
Analyzing Control Flow Integrity with LLVM-CFI
Paul Muntean

Technical University of Munich
paul.muntean@sec.in.tum.de

Matthias Neumayer
Technical University of Munich
matthias.neumayer@tum.de

Zhiqiang Lin
The Ohio State University
zlin@cse.ohio-state.edu

Gang Tan
Penn State University

gtan@psu.edu

Jens Grossklags
Technical University of Munich

jens.grossklags@in.tum.de

Claudia Eckert
Technical University of Munich
claudia.eckert@sec.in.tum.de

ABSTRACT

Control-flow hijacking attacks are used to perform malicious com-
putations. Current solutions for assessing the attack surface after
a control flow integrity (CFI) policy was applied can measure only
indirect transfer averages in the best case without providing any
insights w.r.t. the absolute calltarget reduction per callsite, and gad-
get availability. Further, tool comparison is underdeveloped or not
possible at all. CFI has proven to be one of the most promising pro-
tections against control flow hijacking attacks, thus many efforts
have been made to improve CFI in various ways. However, there is
a lack of systematic assessment of existing CFI protections.

In this paper, we present LLVM-CFI, a static source code analy-
sis framework for analyzing state-of-the-art static CFI protections
based on the Clang/LLVM compiler framework. LLVM-CFI works
by precisely modeling a CFI policy and then evaluating it within a
unified approach. LLVM-CFI helps determine the level of security
offered by different CFI protections, after the CFI protections were
deployed, thus providing an important step towards exploit cre-
ation/prevention and stronger defenses. We have used LLVM-CFI
to assess eight state-of-the-art static CFI defenses on real-world
programs such as Google Chrome and Apache Httpd. LLVM-CFI
provides a precise analysis of the residual attack surfaces, and
accordingly ranks CFI policies against each other. LLVM-CFI also
successfully paves the way towards construction of COOP-like code
reuse attacks and elimination of the remaining attack surface by
disclosing protected calltargets under eight restrictive CFI policies.

CCS CONCEPTS

• Security and privacy → Systems security; • Software and

application security;

KEYWORDS

LLVM, control flow integrity, computer systems, defense.

ACM Reference Format:

PaulMuntean,Matthias Neumayer, Zhiqiang Lin, Gang Tan, Jens Grossklags,
and Claudia Eckert. 2019. Analyzing Control Flow Integrity with LLVM-
CFI. In 2019 Annual Computer Security Applications Conference (ACSAC ’19),
December 9–13, 2019, San Juan, PR, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3359789.3359806

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 2019 Annual
Computer Security Applications Conference (ACSAC ’19), December 9–13, 2019, San Juan,
PR, USA, https://doi.org/10.1145/3359789.3359806.

1 INTRODUCTION

Ever since the first Return Oriented Programming (ROP) attacks [23,
39, 48], the cat and mouse game between defenders and attackers
has initiated a plethora of research. As defenses improved over
time, the attacks progressed with them, as pointed out by Carlini
et al. [8]. While defenders followed several lines of research when
building defenses: control flow integrity [5, 9, 13, 18, 20, 31, 32, 34,
35, 37, 49, 52, 57, 58], binary re-randomization [54], information
hiding [3], and code pointer integrity [24], the attacks kept up the
pace and got more sophisticated [4, 11, 25, 26, 46].

In principle, even with the myriad of currently available CFI de-
fenses, performing exploits is still possible. This holds even in the
presence of hypothetically perfect CFI [8]. For this reason, in this
work, we aim to answer the question of how secure are programs
which are protected by CFI defenses. Even after CFI defenses are
in place, attackers could search the program for gadgets that are
allowed (for example, pass under the radar due to imprecision) by
CFI defenses to conduct Code Reuse Attacks (CRAs); see [7, 46]. As
such, these attacks become highly program-dependent, and the
applied CFI policies make reasoning about security harder. The
attacker/analyst is thus confronted with the challenge of search-
ing (manually or automatically) the protected program’s binary or
source code for gadgets which remain useful after CFI defenses
have been deployed. As a result, there is a growing demand for
defense-aware attack analysis tools, which assist security analysts
when analyzing CFI defenses.

To the best of our knowledge, there are neither tools for stat-
ically modeling and comparing static CFI defenses against each
other, nor static CRA crafting tools which are aware of a set of
applied defenses. Existing tools, including static pattern-based gad-
get searching tools [12, 55] and dynamic attack construction tools
[10, 14, 22, 51, 53], all lack deeper knowledge of the protected pro-
gram. As such, they can find CRA gadgets, but cannot determine if
the gadgets are usable after a defense was deployed.

Consequently, with each applied defense, a more capable assess-
ment tool needs ideally to: (1) model the defense as precisely as
possible, (2) use program metadata in order not to solely rely on
runtime memory constraints, (3) use precise semantic knowledge of
the protected program, and (4) provide absolute analysis numbers
w.r.t. the remaining attack surface after a defense was deployed.
This allows an analyst to provide precise and reproducible mea-
surements, to decide which CFI defense is better suited for a given
situation, and to defend against or craft CRAs by searching available
gadgets. Lastly, none of the existing static and dynamic program
analysis tools can be used to compare static CFI defenses against
each other w.r.t. the offered protection level after deployment.

https://doi.org/10.1145/3359789.3359806
https://doi.org/10.1145/3359789.3359806


In this paper, we present LLVM-CFI, which to the best of our
knowledge, is the first static Clang/LLVM based compiler frame-
work used for modeling and analyzing static state-of-the-art CFI
defenses. LLVM-CFI can determine the security level these protection
techniques offer as well as the remaining attack surface after such
a defense was deployed. LLVM-CFI automates one step of COOP-
like attacks by finding protected targets towards which program
control-flow can transfer. As such, LLVM-CFI provides the first step
towards searching for COOP-like gadgets, but its main purpose is
to evaluate static CFI policies against each other. Further, LLVM-CFI
cannot build CRAs automatically but rather assist on how one could
go about when constructing CRAs. We envisage LLVM-CFI to be
used as a tool to analyze conceptual or deployed CFI defenses by
either an analyst—to better compare existing CFI defenses against
each other—or by an attacker (e.g., red team attacker)—to help craft
attacks which can bypass existing in-place CFI defenses.

LLVM-CFI is a unified framework to evaluate different CFI de-
fenses, enabling a head-to-head comparison. To achieve this, we
introduce a newCFI defense analysismetric dubbed calltarget reduc-
tion (CTR), which tells precisely, without averaging the results, how
many calltargets are still available after a CFI defense was enforced.
LLVM-CFI is capable to analyze CFI policies w.r.t. several metrics
and thus compare CFI policies w.r.t. different aspects. CTR is one
example metric along other three metrics presented in this paper.

