secure code
examples in Stack Overflow search results by default.

The goal of our approach is to thoughtfully develop a
new user interface (UI) design that implements the proposed
nudges (see Section 6) and to test whether it improves de-
veloper behavior on Stack Overflow. Please note that we do
not intend to comparatively evaluate multiple UI candidates
for our design patterns to identify the most effective one. We
consider this out of scope for this paper and leave this task
for future work.

5 Neural Network-Based Learning of Crypto-
graphic Use Cases and Security

The nudge-based system design requires algorithmic deci-
sions about the security and similarity of code examples. In
order to display security warnings, code examples have to be
scanned for encryption flaws. To further recommend help-
ful alternatives without common encryption problems, Stack
Overflow posts have to be scanned for similar examples with
strong cryptography.

Due to Simplification (see Section 4), we already chose
a platform that provides us with a large amount of secure
and insecure samples that contain cryptographic API usage
patterns to learn from in order to design the code analysis
approach [17]. Instead of defining rule-based algorithms
[12, 13, 20] that would have to be updated whenever sam-
ples with unknown patterns are added to Stack Overflow, we
simplify and increase the flexibility of our system by apply-
ing deep learning to automatically learn the similarity, use-
case and security features from the ever-increasing dataset
of available code on Stack Overflow. Based on the learned
features, our models are able to predict insecure code exam-
ples and similar but secure alternatives that serve the same
use case. However, newly added code examples that provide
unknown use cases and security flaws might be underrepre-
sented in the data and therefore difficult to learn. Therefore,
we apply transfer learning where we reuse already obtained
knowledge that facilitates learning from a small sample set
of a similar domain.

5.1 Cryptographic Use Cases
Stack Overflow offers a valuable source for common use
cases of cryptographic APIs in Android. As developers post
questions whenever they have a particular problem with an
API, a collection of error-prone or difficult cryptographic
problems is aggregating over time. Moreover, frequen-
cies of similar posted questions, view counts, and scores of
questions posted on Stack Overflow indicate very common
and important problems developers encounter when writing
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(a) Example for an insecure pattern: The initialization vector (IV) is created from a
static string value stored in the code.

(b) Example for a secure pattern: A secure random source is used to generate the IV.

Figure 2: Example for a secure and insecure usage pattern of new IvParameterSpec. It shows the program dependency graph
(PDG) of the 5-hop neighborhood of the seed statement s1 for the secure and insecure code example displayed in (a) and (b).
Next to each node in the graph we provide the shortened signature of the related statement, highlighting a subset of its attributes
we store in the feature vector. Bytecode instruction types are highlighted yellow, Java types blue and constants magenta.

security-related code. Therefore, Stack Overflow can be seen
as a dataset of different cryptographic use cases that are fre-
quently required in production code. Previous work iden-
tified the most popular and error-prone use cases of cryp-
tography in Android apps [17]. The authors scanned Stack
Overflow for insecure code examples that use popular cryp-
tographic APIs, e g. Oracle’s Java Cryptography Architec-
ture (JCA), and detected their reuse in Android applications.
We summarize the identified use cases in Table 1.

Use Case Usage Pattern API
Identifier Description Seed Statement

Cipher Initialization of cipher, mode and Cipher.getInstance
padding

Key Generation of symmetric key new SecretKeySpec
IV Generation of initialization new IvParameterSpec

vector
Hash Initialization of cryptographic MessageDigest.

hash function getInstance
TLS Initialization of TLS protocol SSLContext.getInstance
HNV Setting the hostname verifier setHostnameVerifier
HNVOR Overriding the hostname verification verify
TM Overriding server checkServerTrusted

certificate verification

Table 1: Common cryptographic use cases in Android

5.2 Learning API Usage Patterns
In order to predict similarity, use case and security of encryp-
tion code, we need to learn a numerical representation of the

related patterns that can be understood by a neural network.
Therefore, our first step is learning an embedding of crypto-
graphic API usage patterns.

Usage Pattern As shown in Table 1, a cryptographic API
element, e. g., javax.crypto.Cipher.getInstance, can have dif-
ferent usage patterns that belong to the same use case. A
usage pattern consists of a particular API element, all state-
ments it depends on, and all its dependent statements within
the given code. In other words, a pattern can be seen as a sub-
graph of the PDG, which represents the control and data de-
pendencies of statements. The subgraph is created by prun-
ing the graph from anything but the forward and backward
slices of the API element, as shown in Figure 2. We call this
element the seed statement. This pruned graph can become
very large and therefore might contain noise with respect to
the identification of patterns. Our goal is to learn an optimal
representation of usage patterns that allows accurate classifi-
cation of their use cases and security. Ideally, the related sub-
graph is minimized to a neighborhood of the seed statement
in the pruned PDG such that it provides enough information
to solve the classification tasks.

Neighborhood Aggregation Our approach learns pattern
embeddings for the K-hop neighborhood of cryptographic
API elements within the PDG, as shown in Figure 2.
To generate these embeddings we use the neighborhood-
aggregation algorithm provided by Structure2vec [11]. This
method leverages node features (e. g., instruction types of a
statement node) and graph statistics (e. g., node degrees) to



inform their embeddings. It provides a convolutional method
that represents a node as a function of its surrounding neigh-
borhood. The parameter K allows us to search for a neigh-
borhood that optimally represents usage patterns to solve
given classification tasks. In other words, we learn the code
representation in a way such that its features improve use
case and security prediction of the code. As we will show
throughout this work, this representation is very helpful for
classifying cryptographic API usage patterns. We further ar-
gue that the learned pattern representation is not restricted
to cryptographic APIs, as the used features are general code
graph properties.

Neighborhood Similarity We learn pattern embeddings
such that similar patterns have similar embeddings by min-
imizing their distance in the embedding space. Therefore,
next to the neighborhood information, pattern embeddings
additionally encode their similarity information. On the one
hand, this allows us to apply efficient and accurate search for
similar usage patterns on Stack Overflow [33]. On the other
hand, we can transfer knowledge from the similarity domain
to the use case and security domain. This knowledge trans-
fer is leveraged by our use case and security classification
models.

Code similarity is very helpful to predict code security.
Therefore, we expect that the similarity feature of our pat-
tern embeddings will improve the accuracy and efficiency of
the security classification model. However, code similarity
is oftentimes not enough for predicting security. Therefore,
the main effort of our classification models lies in learning
the additional unknown conditions where code similarity be-
comes insufficient.

To learn our embeddings, we apply a modified architecture
of the graph embedding network Gemini [33].