Further, we are particularly interested in calltarget reduction
analysis as this is the most used metric (see AIR [59], fAIR [49], and
AIA [16] — however, these metrics average the results) to compare
CFI defenses against each other. At the time of writing this paper,
none of the existing CFI metrics can tell how secure a program is
after a certain CFI policy was applied; as such, we do not claim that
by using our CTR metric we can provide more security guarantees
than other metrics, but rather CTR provides absolute values rather
than averaging them. Even though the calltargets could be used or
not during an attack, we opt in this work to not further investigate
this avenue as the usability of a target depends on the type of CRA
performed. Instead, for each protected callsite, we show additional
calltarget features (see Section 5.6), such that the analyst could with
ease figure out if the targets are usable for a particular attack.

By using different compilers, compiler flag settings or OSs, the
results of CFI policy analysis could not be comparable against each
other. For this reason, LLVM-CFI relies on the insight that, by pre-
cisely modeling a CFI defense into a comprehensive policy, the
introduced constraints on callsites and calltargets can be assessed
during program compile time, by an unified analysis framework.
Further, in order to support this task, LLVM-CFI provides a set of pro-
gram expressive primitives, which help to characterize a wide range
of static CFI policies. For example, LLVM-CFI offers static primitives
related to variable types, class hierarchies, virtual table layouts and
function signatures. These primitives can be used as building blocks
to model a wide range of CFI policies. Further, LLVM-CFI provides
the legitimate calltarget set for each callsite under different CFI
defenses. This set can be evaluated by a lower and upper target
bound. The lower bound is represented by the set of all calltargets
which are, according to the analyzed policy (e.g., sub-hierarchy pol-
icy [5]), legitimate to be called by a protected callsite during benign
program execution. Accordingly, the upper bound is represented
by the set of all calltargets that can be called (both legitimately
or not) by a protected callsite during benign program execution
(e.g., all virtual tables policy [58]). Further, LLVM-CFI paves the way

towards automated control-flow hijacking attack construction, e.g.,
the control flow bending attack, see Carlini et al. [7], or to refine
the analysis of existing attack construction or defense tools.

LLVM-CFI analyzes statically the CFI defenses, as these are more
commonly deployed against control-flow hijacking attacks than dy-
namic defenses. Further, LLVM-CFI focuses on source code (LLVM’s
IR and Clang metadata is pushed into compiler’s LTO phase and an-
alyzed) rather than on binary code, as comparing various static CFI
defenses against each other is feasible only in this way. Moreover,
the binary CFI policy implementations can be more precisely ex-
pressed with source code at hand. Therefore, we opt not to analyze
the machine code of the protected programs as source code pro-
vides more semantics and precision w.r.t. the constraints imposed
by each CFI defense. Thus, LLVM-CFI models static CFI policies
for binaries more precisely than the binary instrumentation tools
which were used to enforce them as these operated mostly on the
binary only. Lastly, LLVM-CFImodels source code based CFI policies
as precise as the original policies as these were implemented either
atop Clang/LLVM or GCC compilers.

We evaluated LLVM-CFI with real-world programs including
Google’s Chrome, NodeJS, etc., and with eight state-of-the-art
static CFI policies which were previously thoroughly discussed
and clarified with their original authors w.r.t. how these were mod-
eled within LLVM-CFI. We selected eight representative binary and
source code based CFI policies based on the criteria that the poli-
cies should be static, state-of-the-art, and available as open source
(published). Further, we are aware that there are other CFI policies
which cannot currently be modeled with LLVM-CFI. For this reason,
in this paper, we do not aim to give a full presentation of which
CFI policies can be modeled with LLVM-CFI.

LLVM-CFI can help the assessment of CFI defenses and it can
help at finding gadgets, even with highly restrictive CFI defenses
deployed. Further, we demonstrate how LLVM-CFI can be utilized
to pave the way towards automated CRA construction. We also
show how it can be effectively used to empirically measure the real
attack surface reduction after a certain static CFI defense policy
was used to harden a program’s binary.

Comparing binary and software based policy results against each
other is out of scope of this paper. Rather, the goal of our tool is to
show how the analyzed CFI policies compare against each other and
to provide insights on their precision and benefits. Applications of
LLVM-CFI go beyond a CFI defense assessment framework, and we
envision LLVM-CFI as a tool for defenders and software developers
to highlight the residual attack surface of a program. As such, a
programmer can evaluate if a bug at a certain program location
enables a practical CRA.

In summary, our contributions include the following:
• We implement LLVM-CFI1, a novel framework for empirically
analyzing and comparing CFI defenses against each other.

• We introduce our comprehensive formalization framework
for formalizing static state-of-the-art binary and source code
based CFI defenses.

• We show evaluation results based on real-world programs
by comparing existing static CFI defenses against each other.

• We present an attacker model that is powerful and drastically
lowers the bar for performing attacks against state-of-the-art
CFI defenses with LLVM-CFI at hand.

1The source code is available at https://github.com/TeamVault/LLVM-CFI.git

2

https://github.com/TeamVault/LLVM-CFI.git


The remainder of this paper is organized as follows. Section 2
contains the brief overview of the required technical background
knowledge. Section 3 describes the design of LLVM-CFI, and Section
4 presents implementation details of LLVM-CFI, while Section 5
contains the evaluation of LLVM-CFI. Section 6 highlights related
work and Section 7 offers concluding remarks.

2 BACKGROUND

Control Flow Integrity. Control-Flow Integrity (CFI) [1, 2] is a
state-of-the-art technique used successfully along other techniques
to protect forward and backward edges against program control-
flow hijacking based attacks. CFI is used to mitigate CRAs by, for
example, pre-pending an indirect callsite with runtime checks that
make sure only legal calltargets are allowed by an as-precisely-as-
possible computed control flow graph (CFG).

Protection Schemes. Alias analysis in binary programs is unde-
cidable [40]. For this reason, when protecting CFG forward edges,
defenders focus on using other program primitives to enforce a pre-
cise CFG during runtime. These primitives are most commonly rep-
resented by the program’s: class hierarchy [20], virtual table layouts
[38], reconstructed-class hierarchies from binary code [37], binary
function types [52] (callsite/calltarget parameter count matching),
etc. They are used to enforce a CFG which is as close as possible to
the original CFG being best described by the program control flow
execution. Note that state-of-the-art CFI solutions use either static
or dynamic information for determining legal calltargets.

Static Information. CFI defenses which are based on static in-
formation allow, for example, callsites to target: (1) function entry
points, e.g., [59], map callsite types to target function types by creat-
ing a mask which enforces that the number of provided parameters
(up to six) has to be higher than the number of consumed param-
eters, e.g., [52], (2) a rebuilt-class hierarchy (no root node(s) and
the edges are not oriented) can be recuperated from the binary and
enforced, e.g., [37], (3) all virtual tables that can be recuperated and
enforced, e.g., [38], only certain virtual table entries are allowed,
e.g., [57] based on a precise function type mapping, and (4) sub-class
hierarchies are enforced, e.g., [5, 20, 49]. Thus, in order for such
techniques to work, program metadata should be available or it
should be possible through program analysis to reconstruct it.

3 DESIGN

3.1 Overview

LLVM-CFI is designed to assist an analyst evaluating the attack
surface after different types of static CFI defenses were applied
and to pave the way towards automated detection of gadgets. To
achieve this, LLVM-CFI applies a static black box strategy in order to
statically retrieve the set of attacker-controllable forward control
flow graph (CFG) edges. The forward-vulnerable CFG edges are
expressed as a callsite with a variable number of possible target
functions. Further, these CFG edges can be reused by an attacker
to call arbitrary functions via arbitrary read or write primitives.
To call such series of arbitrary functions, an attacker can chain a
number of edges together by dispatching fake objects contained in
a vector. See, for example, the COOP [46] attack which is based on
a dispatcher gadget used to call other gadgets through a single loop
iteration. The COOP attack uses gadgets which are represented by
whole virtual functions.

LLVM-CFI supports a wide range of code reuse defenses based
on user-defined policies, which are composed of constraints about
the set of possible calltargets allowed by a particular applied CFI
defense. The main idea behind LLVM-CFI is to compile the target
program with different types of CFI policies and get the allowed
target set per callsite for each constraint configuration. Note that
we assume the program was compiled with the same compiler as
the one on which LLVM-CFI is based. Moreover, LLVM-CFI’s policies
are reusable and extensible; they model security invariants of im-
portant CRA defenses. Essentially, under these constraints, virtual
pointers at callsites can be corrupted to call any function in the
program. Thus, in this paper, we focus on the possibility to bend [7]
a pointer to the callsite’s legitimate targets. Further, we assume that
large programs contain enough gadgets for successfully performing
CRAs. Bending assumes that it is possible for an attacker to reuse
protected gadgets during an attack making the applied defense of
questionable benefit.

Static Analysis

Available Primitives

Impose 
Target Constraints

Input

Program 
Source Code

Gadget Statistics

Collect Statistics

1. callsite (file.c:2344), targets (file.c:102)

1

2

3

4

5

6

7

8

9

Figure 1: Design of LLVM-CFI.

Figure 1 depicts the main components of LLVM-CFI and the work-
flow used to analyze the source code of a potentially vulnerable
program in order to determine CRA statistics, as follows. To use
LLVM-CFI the analyst has to provide as input ❶ to LLVM-CFI a pro-
gram’s source code ❷. In addition, the analyst needs to choose the
desired defense policies. A subset of defense policies can be selected
by switching on flags inside the LLVM-CFI source code, which can
also be implemented as compiler flags, if desired. Fundamentally,
the analysis performed by LLVM-CFI is dependent on the imple-
mented defense models and on the available primitives. Therefore,
the analyst can choose from the 8 policies currently available in the
LLVM-CFI tool. In case a desired defense is not available, the analyst
can extend the list of primitives ❸, and model his defense as a policy
(set of constraints) in the analysis component of LLVM-CFI ❹. In
order to do this, he needs to know about the analysis internals of
LLVM-CFI. After selecting/modeling a defense, the analyst forwards
the application’s source code ❺ to LLVM-CFI which will analyze it
using its static analysis component. During static analysis ❻ the
previously selected defense will be applied when compiling the
program source code. As the analysis is performed, each callsite is
constrained with only the legitimate calltargets. Note that both the
protected callsites as well as the legitimate calltargets per callsite
are dependent on the currently selected defense model. The result
of the analysis contains information about the residual target set

3



for each individual callsite after a CFI policy was assessed ❼. This
list contains a set of gadgets (callsites + calltargets) that can, given
a certain defense model, be used to bend the control flow of the
application. These target constraints are collected and clustered in
the statistics collection component of LLVM-CFI ❽. Finally, at the
end of the gadget collection phase, a list of calltargets containing
potential usable gadgets statistics ❾ based on the currently applied
defense(s) will be reported.

3.2 Analysis Primitives

LLVM-CFI provides the following program primitives, which are
either collected or constructed during program compile time. These
primitives are used by LLVM-CFI to implement static CFI policies
and to perform calltarget constraint analysis. Briefly, the currently
available primitives are as follows:

Virtual table hierarchy (see [20] for a more detailed definition)
allows performing virtual table inheritance analysis of only virtual
classes as only these have virtual tables. Finally, a class is virtual if
it defines or inherits at least one virtual function.

Vtable set is a set of vtables corresponding to a single program
class. This set is useful to derive the legitimate set of calltargets for
a particular callsite. The set of calltargets is determined by using
the class inheritance relations contained inside a program.

Class hierarchy (see Tip et al. [50] and Rossie et al. [42] for
a more formal definition) can be represented as a class hierarchy
graph with the goal to model inheritance relations between classes.
Note that a real-world program can have multiple class hierarchies
(e.g., Chrome, Google’s Web browser). Note that the difference
between virtual table hierarchy and class hierarchy is that the class
hierarchy contains both virtual and non-virtual classes, whereas
the virtual table hierarchy can only be used to reason about the
inheritance relations between virtual classes.

Virtual table entries allow LLVM-CFI to analyze the number
of entries in each virtual table with the possibility to differentiate
between virtual function entries, offsets in vtables, and thunks.

Vtable type is determined by the name of the vtable root for a
given vtable. A vtable root is the last derived vtable contained in
the vtable hierarchy.

Callsites are used by LLVM-CFI to distinguish between direct and
indirect (object-based dispatch and function-pointer based indirect
transfers) callsites.

Indirect callsites are based on: (1) object dispatches or (2) func-
tion pointer based calls. Based on these primitives, LLVM-CFI can
establish different types of relations between callsites and calltar-
gets (i.e., virtual functions). At the same time, we note that it is
possible to derive backwards relationships from calltargets to legit-
imate callsites based on this primitive.