5.3 Feature Engineering

The embedding network should learn a pattern embedding
that is general enough to allow several classification tasks.
This means that the embedding has to be learned from gen-
eral code features or attributes, e. g., statistical and structural
features [33] from each statement within the PDG represen-
tation of the code. Further, pattern embeddings should repre-
sent very small neighborhoods. As we want to minimize the
neighborhood size K, patterns might consist only of a few
lines of code. Therefore, considering only graph statistics
as features might not be sufficient and may result in similar
features for dissimilar patterns. In order to overcome these
insufficiencies, we additionally combine structural and sta-
tistical with lexical and numerical features for each statement
in a neighborhood.

Structure and Statistics We first create the PDG of the
given input program using WALA3, a static analysis frame-
work for Java. Note that WALA creates a PDG for each Java
method. Then, we extract the resulting statistical and struc-
tural features for each statement. We store the bytecode in-
struction type of a statement using a one-hot indicator vector.
Additionally, we store the count of string and numerical con-
stants that are used by the statement. We further add struc-
tural features by storing the offspring count and node degree
of a statement in the PDG [33]. Finally, we store the indexes
of the statement’s direct neighbors in the graph.

Element Names and String Constants Method and field
names of APIs are strings and have to be transformed into a
numerical representation first. We learn feature vectors for
these tokens by training a simple unsupervised neural net-
work to predict the Java type that defines the given method or
field name. Thereby, each name is represented in a one-hot
encoding vector with dimension 23,545, corresponding to
the number of unique element names provided by the cryp-
tographic APIs [17]. To learn features, we use a network ar-
chitecture with one hidden layer and apply categorical cross-
entropy as a loss function during training. Finally, we apply
the trained model on all names and extract the neurons of the
hidden layer as they can be seen as learned features necessary
to solve the classification task. This way, each name obtains
a unique feature vector which preserves its type information.
We use the same approach for learning feature vectors for
the 763 unique string constants given by the APIs.

5.4 Pattern Embedding Network

Many code examples on Stack Overflow typically do not pro-
vide sound programs as they mostly consist of loose code
parts [17]. In contrast to complete programs, compiling these
partial programs might introduce multiple types of ambi-
guities in the resulting PDG such that the extracted state-
ment features xu are not sound [10]. Whenever we generate
sound and unsound features xs, xu from a complete and a par-
tial program, respectively, that provide the same usage pat-
tern for a given seed statement, both sets of feature vectors
extracted from the patterns might be different. Therefore,
we need to learn a representation for patterns that preserves
their similarity properties independently from the shape of
the containing program. With a Siamese network architec-
ture [33], we can learn similar pattern embeddings indepen-
dently from the completeness of the code example. It learns
embeddings from similar and dissimilar input pairs. We cre-
ate similar input pairs by extracting sound and unsound fea-
tures for the same pattern and dissimilar pairs by extract-
ing sound and unsound features from different patterns. The

3https://github.com/wala/WALA
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Algorithm 1 Neighborhood-aggregation algorithm
Input: PDG G(V,E) input features {xv,∀v ∈V};
Output: Pattern embedding pv,∀v ∈V

1: φ 0
v ← 0,∀v ∈V ,

2: for k = 1...K do
3: for v ∈V do
4: φ k

N(v)← AGGREGAT E(φ k−1
n ,∀n ∈ N(v))

5: φ k
v ← tanh(W1xv ·σ(φ k

N(v))

return {pv =W2φ K
v ,∀v ∈V}

trained model will then generate similar embeddings inde-
pendently from the completeness of the program.

The pattern embeddings are generated with Structure2vec
as depicted in Algorithm 1. We provide the abstract descrip-
tion of the algorithm and refer to Gemini’s neural network
architecture that gives information about its implementation,
which we use as the basis for our approach. The update func-
tion calculates a pattern embedding pv for each feature vec-
tor xv of statements (i. e., nodes) v ∈ V in the PDG G(V,E).
An embedding pv is generated by recursively aggregating
previously generated embeddings {φ k−1

n ,∀n ∈ N(v)} of di-
rect neighbors N(v) in the graph, combining it with the
weighted feature vector xv. Unlike Gemini, which outputs
an aggregation of pv to return an embedding for the com-
plete graph, our network returns the set of pattern embed-
dings P = {pv,∀v ∈V}.

We give an overview of the pattern embedding network in
Figure 3. Here, the insecure pattern G(x3,x4,x5,E) informs
the embedding of its direct neighbors in each iteration step,
finally informing the seed statement in iteration k = 2. Af-
ter this step, the seed statement knows that it is part of an
insecure pattern and its embedding preserves this informa-
tion accordingly. We extract the pattern embedding φ K

1 of
the seed statement and apply weights W2. Note, we train W2
based on classification loss of aggregated pattern similarity
pa as explained in Section 5.5. However, we use the trained
model to generate and output embeddings for each individual
pattern pv in the graph (see Figure 3).

5.5 Training

For unsupervised training of pattern embeddings, we need
to generate similar and dissimilar input pairs from data that
provides ground truth. We use two different sets of PDGs
that are compiled from the same source code. One set S con-
tains the sound graph representations of the code, the other
one the unsound graphs U . A sound graph Gs(Vs,Es) in the
first set is compiled from a complete program using a stan-
dard Java compiler. An unsound graph Gu(Vu,Eu) in the sec-
ond set is generated by a partial compiler [10] that compiles
each Java class of a program individually. Then we construct
the feature vectors Xs = {xs}vs∈Vs and Xu = {xu}vu∈Vu for all
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Figure 3: Pattern embedding network overview

statements v in the respective graphs.
To obtain ground truth for similar and dissimilar usage

patterns we need to create similar pairs
(〈

vs,vu
〉
,1
)

and dis-
similar pairs

(〈
vs,vu

〉
,−1

)
. However, we do not have in-

formation about the relationship of statements in Gu(Vu,Eu)
with statements Gs(Vs,Es), which is necessary to create these
pairs. Note that source code statements do not correspond
one-to-one with statements in the PDG. The compiler may
divide a source code statement into multiple instructions,
which may have different associated statements in the PDG.
Since we use different compilers, the resulting PDG state-
ments in Vs and Vu may look different even though they rep-
resent the same source code. Therefore, we aggregate all
pattern embeddings from a method into pa and use the re-
sulting embedding for training. The network calculates the
loss based on the cosine similarity of the aggregated pattern
embedding pairs {

〈
ps

a, pu
a
〉
}xs,xu∈Xs,Xu and their given simi-

larity label y ∈ {−1,1}
We downloaded 824 open source Android apps from

GitHub and compiled the complete and sound graph
Gs(Vs,Es) for each method. Further, we used the par-
tial compiler to obtain the unsound graph for each method
Gu(Vu,Eu). After creating the feature vectors Xs and Xu from
the graphs, similar method pairs

(〈
Xs,Xu

〉
,1
)

were created
by extracting Xs and Xu from the same source code, and dis-
similar

(〈
Xs,Xu

〉
,−1

)
by extracting Xs and Xu from different

source code. From the 824 downloaded apps, we extracted
91,075 methods to create 157,162 input pairs in total. These
pairs have been split up into the training and validation set,
where 80% have been randomly allocated for training and
20% for validation. Note that the intersection of both sets is
empty.