Callsite function types allow LLVM-CFI to precisely determine
the number and the type of the provided parameter by a callsite. As
such, a precise mapping between callsites and calltargets is possible.

Function types allow LLVM-CFI to precisely determine the num-
ber of parameters, their primitive types and return type value for a
given function. This way, LLVM-CFI can generate a precise mapping
between compatible calltargets and callsites.

These primitives can be used as building blocks during the var-
ious analyses that LLVM-CFI can perform in order to derive precise
measurements and a thorough assessment of a modeled static CFI
policy. We note that in order to model other CFI defenses, other

(currently not available) simple or aggregated analysis primitives
may need to be added inside LLVM-CFI.

3.3 Constraints

The basic concept of any CRA is to divert the intended control flow
of a program by using arbitrary memory write and read primitives.
As such, the result of such a corruption is to bend [7] the control
flow, such that it no longer points to the intended (legitimate)
calltarget set. This means that the attacker can point to any memory
address in the program. While this type of attack is still possible,
we want to highlight another type of CRA in which the attacker
uses the intended/legitimate per callsite target set. That is, the
attacker calls inside this set and performs her malicious behavior
by reusing calltargets which are protected, yet usable during an
attack. As previously observed by others [51], CRA defenses try to
mitigate this by mainly relying on one or two dimensions at a time,
as follows:

Write constraints limit the attacker’s capabilities to corrupt
writable memory. If there is no defense in place, the attacker can
essentially corrupt: pointers to data, non-pointer values such as
strings, and pointers to code (i.e., function pointers). In this pa-
per, we do not investigate these types of defenses as these were
already addressed in detail by Veen et al. [51]. Instead, we focus on
target constraints as these represent a big class of defenses which
in our assessment need a separate and detailed treatment. This
obviously does not mean that our analysis results cannot be used in
conjunction with dynamic write constraint assessing tools. Rather,
our results represent a common ground truth on which runtime
assessing tools can build their gadget detection analysis.

Target constraints restrict the legitimate calltarget set for a
callsite which can be controlled by an attacker. With no target
constraints in place, the target set for each callsite is represented by
all functions located in the program and any linked shared library.
The key idea is to reduce the wiggle room for the attacker such that
he cannot target random callsites. As most of these defenses impose
a one-to-N mapping, an attacker being aware of said mapping could
corrupt the pointer at the callsite to bend [7] the control flow to
legitimate targets in an illegitate order to achieve her malicious
goals. Thus, all static CFI defenses impose target constraints.

Static Analysis. LLVM-CFI is based on the static analysis of the pro-
gram which is represented in LLVM’s intermediate representation
(IR). The analysis is performed during link time optimization (LTO)
inside the LLVM [28] compiler framework to detect callsites and
legitimate callees under the currently analyzed CFI defense. LLVM-
CFI uses the currently available primitives and the implemented
defenses to impose target constraints for each callsite individu-
ally. Currently, eight defenses are supported, see Section 4, but this
list can easily be extended since all defenses are based on similar
mechanisms which are assessable during a whole program analysis.

Generic Target Constraints. As mentioned above, LLVM-CFI can
be used to impose existing generic calltarget constraints (defenses)
based on class hierarchy relations and callsites and calltarget type
matching with different levels of precision depending on the cur-
rently modeled CFI defense. Further, LLVM-CFI allows extending
and combining existing policies or applying them concurrently.

4



3.4 Describing CFI Defenses

In this section, we present our CFI defense formalization framework
and how this was used to formalize eight static CFI defenses inside
LLVM-CFI. These defenses are stemming from published research
papers and are used to constrain forward edge program control
flow transfers to point to only legitimate calltargets. Note that each
CFI defense description is an idealized representation and very
close to how the original CFI defense policy was implemented in
each tool. Further, in case of the binary based CFI defenses, the CFI
defense descriptions are more precise than their implementations
in the respective tools. Lastly, note that each modeled defense was
previously discussed with the original authors and only after the
authors agreed with these descriptions wemodeled them into LLVM-
CFI. Next, we give the formal definitions of each of the CFI defenses
as these were modeled inside LLVM-CFI and the descriptions of the
performed analyses.

Symbol Description

P the analyzed program
Cs set of all indirect callsites of P
Csvir t set of P virtual callsites
V all virtual func. contained in a virtual table hierarchy
Vsub a virtual table sub-hierarchy
vt a virtual table
ve a virtual table entry (virtual function)
vcs a virtual callsite
nvf a non-virtual function
vf a virtual function (virtual table entry)
C a class hierarchy contained in P
Csub a class sub-hierarchy contained in P
cs an indirect callsite
ntpcs callsite’s number and type of parameters
ntpct calltarget’s number and type of parameters
F set of all virtual and non-virtual functions in P
Fvir t set of all virtual functions in P
S set of function signatures
M calltarget matching set based on the policy rules

Table 1: Symbol descriptions.

Notation. Table 1 depicts the set of symbols used by LLVM-CFI to
model CFI defenses. Note thatM is determined by applying all rules
defined by a CFI defense and represents, at the same time, thematch-
ing criteria for each policy. This means that LLVM-CFI increments
the count of its analysis by one when such a match is found.
Bin Types. (TypeArmor) [52] We formalize this CFI policy Ψ
as the tuple

〈
Cs, F ,V ,M

〉
where the relations hold: (1) V ⊆ F , (2)

ve ∈ V , (3) nvf ∈ F , (4) cs ∈ C , and (5)M ⊆ Cs ×V × F .
LLVM-CFI’s Analysis. For each indirect callsite cs (1) count the

total number of virtual table entries ve which reside in each virtual
table hierarchy V contained in program P , and also, (2) count the
number of non-virtual functions nvf residing in F , which need at
most as many function parameters as provided by the callsite and
up to six parameters. Further, if F contains multiple distinct virtual
table hierarchies (islands) then continue to count them too and take
them also into consideration for a particular callsite. An island is a
virtual table hierarchy which has no father-child relation to another
virtual table hierarchy contained in the program P .
Safe src types. (Safe IFCC) [49]We formalize this CFI policy Ψ
as the tuple

〈
Cs, F , Fvir tS,M

〉
where the relations hold: (1) V ⊆ F ,

(2) vf ∈ Fvir t , (3) nvf ∈ F , (4) ntpcs ∈ S , (5) ntpct ∈ S , (6) fr t ∈ S ,
(7) cs ∈ Cs , and (8)M ⊆ Cs × F × S .