5.6 Learning Use Cases and Security

From a given source code example, we want to be able to
predict the cryptographic use case and security of patterns
within the code. We apply transfer learning by reusing the



previously learned pattern embedding that already encodes
their similarity information.

Pattern embeddings are learned unsupervised and we can
obtain almost arbitrarily large training datasets from open
source projects. However, code examples on Stack Over-
flow provide a very different distribution of data [17]. Many
use case and security classes are under- or overrepresented
and availability of encryption code examples is limited in
general. We transfer knowledge from the similarity domain
to the use case and security domain in order to tackle these
problems. We argue that the similarity information preserved
in our pattern embeddings will be helpful for classifying their
use cases and security.

5.7 Labeling
We extracted 10,558 code examples from Stack Overflow4

by searching for code that contained at least one of the seed
statements. Each code sample has been manually reviewed
in order to label use case and security of the contained usage
patterns. Labeling was done by two security experts individ-
ually applying the labeling rules given by [12, 13, 17]. This
leads to conservative binary security labeling, which might
at times be too strict. For instance, depending on the con-
text, MD5 can be the better trade-off and secure enough.
However, our approach aims at developers that are layman
in cryptography and we consider binary classification prefer-
able to encourage safe defaults.

Initially, 100 samples for each of the different seed state-
ments have been selected randomly to apply dual control la-
beling. After clearing up disagreements, the remaining sam-
ples have been annotated individually to speed up the label-
ing. The whole process took approximately 10 man days
to complete. To evaluate individual annotation accuracy, we
randomly selected 200 samples from both experts and report
agreement of 98.32% on given labels. We further publish
the annotated dataset in order to allow verification of anno-
tation accuracy and reproduction of our results. Please refer
to Appendix C for further details on the annotation process.
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4I.e., from the Official Stack Overflow Data Dump.

5.8 End-to-end Architecture

We introduce an architecture that allows classification of dif-
ferent uses cases and security, while improving the pattern-
embedding model in order to forward optimized code repre-
sentations to the classification layer (see Figure 4).

To achieve this, we add a fully connected layer with di-
mension 1,024 using Rectified Linear Unit (ReLu) as the ac-
tivation function on top of the pattern-embedding network.
We use a softmax layer for binary and multi-class classi-
fication and trained our network to optimize cross-entropy
loss. Applying transfer learning, we initialize the pattern-
embedding network using the previously learned weights for
pattern similarity (see Section 5.4). The end-to-end network
now connects the pattern-embedding network with the clas-
sification layers. Within training, the latter backpropagates
cross-entropy loss from the classification task all the way to
the input of the pattern-embedding network. This allows the
similarity network to adjust the pattern representation in or-
der to better perform on the classification. Therefore, both
coupled networks now generate a new pattern representation
for the given classification problem in such a way that it is
optimally solved.

For instance, security classification of Cipher, Key and TM
rely on very different features. Only using the pre-trained
“static” pattern embeddings might therefore be disadvanta-
geous for some use cases. However, by dynamically cus-
tomizing the pattern embedding with respect to classification
loss minimization, the network learns a code representation
that preserves the necessary code features to improve classi-
fication.

5.9 Training

The Stack Overflow dataset provides 16,539 pattern embed-
dings extracted from 10,558 code examples. Note that a sin-
gle code example might contain several patterns, e. g. IV,
Key is used to initialize Cipher. We test pattern embeddings
generated from several models that were trained on differ-
ent neighborhood sizes K and different output dimensions
d for the embeddings. Thereby, we search for the optimal
hyperparameter K and d to achieve the best performance on
both classification tasks. We first train the network to learn
the use case identifier of pattern embeddings using the com-
plete dataset. Then, we train a different model to learn the
security labels. Here, patterns with the same security label
belong to the same class independently of their use case. Fi-
nally, we divide the dataset into combinations of several use
case classes, testing the effect on performance of security
prediction.



6 Security Nudges

The neural network architecture described in the previous
section provides everything needed to apply the security
nudges on Stack Overflow. In this section, we explain the
design of each nudge including its implementation on Stack
Overflow and how it applies the predictions from the simi-
larity and classification models5.

6.1 Security Warnings
Whenever an insecure code example is detected, a security
warning, as shown in Figure 8, which surrounds the code, is
displayed to the user. The warning is triggered by the predic-
tion result of the security model that classifies each pattern
in the snippet.

The difficulties in designing effective security warnings
are widely known and have been extensively investigated.
We base our approach on the design patterns of Google
Chrome’s security warning for insecure server communica-
tion, whose effectiveness has been comprehensively field-
tested [3]. The header of the warning informs the user that
a security problem has been detected in the encryption code
of the sample. Note that we assume users with a very di-
verse background, knowledge and expertise in cryptography.
Users and even experienced developers might not be aware
of flawed or out-dated encryption that does not provide suffi-
cient security. Therefore, we inform the user about the con-
sequences that might occur when reusing insecure code ex-
amples in production code, e. g., private information might
be at risk in an attack scenario.

We further provide code annotations for each seed state-
ment in the code whose usage pattern has been classified as
insecure (see Figure 2). The annotation is attached below and
points at the statement. It gives further information about the
statement, while additionally highlighting the consequences
of reusing it. In order to select the correct annotation for
the insecure statement, we apply use case prediction of the
related pattern. Each use case identifier has an assigned se-
curity annotation to be displayed in the code snippet.

6.2 Security Recommendations
Security warnings should always offer a way out of a situa-
tion where the user seems to be unable to continue with her
current action due to the warning. Whenever the user decides
to follow the advice given by the warning, she would refuse
to reuse the code example that was originally considered a
candidate for solving her problem. In this situation, she has
been thrown out of her usual user pattern as she has to restart
searching for another example. Therefore, for each insecure
code example, we recommend a list of similar examples, as
shown in Figure 8, that serve the same use case and provide

5We provide further example figures of our nudges in the Appendix.

stronger encryption. Ideally, the user would only have to
click on a single link to the recommended alternative. Our
nudge design pattern does not claim that the recommended
code is generally secure, as it still might contain insecure pat-
terns that are unknown to the model. However, for simplicity,
we refer to code examples, which do not contain any detected
insecure patterns and do contain detected secure patterns, as
secure code examples throughout the paper.

We create this list of recommendations by applying simi-
larity search, use case and security prediction of usage pat-
terns in code examples. We start with predicting the use case
of each insecure usage pattern. Iq contains all insecure use
cases of a method q ∈ Mq, where Mq is the set of query
methods in the snippet. We create the set {Iq}q∈Mq , which
consists of the sets of insecure use cases over all methods in
the snippet. Then, we generate the set of aggregated pattern
embeddings {eq}q∈Mq , as described in Section 5.4. After-
wards, we analogously create the set of secure use cases for
all target methods {St}t∈Mt where Mt is the set of methods
available on Stack Overflow that only contain usage patterns
our model has classified as secure. Likewise, we create the
aggregated pattern embeddings {et}t∈Mt . We rank Mt for
given Iq,St and eq,et based on ascending Jaccard distance
dJ(Iq,St), ranking pairs with the same distance using cosine
similarity cos(eq,et). We create the ranked list of recom-
mended posts R by adding the related Stack Overflow post
for each t of the top-fifty results in the ranking. Beneath the
security warning, we display a scrollable list of R, as dis-
played in Figure 8. Each post is displayed by showing the
title of the related question. When the user clicks on the ti-
tle, a new browser tab opens and the web page automatically
scrolls down to the recommended code example, highlight-
ing it with a short flash animation.

Recommended examples are displayed inside a green box,
annotated with a check mark and message informing the
user that no common encryption problems have been found
within the code. This way, we avoid declaring the code ex-
ample to be secure, which would be a too strong claim. How-
ever, the statement intends to be strong enough to reach the
users and make them follow the advice. Similar to warnings,
we provide code annotations for each statement in the code
whose usage pattern has been classified as secure.

6.3 Security Reminders and Defaults

We further caution the user – in addition to prompting the
security warning and recommendations – by blurring out the
remainder of the web page, whenever a copy event of an in-
secure code example is triggered.

We additionally apply a search filter which up-ranks posts
that only contain secure code examples. Posts with insecure
code examples are appended to the list of secure posts. The
original ranking of posts within its security class is main-
tained. This approach lowers the risk of reusing code exam-
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Figure 5: Visualizing the pattern embeddings of different use cases and security using PCA. Each color indicates one use case
in (a) and (b), and security in (c) and (d). The legend provides the use case identifier.

ples that have been predicted to be insecure. This also means
that whenever a post consists of secure and insecure samples
it is ranked lower than posts with only secure samples.

7 Model Evaluation

7.1 Pattern Similarity
We evaluate the learned pattern embeddings by measuring
cosine similarity for all pairs in the validation set and calcu-
late the receiver operating characteristic curve (ROC) given
the similarity label y ∈ {−1,1} for each pair. Our approach
reaches an optimal AUC of 0.978, which slightly outper-
forms Gemini with AUC of 0.971. Gemini was originally ap-
plied to similarity prediction of binary functions by learning
embeddings for CFGs and may not be a suitable benchmark.

We observe that the model converges already after five
epochs. For the remaining epochs, AUC stays around 0.978
and does not improve significantly. This allows for a very
short training time, as five epochs only need 27 minutes on
average on our system6. However, we choose the model with
the best AUC for generating the pattern embeddings.

7.2 Use Case Classification
For training the use case and security models, we apply the
dataset consisting of 16,539 pattern embeddings extracted
from Stack Overflow split up into subsets for training (80%)
and validation (20%). Note that the validation set is con-
structed such that none of its samples appear in the training
set. Therefore, we evaluate the performance of use case pre-
diction on unseen pattern embeddings.

Visualization To illustrate the transfer learning process,
we plot the pattern embeddings in 2D using principal com-
ponent analysis (PCA) before and after the training of the
classification model. Figure 5(a) shows the complete set of
pattern embeddings before training, displayed in the color of

6Intel Xeon E5-2660 v2 (”Sandy Bridge”), 20 CPU cores, 240GB mem-
ory

their use case. We observe that some use cases already build
clusters in the plot, while others appear overlapping and in-
termixed. Therefore, we apply an additional neural network
on top that leverages supervision on use cases in addition to
the similarity knowledge preserved in the input embeddings.
Figure 5(b) plots the pattern embeddings again after super-
vised training of the model. Here, we input the initial pat-
tern embeddings into the trained model and extract the last
hidden layer of the network to obtain new embeddings that
preserve information about their use case. We observe that
the new embeddings now create dense and separable clusters
for each use case in the plot. The network has moved pattern
embeddings that belong to the same use case closer together,
and the resulting clusters further away from each other in the
embedding space.

Accuracy The promising observations from the visualiza-
tion of pattern embeddings are confirmed by the accuracy re-
sults of the classification model. We performed a grid search
that revealed the optimal neighborhood size of K = 5. The
average AUC for predicting the different use cases already
achieves its optimum of 0.999 after 20 epochs. As already
indicated by the PCA plots, pattern embeddings provide a
very good representation of use cases as the average AUC
for all classes before training (epoch zero) is already above
0.998. However, precision and recall of IV, HNVOR and TM
start below 0.878 and have been improved up to above 0.986
within 30 epochs of training.

7.3 Security Classification
Visualization We start again with illustrating the transfer-
learning process for security classification by plotting pat-
tern embeddings before and after training. Figure 5(c) dis-
plays pattern embeddings before training with their respec-
tive security score, Figure 5(d) plots the new embeddings
after training. Samples that were labeled as secure are de-
picted in blue, insecure samples in red. When comparing
Figure 5(a) and Figure 5(c), we can already observe sev-
eral secure and insecure clusters within the use case clus-
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Figure 6: ROC for security classification of different use cases. The legend provides use case identifier and respective AUC.

ters, e. g., Hash, Cipher and SSL/TLS. However, again many
secure and insecure samples appear to have a wide distri-
bution because PCA does not plot them in dense clusters.
After training the security classification model, we input the
complete set of pattern embeddings and plot the last layer
of the neural network for each sample in Figure 5(d) again.
Now, we observe dense and separated clusters for secure and
insecure samples. The network has adjusted the pattern em-
beddings such that samples within both security classes have
been moved closer together in the embedding space. Sam-
ples with different security have been moved further away
from each other, finally dividing samples into two security
clusters.