LLVM-CFI’s Analysis. For each indirect callsite cs count the num-
ber of virtual functions vf and non-virtual functions nvf located
in the program P for which the number and type of parameters
required by the calltarget ntpct matches the number and type of
parameters provided at the callsite ntpcs . The function return type
fr t of the matching function is not taken into consideration. All
parameter pointer types are considered interchangeable, e.g., int*
and void* pointers are considered interchangeable.

Src types. (IFCC/MCFI) [34] We formalize this CFI policy Ψ as
the tuple

〈
Cs, F , Fvir tS,M

〉
where the relations hold: (1)V ⊆ F , (2)

vf ∈ Fvir t , (3) nvf ∈ F , (4) ntpcs ∈ S , (5) ntpct ∈ S , (6) fr t ∈ S , (7)
cs ∈ Cs , and (8)M ⊆ Cs × F × S .

LLVM-CFI’s Analysis. For each indirect callsite cs count the num-
ber of virtual functions and non-virtual functions located in the
program F for which the number and type of parameters required
at the calltarget ntpct matches the number and type of arguments
provided by the callsite ntpcs . The return type of the matching
function is ignored. Compared to Safe src types, this policy distin-
guishes between different pointer types. This means that these are
not interchangeable and that the function signatures are more strict.
Neither the return value of the matching function nor the name of
the function are taken into consideration.

Strict src types. (vTrust) [57]We formalize this CFI policy Ψ as
the tuple

〈
Cs,V , F , Fvir t , S,M

〉
where the relations hold: (1)V ⊆ F ,

(2) vf ∈ Fvir t , (3) nt fpcs ∈ S , (4) fr t ∈ S , (5) cs ∈ Cs , and (6)
M ⊆ Cs × S × Fvir t ×V .

LLVM-CFI’s Analysis. For each indirect callsite cs compute the
function signature of the function called at this particular callsite
using the number of parameters, their types, and the name of the
function nt fpcs (the literal name used in C/C++ without any class
information attached). Match this function type identifier with
each virtual function vf contained in each virtual table hierarchy
V of P . The name of the function is taken into consideration when
building the hash, but not the function return type fr t , as this can
be polymorphic. We have a match when the signature of a function
called by a callsite matches the signature of a virtual function vf .

All vtables. (vTint) [58] We formalize this CFI policy Ψ as the
tuple

〈
P ,Cs, Fvir t ,V ,M

〉
where the relations hold: (1) V ⊆ F , (2)

ve ∈ V , (3) vf ∈ Fvir t , (4) cs ∈ Cs , and (5)M ⊆ Cs ×V .
LLVM-CFI’s Analysis. For each indirect callsite cs count each vir-

tual functionvf corresponding to a virtual table entryve contained
in each virtual table present in the program P .

vTable hierarchy/island. (Marx) [37]We formalize this CFI pol-
icy Ψ as the tuple

〈
P , Fvir t ,C,Cs,V ,M

〉
where the relations hold:

(1) V ⊆ F , (2) ve ∈ V , (3) vf ∈ Fvir t , (4) vt ∈ V , (5) V ∈ C , (6)
C ∈ P , (7) cs ∈ Cs , and (8)M ⊆ Cs ×V ×C .

LLVM-CFI’s Analysis. For each indirect callsite cs count each vir-
tual function vf corresponding to each virtual table vt entry ve
having the same index in the virtual table as the index determined
at the callsite cs by Marx. Perform this matching for each virtual ta-
ble vt where the index matches the index determined at the callsite
cs and which is located in the class hierarchyC which contains the
class type of the dispatched object. Note that abstract classes are
not taken in consideration within this policy, this can be recognized
though by virtual tables having pure virtual function entries.

5



Sub-hierarchy. (VTV) [49]We formalize this CFI policy Ψ as the
tuple

〈
P , Fvir t ,C,Csub ,V ,M

〉
where the relations hold: (1) vt ∈ V ,

(2) V ⊆ C , (3) C ⊆ P , (4) Csub ∈ C , (5) vf ∈ Fvir t , (6) vcs ∈ P , and
(7)M ⊆ Csvir t ×Csub ×V × Fvir t .

LLVM-CFI’s Analysis. For each virtual callsite vcs build the class
sub-hierarchyCsub having as root node the base class (least derived
class that the dispatched object can be of) of the dispatched object.
From the classes located in the sub-hierarchy consider, for the
currently analyzed callsite, each virtual table vt . Further, within
these virtual tablesvt ’s consider only the virtual functionvf entries
located at the offset used by the virtual object dispatch mechanism.
Next, count all virtual functions to which these entries point to.

Strict sub-hierarchy. (ShrinkWrap) [20] We formalize this CFI
policy Ψ as the tuple

〈
P , Fvir t ,C,V ,Vsub ,M

〉
where the relations

hold: (1)V ⊆ C , (2)ve ∈ V , (3)vf ∈ Fvir t , (4)vt ∈ V , (5)V ⊆ C , (6)
Vsub ⊆ V , (7)C ⊆ P , (8) cs ∈ P , and (9)M ⊆ Csvir tV ×Vsub ×Fvir t .

LLVM-CFI’s Analysis. For each virtual callsite vcs identify the
virtual table vt type used. Take this virtual table vt from the base
class C of the dispatched object and build the virtual table vt sub-
hierarchy Vsub having this virtual table vt as root node. From the
virtual tables in this vt sub-hierarchy find the virtual function vf
entries located at the offset used by the virtual object dispatch
mechanism for this particular callsite cs . Next, count each virtual
function vf , to which these virtual table entries ve point to. Finally,
after LLVM-CFI computes for each callsite the total calltarget set
count, as described above for each policy, it sums up all results for
each callsite to generate several statistics.

4 IMPLEMENTATION

4.1 Data Collection and Aggregation

Collection. LLVM-CFI collects the virtual tables of a program in
the Clang front-end and pushes them through the compilation
pipeline in order to make them available during link-time optimiza-
tion (LTO). For each virtual table, LLVM-CFI collects the number of
entries. The virtual tables are analyzed and aggregated to virtual
table hierarchies in a later step. Other data such as direct/indirect
callsites and function signatures are collected during LTO.

Aggregation. Next, we present the program primitives which are
constructed by LLVM-CFI. First, virtual table hierarchies are built
based on the previously collected virtual table metadata within the
Clang front-end. The virtual table hierarchies are used to derive re-
lationships between the classes inside a program (class hierarchies),
determine sub-hierarchy relationships and count, for example, how
many virtual table entries (virtual functions) a certain virtual ta-
ble sub-hierarchy has. Second, virtual table sets are constructed
for mapping callsites to legitimate class hierarchy-based virtual
calltargets. Third, callsite function types are constructed. These
are composed of the number of parameters provided by a callsite,
their types, and if the callsite is a void or non-void callsite. Lastly,
function types are built. These are composed of the function name,
the expected number of parameters, their types and an additional
bit used to indicate if the function is a void or non-void function.