Accuracy We trained a single model using the labeled
dataset of 16,539 pattern embeddings. Thereby, a single
model learns security classification for all use cases. Our
grid search revealed K = 5 as the optimal neighbourhood
size. The model provides a good fit because training and
validation loss already converge after 50 epochs. A single
epoch takes 0.58 seconds on average on our system, result-
ing in roughly five minutes for complete training time. We
plot ROC curves for security prediction for each use case
class in Figure 6. We observe that the three use cases Hash,
Cipher and SSL/TLS that provide the largest percentage of
samples in the dataset achieve the best results. The model
achieves very good classification accuracy with AUC values
of 0.999, 0.996 and 0.999, respectively, similar to HNVOR
and TM. However, performance drops marginally for IV, Key
and HNV to 0.980, 0.970 and 0.953, respectively.

Comparison In Table 2, we compare our approach on se-
curity prediction on Stack Overflow with [17], where the au-
thors use tf-idf to create a feature vector as a representation
for the complete input snippets and to train a SVM predict-
ing its binary security score. Our deep learning approach
(marked as CNN in the table) significantly outperforms their
classifier in all use cases; especially IV, Key and HNVOR,
where security evaluation heavily relies on data and control
flow. In contrast to our approach, the work by Fischer et al.
[17] does not inform the learning model about these proper-
ties, but solely relies on lexical features.

Moreover, our deep learning approach allows a higher
level of explainability to the user. While [17] can only re-
port security warnings for the complete snippet, our more
fine-grained approach is able to directly highlight statements
in the code and provides annotations that explain the secu-
rity issue. Since we learn a representation of code patterns
that allows prediction of different code properties beyond se-
curity, we can provide this additional explanation, which is
crucial for developer advice.

CNN tfidf+SVM
AUC-ROC Explanation AUC-ROC Explanation

Cipher 0.996 SW, CA 0.960 SW
Hash 0.999 SW, CA 0.956 SW
TLS 0.999 SW, CA 0.902 SW
IV 0.980 SW, CA 0.881 SW
Key 0.970 SW, CA 0.886 SW
HNV 0.953 SW, CA 0.922 SW
HNVOR 0.998 SW, CA 0.850 SW
TM 1.000 SW, CA 0.982 SW

Table 2: Performance and explainability comparison of se-
curity prediction on Stack Overflow. SW: Provides security
warnings for the complete snippet. CA: Additionally pro-
vides code annotation that explains the issue in detail.

7.4 Recommendations
We applied our trained models in order to evaluate whether
Stack Overflow provides secure alternative code snippets,
which preserve the use case and are similar to detected in-
secure code examples. Thereby, we extracted all methods
from the complete set of 10,558 snippets, generated their
aggregated embeddings and separated them into two sets.
The first set contains all 6,442 distinct insecure query em-
beddings and the second one all 3,579 distinct secure target
embeddings. We created these two sets by applying the secu-
rity model and predicted the security of each pattern within a
given method. Finally, we ranked the embeddings based on
their Jaccard distance, applying the use case model, and co-
sine similarity, as described in Section 6.2. We found 6,402
(99.37%) query methods that have Jaccard distance of 0.0 to
at least one target method. This means that for almost ev-
ery insecure method, a secure one exist on Stack Overflow



that serves the same use case. When additionally demand-
ing code similarity, we found 6,047 (93.86%) query meth-
ods with a cosine similarity above 0.81 and 4,805 (75.58%)
query methods with a similarity above 0.9 with at least one
target method.

8 Evaluation of Security Nudges

To evaluate the impact of our system including the security
nudges on the security of programming results, we perform
a laboratory user study. Thereby, participants had to solve
programming tasks with the help from Stack Overflow.

8.1 User Study Setup
Participants were randomly assigned to one of two treatment
conditions. For the nudge treatment, we provided security
warnings (Figure 2a) for insecure code examples, recom-
mendations for secure snippets (Figure 2b) and recommen-
dations lists attached to each warning (Figure 8). Further,
security reminders were enabled. In the control treatment,
all security nudges on Stack Overflow were disabled.

Participants were advised to use Stack Overflow to solve
the tasks. In all treatments, we restricted Stack Overflow
search results to posts that contain a code example from the
set of 10,558 code examples we extracted from Stack Over-
flow7. Further, we applied a whitelist filter to restrict ac-
cess to Stack Overflow in the Chrome browser. Any requests
to different domains were redirected to the Stack Overflow
search page. Participants were provided with the Google
Chrome browser and Eclipse pre-loaded with two Java class
templates. Both class templates provided code skeletons that
were intended to reduce the participants’ workload and sim-
plify the programming tasks. Using additional applications
was prohibited. All tasks had to be solved within one hour.
We avoided security or privacy priming during the introduc-
tion and throughout the study. Moreover, we did not name or
explain any of the security nudges on Stack Overflow.

8.2 Tasks
All participants had to solve five programming tasks related
to symmetric encryption and certificate pinning. We chose
these two use cases as they provide the most error-prone
cryptographic problems in Android [17].

Symmetric Encryption The first three tasks dealt with ini-
tializing a symmetric cipher in order to encrypt and decrypt a
message. Task Cipher: a symmetric cipher had to be initial-
ized by setting the algorithm, block mode and padding. The
main security pitfalls in this task are choosing a weak cipher

7This aims at simplifying search for participants. All Stack Overflow
posts that contain a seed statement are available during the study.

and block mode. Task Key: a symmetric cryptographic key
had to be generated. Participants had to create a key having
the correct and secure key length necessary for the previously
defined cipher. It had to be generated from a secure random
source and should not have been stored in plaintext. Task
IV: an initialization vector had to be instantiated. Like key
generation, this task is particularly error-prone as choosing
the correct length, secure random source and storage can be
challenging.

Certificate Pinning Within these two tasks, a SSL/TLS
context had to be created to securely communicate with a
specific server via HTTPS. In the end, the program should
have been able to perform a successful GET request on the
server, while denying connection attempts to domains that
provide a different server certificate. A solution for Task TLS
would have been to select a secure TLS version to initialize
the context. Task TM: the server’s certificate had to be added
to an empty custom trust manager replacing the default man-
ager. This way, the program would pin the server’s certificate
and create a secure communication channel, while rejecting
attempts to any other server with a different certificate.

8.3 Preliminaries and Participants
We advertised the study in lectures and across various uni-
versity communication channels. 30 subjects participated in
the study, however, three subjects dropped out, because they
misunderstood a basic participation requirement (i.e., having
at least basic Java programming knowledge). Of the remain-
ing 27 subjects, 16 were assigned to the nudge treatment, and
11 to the control treatment. While being students, our sam-
ple varied across demographics and programming skill, but
none of the self-reported characteristics systematically dif-
fered across the two treatments (see Appendix A for details).

We followed well-established community principles for
conducting security and privacy studies [29]. Participants
were presented with a comprehensive consent form and sep-
arate study instructions on paper. Participants were compen-
sated with 20 Euros.

After submission of the solutions, participants were asked
to complete a short exit survey. We asked specific ques-
tions addressing the effectiveness of the security nudges and
whether they were noticed by the participants. Also, we only
asked demographic questions at this point to avoid any bias
during the study. See Table 3 in the Appendix for details.

8.4 User Study Results
Functional Correctness Our system is not designed to ad-
dress difficulties of programmers to deliver functionally cor-
rect code. However, it is important that using the system does
not create obstacles to programmers. Participants predomi-
nantly submitted functionally correct code in both treatments
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Figure 7: User study results for security, copy-paste rate and correctness of the submitted solutions across both treatments.

with some differences across tasks (cf. Figure 7c). Applying
ordinal logistic regression (cf. Table 4 in the Appendix) indi-
cates that the nudge treatment has – as anticipated – no effect
on functional correctness of submitted tasks. However, non-
professionals submitted significantly less functional code
(p < 0.05). Cipher submissions are more often functional,
irrespective of the treatment (p < 0.05).

Security Figure 7a shows the security results per task for
both treatments. Performing ordinal logistic regression (see
Table 5 in the Appendix), we show that the nudge treatment
is significantly outperforming the control group in producing
secure solutions (with an estimate of 1.303 and p < 0.01;
Model 4). While the main effect of the nudge treatment
dominates the regression models, we can observe from Fig-
ure 7a that comparatively more secure submissions are made
for TM and Key. Indeed, pairwise testing using Chi-Square
tests reveals p < 0.001 for both tasks. Participants from
the nudge group provided 84.6% secure solutions for Key
and 76.9% for TM, while 60.0% and 66.7% of the respec-
tive solutions submitted by the control group were insecure.
These observations for TM are somewhat encouraging given
previous findings: [17] have shown that reused insecure TM
code snippets from Stack Overflow were responsible for 91%
(183,268) of tested apps from Google Play being vulnerable.
Only 0.002% (441) of apps contained secure TM code from
Stack Overflow. Based on these insecure TM snippets, [13]
were able to attack several high-profile apps extracting pri-
vate data. Moreover, [27] found that only 45 out of 639,283
Android apps applied certificate pinning, while 25% of de-
velopers find certificate pinning too complex to use. [2] re-
ported that tasks very similar to TM could not be solved with
the help of simplified cryptographic APIs within a user study.

For Cipher, the nudge treatment performs very well,
but only slightly better than the control treatment, as both
achieved 86.7% and 81.8% secure solutions, respectively.

For IV and TLS, the nudge results are less desirable with
46.2% and 38.5% secure solutions, while performing better
but not significantly (p < 0.077 and p < 0.53; Chi-Square)
than the control treatment. To better understand these ob-
servations, we analyzed visited posts, copy-and-paste history

and the submitted code of participants that provided insecure
solutions for these two tasks. In the case of IV, we found that
four insecure solutions reused insecure patterns from code
snippets that were falsely marked as recommended code. To
encounter false predictions of the security model was a pri-
ori extremely unlikely. Interestingly, the remaining insecure
solutions were created by users combining secure code from
different correctly marked recommendations (true negatives)
into insecure code. Thereby, users reused the seed statement
for IV from one snippet and initialized it with an empty ar-
ray obtained from another code snippet that did not make
use of IV at all. In the case of TLS, all insecure solutions
were copied from code snippets that were clearly marked as
insecure.

Copy-and-Paste Behavior We calculated the average
copy-paste rate per task for both treatments, which reports
the relative frequency copied code has also been reused in a
submitted solution (see Figure 7b). Importantly, in the nudge
treatment, not a single insecure copy-and-paste event was
observed for Cipher, Key and TM, while secure code that was
copied into the clipboard was reused at a rate of 0.45, 0.55,
and 0.72 on average, respectively. This goes in line with ob-
served security outcomes depicted in Figure 7a, where more
secure than insecure solutions were provided for these tasks.
However, insecure copy-and-paste events were observed for
IV and TLS, partly explaining the comparatively higher num-
ber of insecure solutions. In the control treatment, the copy-
paste rate for insecure snippets closely follows the observed
frequencies of insecure results for all tasks except Cipher.

Warnings/Recommendations/Reminder Even though all
users within the nudge group saw security warnings during
their journey, we observed an insecure-to-secure copy event
ratio of 0.27 for both treatments indicating that warnings
alone are not sufficient for preventing users from placing in-
secure code on the clipboard. However, the copy-paste rate
measuring the relative frequency of copy to paste events (see
Figure 7b) offers more nuanced results. It shows that the
nudge group tends to discard insecure copies, while pasting
more secure copies into their solutions. This is most likely



the result of the reminder nudge, which was triggered by in-
secure copy events. As a result, users dropped copied inse-
cure samples and started looking for a secure alternative. In
contrast, the copy-paste rate for control shows that copied in-
secure snippets were not dropped, but rather pasted into the
solution. Therefore, the interaction of several nudges was
responsible for improving the security decisions of the par-
ticipants. In the exit survey, users also marked the relevant
nudges with high average Likert score values of above 4 (on
5-point scales).

We only observed 22 events where users clicked on a pro-
posed recommendation link as shown in the bottom part of
Figure 8a. Therefore, only 10.1% of secure posts (of 219
in total) were visited following such a proposed recommen-
dation. However, 86.6% remembered the feature during the
exit survey. With 4 paste and 8 copy events (i.e., a copy-
paste rate of 0.5) only a very small amount of reused secure
code in the submitted solutions was directly related to this
nudge. Though contributing to the improvement of code se-
curity, we can state that this nudge was surprisingly the least
effective one. The average Likert score for the list of recom-
mendations was also comparatively low with 3.2.