4.2 CFI Defense Modeling

LLVM-CFI implements a set of constraints for each modeled CFI-
defense, which are defined as analysis conditions that model the

behavior of each analyzed CFI-defense. These constraints are par-
ticular for each CFI-defense and operate on different primitives.
More specifically, different constraints of a CFI-defense are imple-
mented inside LLVM-CFI. The steps for modeling a CFI defense are
addressed by answering the five questions listed in the following.
(1) Which of LLVM-CFI’s primitives are used by the policy? (2) Is
there a nesting or subset relation between these primitives? (3)
Does the policy rely on hierarchical metadata primitives? (4) What
are the callsite/calltarget matching criteria? (5) How to count a
callsite/calltarget match? Note that there is no effort needed to port
LLVM-CFI from one policy to another as all policies can operate
in parallel during compile time. As such, the measurement results
obtained for each policy are written in one pass in an external file
for later analysis.

Next, we provide a concrete example of how a CFI defense, i.e.,
TypeArmor’s Bin types policy [52], was modeled inside LLVM-CFI by
following the steps mentioned above. For more details, see Section
3.4 for a description on how this policy works. More specifically, for
TypeArmor the following applies. (1) The policy uses the callsite,
indirect callsite, callsite function type, and function type primitives
provided by LLVM-CFI. (2) From all functions contained in the pro-
gram, we analyze only the virtual functions which expect up to
six parameters to be passed by the callsite. Next, from all callsites,
we filter out the ones which are not calling virtual functions and
which provide more than six parameters to the calltarget. We check
if the callsite is a void or non-void callsite. Further, we check if
each analyzed calltarget is a void or non-void target. (3) The policy
does not rely on hierarchical metadata. (4) A callsite matches a
calltarget if it provides less or the same number of parameters as
the calltarget expects. (5) In case the matching criteria holds, we
increment the total count by one for each found match.

Lastly, these constraints are implemented as a LLVM compiler
module pass performed during LTO. Thus, even with limited knowl-
edge constraints of an CFI policy can be modeled by observing how
other existing policies were implemented inside LLVM-CFI.

4.3 CFI Defense Analysis

LLVM-CFI performs for each implemented CFI defense a different
analysis. Each defense analysis consists of one or more iterations
through the program primitives which are relevant for the CFI
defense currently being analyzed. Depending on the particularities
of a defense, LLVM-CFI uses different previously collected program
primitives. More specifically, class hierarchies, class sub-hierarchies,
or function signatures located in the whole program or in certain
class sub-hierarchy are individually analyzed. During a CFI-defense
analysis, statistics are collected w.r.t. the number of allowed call-
targets per callsite taking into account the previously modeled
CFI-defense.

As such, for a certain CFI defense (e.g., TypeArmor’s CFI policy
Bin types) it is required to determine a match between the num-
ber of provided parameters (up to six parameters) of each indirect
callsite and all virtual functions present in the program (object
inheritance is not taken into account) which could be the target
(may consume up to six parameters) of such a callsite. In order to
analyze this CFI defense and collect the statistics, LLVM-CFI visits
all indirect callsites it previously detected in the program and all
virtual functions located in all previously recuperated class hierar-
chies. Afterwards, each callsite is matched with potential calltargets

6



(virtual functions). Lastly, after all virtual callsites/functions were
visited, the generated information is shown to the analyst.

4.4 Implementation Details

We implemented LLVM-CFI as three link time optimization (LTO)
passes and some code inside the Clang compiler to push metadata
into the compiler’s LTO. LLVM-CFI is built atop the Clang/LLVM
(v.3.7.0) compiler [29] framework infrastructure. The implemen-
tation of LLVM-CFI is split between the Clang compiler front-end
(part of the metadata is collected here), and several link-time passes,
totaling 4.2 KLOC. LLVM-CFI supports separate compilation by re-
lying on the LTO mechanism built in LLVM [29]. By using Clang,
LLVM-CFI collects front-end virtual tables and makes them available
during LTO. Next, virtual table hierarchies are built which are used
to model different CFI defenses. Other LLVM-CFI primitives such
as function types are constructed during LTO. Finally, each of the
analyzed CFI defenses are separately modeled inside LLVM-CFI by
using the previously collected primitives and aggregated data to
impose the required defense constraints.

5 EVALUATION

In this section, we address the following research questions (RQs).
• RQ1:What type of metrics are supported by the LLVM-CFI
framework (§5.1)?

• RQ2: What is the residual attack surface of NodeJS after
applying independently eight CFI defenses (§5.2)? For an-
swering this RQ, we performed a use case analysis focused
on NodeJS.

• RQ3:What score would each of the analyzed CFI defenses
get (§5.3)?

• RQ4: How can LLVM-CFI be used to rank CFI policies based
on the offered protection level (§5.4)?

• RQ5: What is the residual attack surface for several real-
world analyzed programs (§5.5)?

• RQ6: How can LLVM-CFI pave the way towards attack con-
struction (§5.6)?

Test Programs. In our evaluation, we used the following real-world
programs: Nginx [33] (Web server, usable also as: reverse proxy,
load balancer, mail proxy and HTTP cache, v.1.13.7, C code), NodeJS
[36] (cross-platform JavaScript run-time environment, v.8.9.1, C/C++
code), Lighttpd [27] (Web server optimized for speed-critical envi-
ronments, v.1.4.48, C code), Httpd [21] (cross-platform Web server,
v.2.4.29, C code), Redis [41] (in-memory database with in-memory
key-value store, v.4.0.2, C code), Memcached [30] (general-purpose
distributed memory caching system, v.1.5.3, C/C++ code), Apache
Traffic Server [15] (modular, high-performance reverse proxy and
forward proxy server, v.2.4.29, C/C++ code), and Chrome [17] (Google’s
Web browser, v.33.01750.112, C/C++ code).

Experimental Setup. The experiments were performed on an Intel
i5-3470 CPU with 8GB of RAM running on the Linux Mint 18.3 OS.
All experiments were performed ten times to provide reliable values.
If not otherwise stated, we modeled each of the eight CFI defenses
inside LLVM-CFI according to the policy descriptions provided in
Section 3.4.