9 Limitations

The response rate during recruitment for our developer study
was quite low. However, we achieved a participation count
per treatment which was very similar to comparable peer-
reviewed studies (e.g., [2]). However, participation may in-
troduce self-selection bias. Therefore, we avoided any se-
curity framing during recruitment and have no reason to be-
lieve that the final group of participants was systematically
different in terms of security knowledge. The study was per-
formed within a laboratory under strict time constraints. By
enforcing a time limit, we intended to create a more realistic
scenario and to obtain a comparable outcome for both treat-
ments. Participants had to solve their programming tasks us-
ing a given code editor, browser, as well as operating sys-
tem which they might not have been familiar with. Most of
our participants were students, while only a minority had a
professional background, which may limit the generalizabil-
ity of our results. Professionals performed slightly better in
achieving functional solutions, but not in security across both
treatments. Therefore, comparisons among both treatments
remain valid.

For implementing custom trust managers in Android (see
Section 8.2), current best practices suggest a declarative so-
lution which uses a static configuration file instead of Java
code.8 Being able to include other formats, such as formal
documentation in our recommendations would additionally
allow suggesting this solution. One possible way to achieve

8https://developer.android.com/training/articles/

security-config

that is to create a link between code examples from Stack
Overflow and natural language text in official documenta-
tion. I.e., we would have to extend our framework such
that it embeds code examples and natural language text into
the same vector space. This can be done with sequence-to-
sequence models, which are usually applied for natural lan-
guage translation. GitHub is currently testing a similar ap-
proach for their semantic code search engine.9

10 Future Work

Our recommendation approach may be subject to attacks.
More specifically, in an adversarial setting, machine learn-
ing algorithms are often not robust against manipulated in-
put data. Similar to efforts in malware obfuscation and spam
filter bypassing, an attacker might be able to craft malicious
code that gets mistakenly classified as secure. This way, the
attacker could spread malicious code into the ecosystem on
a large scale. However, a number of novel techniques have
been proposed to counter the adversarial effect [18, 24, 28].

Stack Overflow provides code examples for almost each
and every programming language. Since our framework
learns the optimal code representation for a given classifica-
tion task based on general code features, we do not see ma-
jor issues in applying it to different programming languages.
A language-specific compiler or a universal parser can be
used to generate the PDG, which is then fed to our pattern
embedding network (see Section 5.4). The representation
learning of API-specific lexical features (see Section 5.3)
is completely independent from the programming language
and therefore straightforward.

We suggest to conduct additional UI testing as we might
not have identified the optimal design, yet. Following Felt
et al. [15], different security indicators such as alternative
candidate icons and text have to be tested, for instance
within user surveys or by repeating our developer study.
Stack Overflow recently proposed a partnership program
with academia that would allow to extend their developer
survey and to test design tweaks on their website.10

11 Conclusion

In this paper, we propose an approach for deep learning se-
curity nudges that help software developers write strong en-
cryption code. We propose a system design integrated in
Stack Overflow whose components consist of several secu-
rity nudges, namely warnings, recommendations, reminders,
and defaults and a neural network architecture that controls
these nudges by learning and predicting secure and inse-
cure cryptographic usage patterns from community-provided

9https://githubengineering.com/

towards-natural-language-semantic-code-search/
10https://meta.stackoverflow.com/questions/377152/

stack-overflow-academic-research-partnership-program

https://developer.android.com/training/articles/security-config
https://developer.android.com/training/articles/security-config
https://githubengineering.com/towards-natural-language-semantic-code-search/
https://githubengineering.com/towards-natural-language-semantic-code-search/
https://meta.stackoverflow.com/questions/377152/stack-overflow-academic-research-partnership-program
https://meta.stackoverflow.com/questions/377152/stack-overflow-academic-research-partnership-program


code examples. We propose a novel approach on deep learn-
ing optimized code representations for given code classifi-
cation tasks and train a classification model that is able to
predict use cases and security scores of encryption code ex-
amples with an AUC-ROC of 0.999 and 0.992, respectively.
Applying this model within our nudge-based system design
on Stack Overflow, we performed a user study where par-
ticipants had to solve the most error-prone cryptographic
programming tasks reported in recent research. Our results
demonstrate the effectiveness of nudges in helping software
developers to make better security decisions on Stack Over-
flow.
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[8] BÖHME, R., AND GROSSKLAGS, J. The security
cost of cheap user interaction. In ACM New Security
Paradigms Workshop (2011), pp. 67–82.

[9] CHEN, M., FISCHER, F., MENG, N., WANG, X.,
AND GROSSKLAGS, J. How reliable is the crowd-
sourced knowledge of security implementation? In
ACM/IEEE International Conference on Software En-
gineering (2019).

[10] DAGENAIS, B., AND HENDREN, L. Enabling static
analysis for partial Java programs. ACM Sigplan No-
tices 43, 10 (2008), 313–328.

[11] DAI, H., DAI, B., AND SONG, L. Discriminative
embeddings of latent variable models for structured
data. In International Conference on Machine Learn-
ing (2016), pp. 2702–2711.

[12] EGELE, M., BRUMLEY, D., FRATANTONIO, Y., AND
KRUEGEL, C. An empirical study of cryptographic
misuse in Android applications. In ACM Conference on
Computer & Communications Security (2013), pp. 73–
84.

[13] FAHL, S., HARBACH, M., MUDERS, T., SMITH, M.,
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Appendix A: Additional Participant Data
Table 3 includes additional data about the 27 participants,

who completed the study.
We also conducted a series of statistical tests to verify that

the self-reported characteristics of the recruited participants
did not systematically vary across treatments. Indeed, using
the Mann-Whitney U Test, we found that participants did
not differ in their reported age across treatments (p = 0.79).
Applying Fisher’s Exact Test, we also observed the absence
of a statistically significant difference for country of origin
(p = 0.809), gender (p = 0.551), level of education (p =
0.217), security knowledge/background (p = 0.124), and
professional programming experience (p = 0.315). Using
the Mann-Whitney U Test, we did not find any statistically
significant difference for years of experience with Java pro-
gramming (p = 0.422). We also did not find any reportable
differences regarding participants’ awareness of encryption
flaws (p = 0.363) using Fisher’s Exact Test. The percentage
of participants who had to program Java as primary activity
for their work (p = 1) or for whom writing Java code was
part of their primary job in the last 5 years (p = 0.696) also
did not differ across treatments (using Fisher’s Exact Test).



Appendix B: Detailed Regression Results
Based on the user study data and self-reported survey re-

sponses, we follow an ordinal (Logit link) regression ap-
proach, which is primarily focused on evaluating the effec-
tiveness of the nudge treatment.

First, we report a series of four models (M1 - M4) to eval-
uate whether the nudge treatment significantly impacts the
functional correctness of the submitted programs for the five
different tasks (see Table 4). We iteratively add factors to
the regression model to also test whether programming ex-
pertise or security expertise positively impact the outcome
variable. Most importantly, as the nudge treatment is not
designed to address this aspect of programming, we did not
expect any significantly positive effect. Indeed, across all
model specifications that we tested, we did not observe any
significant (positive or negative) effect. Regarding the dif-
ferent programming tasks, we found that the Cipher task
was associated with a significantly increased likelihood of
being functionally correct (M2 - M4). Further, not being a
security professional (as reported by the participants) signif-
icantly impacts the likelihood that functional programs were
submitted in a negative fashion (M3 - M4). In contrast, a
higher degree of security knowledge (as reported by the par-
ticipants) did not significantly impact the results (M4).

Note that the regression statistics for tasks IV and TLS are
identical as the aggregate results for functional correctness
happen to be the same (see Figure 7c).

Age
Mean = 22.93 Median = 22 Stddev = 3.9 Min = 19 Max = 38

Country of Origin
Germany = 16 Other = 11

Gender
Male = 9 Female = 18

Achieved Level of Education
Highschool = 15 Bachelor = 8 Master = 3 Ph.D. = 0

Professional at Programming
Yes = 12 No = 15

Security Background
Yes = 10 No = 17

Java Years Experience
Mean = 3.81 Median = 3 Stddev = 2.304 Min = 1 Max = 8

Encryption Flaw Awareness
Yes = 17 No = 10

Java primary focus of job
Yes = 5 No = 21 No Data = 1

Java part of any job
Yes = 12 No = 15

Table 3: Detailed data about demographics of participants (N
= 27). One missing response for the question whether Java
is primary focus of current job.

Second, we report a series of four models (M1 - M4) to
evaluate whether the nudge treatment significantly impacts
the security of the submitted programs for the five different
tasks (see Table 5). For consistency, we iteratively add the
same factors to the regression model to also test whether pro-
gramming expertise or security expertise positively impact
the outcome variable.

Most importantly, as the nudge treatment is designed to

FACTORS M1 M2 M3 M4
Treatment: Nudge -0.460 -0.489 -0.263 -0.226

(0.523) (0.544) (0.568) (0.605)
Task: Cipher - 2.407* 2.539* 2.539*

(1.105) (1.125) (1.125)
Task: IV - 1.224 1.324 1.324

(0.746) (0.775) (0.775)
Task: Key - 0.892 0.974 0.974

(0.690) (0.72) (0.721)
Task: TLS - 1.224 1.324 1.324

(0.746) (0.775) (0.775)
Not Professional - - -1.701* -1.698*

(0.679) (0.680)
Sec. Knowledge - - - -0.106

(0.605)

Table 4: Results for Ordinal Regression of Functional Cor-
rectness. Series of non-interaction models (M1 – M4) with
factors iteratively added. Significant values are highlighted
in bold, and marked with: * p < 0.05. Standard errors are
included in parentheses. The baseline for Treatment is Con-
trol (i.e., the unmodified Stack Overflow), and the baseline
for Task is TM.

FACTORS M1 M2 M3 M4
Treatment: Nudge 0.920* 1.018* 1.113* 1.303**

(0.388) (0.426) (0.438) (0.480)
Task: Cipher - 1.388 1.377 1.405

(0.745) (0.754) (0.758)
Task: IV - -0.963 -1.001 -0.990

(0.654) (0.665) (0.668)
Task: Key - 0.224 0.200 2.13

(0.668) (0.677) (0.679)
Task: TLS - -0.963 -1.001 -0.990

(0.654) (0.665) (0.668)
Not Professional - - -0.702 -0.686

(0.432) (0.434)
Sec. Knowledge - - - -0.517

(0.481)

Table 5: Results for Ordinal Regression of Security. Se-
ries of non-interaction models (M1 – M4) with factors it-
eratively added. Significant values are highlighted in bold,
and marked with: * p < 0.05 and ** p < 0.01. Standard
errors are included in parentheses. The baseline for Treat-
ment is Control (i.e., the unmodified Stack Overflow), and
the baseline for Task is TM.

improve the security of cryptography-related programming,
we did expect a significantly positive effect. Indeed, across
all model specifications that we tested, we did observe a sig-
nificant and positive effect. Regarding the different program-
ming tasks, we did not find that they significantly differed
from each other regarding the security property (M2 - M4).



(a) Security warning provided by the security and use case model

(b) Recommendation provided by the similarity and use case model.

Figure 8: Security warning and recommendations provided by the similarity, use case and security model. The security model
predicted the usage pattern of setHostnameVerifier as insecure. Further, it predicted its use case HNV, being able to select and
display the related security annotation under the insecure statement. Below the security warning the similarity, use case and
security model provide the ranked list of recommendations, that contains code examples with similar and secure patterns of
HNV. We display the recommended code example that appears when clicking on the first link in (b).

Being a security professional did not impact the security of
the submitted programs in a significant way (M3 - M4). Per-
haps surprisingly, a higher degree of security knowledge (as
reported by the participants) did not significantly impact the
results either (M4).

We created regression models including further demo-
graphic and explanatory variables. However, none of them
had a significant effect on the security of submitted solutions.

Appendix C: Pattern Annotation Tool
Our security annotations generally comply with rules and

annotation heuristics given by [12,13,17]. However, manual
analysis of patterns was not restricted to simple application
of these heuristics, but was based on detecting insecure pat-
terns in general. Whenever an unknown pattern has been
detected, both annotators discussed them until agreement on
a label. For example, [13] only reports empty trust manager
implementations, while many insecure TM patterns on Stack
Overflow are not empty, but provide insufficient certificate

verification (e. g., only validating that the certificate is not
expired).

To further speed up the labeling process and manage the
large amount of samples, we created a code annotation tool.
It automatically iterates through code snippets and displays
them to the user, using a source code editor. Seed state-
ments were already highlighted in order to allow the anno-
tator to detect relevant patterns quickly. The annotator was
able to assign labels (e. g., secure/insecure) to different key-
board buttons. While iterating through the seed statements,
the annotator would investigate the related pattern and label
it accordingly. Moreover, the annotator had the option to
add seed statements, that she wanted to have highlighted and
labeled. Whenever the annotator identified new patterns or
wanted to share and discuss a pattern, the related code snip-
pet was marked and other annotators were notified to com-
ment on it. After agreement, the pattern was labeled by the
initial annotator. Further, annotation heuristics obtained dur-
ing the discussion were shared among all annotators.
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