LLVM-CFI’s CTR Analysis Capabilities. LLVM-CFI can conduct
different types of analysis based on several metrics as such CFI
policies can be compared w.r.t. different aspects. In this paper, we

decided to focus on the CTRmetric as it is one of the simple ones and
it is comparable with the AIR, fAIR, AIA and other related metrics.
Further, note that CTR is an example metric which does not fit all
needs. Other supported metrics are presented in Section 5.1.

5.1 LLVM-CFI Supported Metrics

In this section, we present four novel CFI metrics, which can be used
within LLVM-CFI in order to perform different types of CFI policy-
related analysis. Note that another set of metrics was introduced in
a recent survey by Burow et al. [6]. Complementing related work,
LLVM-CFI helps to provide precise and reproducible measurement
results when performing CFI-related investigations. This section
introduces several alternatives to existing CFI metrics.

Symbol Description

ics indirect call site (i.e., x86 call instruction)
irs indirect return site (i.e., x86 ret instruction)
P program
VT virtual table
VTI virtual table inheritance
CH class hierarchy
CFG control flow graph
CG code reuse gadget
CTR indirect calltarget reduction
RTR indirect return target reduction
fCGA forward-edge based CG availability
bCGA backward return-edge based CG availability

Table 2: Symbols and associated descriptions.

Table 2 contains the abbreviations which we used in Figure 2.

bCGA

CTR ics irs RTR

VT CH CFG P

VTH fCGA CG

inside

uses

uses

abstraction
subpart

subpart

subpart abstraction

contained
uses

uses

uses

uses

coupled

depends uses

uses

Figure 2: Our fourmetrics (bold text), & program primitives.

Figure 2 depicts the relationships between our four metrics (bold
text) metrics and program metadata primitives. Next, we introduce
our metrics that can be used within LLVM-CFI.

Definition 5.1 (CTR). Let icsi be a particular indirect callsite in
a program P , ctri is the total number of legitimate calltargets for
an icsi after hardening a program with a certain CFI policy.

Then, the iCTR metric is: CTR =
∑n
i=1 ctri . Note that the lower

the value of CTR is for a given program, the more precise the CFI
policy is. The optimal value of this metric is equal to the total num-
ber of callsites present in the hardened program. This means that
there is a one-to-one mapping. We can also capture the distribution
of the numbers of calltargets using min, max, and standard devia-
tion functions. Minimum: mini {ctri }; Maximum: maxi {ctri }; and

Standard Deviation (SD): CTRSD =
√∑n

i=1(ctri−ctri )2
n .

7



Definition 5.2 (RTR). Let irsi be a particular indirect return site
in the program P , then rtri is the total number of available return
targets for each irsi after hardening the backward edge of a program
with a CFI policy.

Then, the RTR metric is: RTR =
∑n
i=1 rtri . Note that the lower

the value of RTR is for a given program, the better the CFI policy is.
The optimal value of this metric is equal to the total number of indi-
rect return sites present in the hardened program. This means that
there is a one-to-one mapping. Other key properties are: Minimum:
RTRMIN = mini {rtri }; Maximum: RTRMAX = maxi {rtri }; and

Standard Deviation (SD): RTRSD =

√∑n
i=1 (r tri−r tri )

2

n .

Definition 5.3 (fCGA). Let cд fi be the total number of legitimate
calltargets that are allowed and which contain gadgets according
to a gadget finding tool. Then, the forward code reuse gadget avail-
ability f CGAmetric is: f CGA =

∑n
i=1 cд fi .

Note that the lower the value of f CGA is, the better the policy
is. This means that every time a calltarget containing a code reuse
gadget is protected by a CFI check, this gadget is not reachable. The
reverse is true when the calltarget return contains a gadget and
there are indirect control flow transfers which can call this indirect
return site unconstrained.

Definition 5.4 (bCGA). Let cдri be the total number of legiti-
mate callee return addresses which contain code gadgets according
to a gadget finding tool. Then, the backward code reuse gadget
availability bCGAmetric is: bCGA =

∑n
i=1 cдri .

Note that the lower the value of bCGA is, the better the policy
is. This means that every time when a calltarget return address,
which contains a code reuse gadget that is protected by a CFI check,
then this gadget is not reachable. The reverse is true when the
calltarget return contains a gadget and there are indirect control
flow transfers which can call this indirect return address in an
unconstrained.

Important advantages of these metrics are: (1) provide absolute
numbers without averaging the results, (2) can be used to assess
backward-edge target set reduction, and (3) can be used to assess
the forward-edge and backward-edge control flow transfers w.r.t.
gadget availability.

So far, the available CFI metrics have failed to assess how likely
an attack still is after a CFI policy was applied. Therefore, we pre-
sented examples of metrics that can be incorporated into our frame-
work. The goal of these metrics is to point out that multiple CFI-
related measurements are relevant and that these can be performed
with LLVM-CFI depending on the type of CFI policy which onewants
to analyze. Further, our metrics in contrast to others can be used
to analyze the protection of backward edges and the availability of
gadgets after a CFI policy was deployed.

Onemajor benefit of our metrics is that LLVM-CFI can use these to
assess CFI policies w.r.t. several dimensions (e.g., forward-edge and
backward-edge transfers, and gadget availability) and combine this
information into meaningful data. Note that currently no available
CFI metric can do this. Further, the security implications of these
metrics can be used to not only tell how many targets per callsite
or return site exist but also to correlate this information to gadgets
whichmay be reachable after such an indirect transfer was executed.
This can be achieved by using an additional gadget finding tool
which may be used to search for CRA gadgets in order to map

these within the analyzed binary. In this way, LLVM-CFI is capable
of taking into account past, current and future attacks and assess
their likelyhood after deploying a CFI policy.

Further, note that we did not use all four metrics in conjunction
with the eight CFI policies assessed in this paper as we wanted
to thoroughly focus only on forward-edge transfers in this work.
Moreover, we are not aware of any CFI policy assessing tool which
can take into account all the dimensions introduced by our four
metrics. Lastly, by using these metrics, experiments become more
reproducible and results better comparable.

5.2 NodeJS Use Case

In this section, we analyze the residual attack surface after each of
the eight CFI policies was applied individually to NodeJS. Note that
three out of the eight assessed CFI policies used in the following
tables are the same as reported by Veen et al. [51] (we share the same
names). For the other five CFI policies, we use names which reflect
their particularities. We selected NodeJS as it is a very popular
real-world application and it contains both C and C++ code. As such,
LLVM-CFI can collect results for the C and C++ related CFI polices.

Table 3 depicts the static target constraints for the NodeJS pro-
gram under different static CFI calltarget constraining policies. Fur-
ther, Table 3 provides the minimum and maximum values of virtual
calltargets which are available for a virtual callsite after one of the
eight CFI policies is applied. MKSnapShot contains the Chrome V8
engine and is used as a shared library by NodeJS after compilation.
We decided to add MKSnapshot in Table 3 as this component is
used considerably by NodeJS and represents a source of potential
calltargets. The NodeJS results were obtained after static linking of
MKSnaphot. Further, the target median entries in Table 3 (left hand
side) indicate the median values obtained for independently apply-
ing one of the eight CFI policies to NodeJS. For both NodeJS and
MKSnaphot, the best median number of residual targets is obtained
using the following policies: (1) vTable hierarchy, (2) sub-hierarchy,
and (3) strict sub-hierarchy. The results indicate that these three
CFI policies provide the lowest attack surface, while the highest
attack surface is obtained for the bin types policy, which allows the
highest number of virtual and non-virtual targets.

The targets distribution in Table 3 (right hand side) shows the
minimum, maximum and 90 percentile results for the same eight
policies as before. While the minimum value is 0, the highest values
for both NodeJS and MKSnapshot are obtained for the bin types pol-
icy, while the lowest values are obtained for the following policies:
(1) vTable hierarchy, (2) sub-hierarchy, and (3) strict sub-hierarchy.
Further, the 90th percentile results show that on the tail end of the
distribution, a noticeable difference between the three previously
mentioned policies exists. We can observe that for these critical
callsites the strict sub-hierarchy policy provides the least amount
of residual targets and therefore the best protection against CRAs.
Meanwhile, the 90th percentile results for the strict src type and
vTable hiearchy policies indicate that the residual attack surface
might still be sufficient for the attacker.

5.3 CFI Defenses Scores

Figure 3 depicts the scores obtained by each of the eight policies,
which were analyzed for the Chrome Web browser. The scores are
depicted in logarithmic scale in order to better compare the values
against each other. The optimal score has the value of one depicted
on the left hand side Y axis. We opted to depict the values for only

8



Targets Median Targets Distribution

P NodeJs MKSnapshot

NodeJS MKSnaphot Total Min Max Min 90p Max Min 90p Max
(1) 21,950 15,817 15,817 15,817 21,950 12,545 30,179 32,478 8,714 21,785 23,376

(21,950) (15,817) (20,253) (15,817) (21,950) (885) (30,179) (32,478) (244) (21,785) (23,376)
(2) 2,885 2,273 2,273 2,273 2,885 0 5,751 5,751 1 4,436 4,436

(88) (495) (139) (88) (21,950) (0) (5,751) (5,751) (0) (4,436) (4,436)
(3) 1,511 1,232 1,232 1,232 1,511 0 5,751 5,751 1 4,436 4,436

(56) (355) (139) (56) (355) (0) (5,751) (5,751) (0) (4,436) (4,436)
(4) 3 2 3 2 3 0 499 730 0 507 756
(5) 6,128 2,903 6,128 2,903 6,128 6,128 6,128 6,128 2,903 2,903 2,903
(6) 2 1 2 1 2 0 54 243 0 16 108
(7) 2 1 1 1 2 0 7 243 0 11 108
(8) 2 1 1 1 2 0 6 243 0 9 108

Table 3: Legitimate calltargets per callsite for each of the eight CFI policies for NodeJS after each CFI defense was individually

applied. The values not contained in round brackets are obtained for only virtual callsites and all targets (i.e., virtual and non-

virtual), while the values in round brackets are obtained for all indirect callsites (i.e., virtual and function pointer based calls)

and all targets. For the Bin types, Safe src types, and Src types policies depicted above the targets can be virtual or non-virtual,

for the remaining policies the targets inherently can only be virt. functions. Targets median: (min. and max.) number of legal

function targets per callsite. Target distribution:minimum/90th percentile/maximumnumber of targets per callsite. This 90th

percentile is determined by sorting the values in ascending order, and picking the value at 90%. Thus 90% of the sorted values

have a lower or equal value to 90th percentile. P: Policy (Static target constraints), (1) Bin types [52], (2) Safe src types [49], (3)

Src types [34], (4) Strict src types [57], (5) All virtual tables [58], (6) virtual Table hierarchy [37], (7) Sub-hierarchy [5], and (8)

Strict sub-hierarchy [20].

Callsites Targets Baseline Virtual Function Targets

P Value Write
cons.

Base
all fun

Base
vFunc

(1) (2) (3) (4) (5) (6) (7) (8)

Min 12,545 (1,956) 0 (0) 0 (0) 0 (0) 6,128 0 0 0
90p 30,179 (4,078) 5,751 (810) 5,751 (810) 499 (10) 6,128 54 7 6

JS Max none 32,478 6,300 32,478 (4,455) 5,751 (810) 5,751 (810) 730 (243) 6,128 243 243 243
Med 21,950 (3,106) 2,885 (426) 1,511 (121) 3 (3) 6,128 2 2 2
Avg 19,395 (2,793) 2,406 (414) 2,113 (354) 86 (12) 6,128 14 8 8
Min 2,608 (232) 1 (0) 1 (0) 0 (0) 788 0 0 0
90p 4,085 (546) 1,315 (97) 1,315 (97) 17 (13) 788 34 7 7

TS Max none 6,201 796 6,201 (710) 1,315 (159) 1,315 (159) 18 (16) 788 42 18 18
Med 2,608 (232) 1,315 (97) 1,315 (97) 17 (13) 788 7 1 1
Avg 3,122 (321) 928 (76) 923 (74) 11 (9) 788 10 3 3
Min 97,041 (37,873) 0 (0) 0 (0) 0 (0) 68,560 0 0 0
90p 201,477 (63,816) 64,315 (24,661) 64,315 (24,661) 48 (30) 68,560 192 25 15

C Max none 232,593 78,992 232,593 (71,000) 64,315 (24,661) 64,315 (24,661) 3,029 (509) 68,560 4,486 4,486 4,486
Med 97,041 (37,873) 8,672 (4,593) 7,633 (4,593) 3 (2) 68,560 6 2 2
Avg 128,452 (45,731) 29,315 (11,119) 29,127 (11,013) 57 (19) 68,560 78 37 32

Table 4: Legitmate calltargets per callsite for only virtual callsites and for only the C++ programs after each CFI defense was

individually applied. Baseline all func. represents the total number of functions, while Baseline virtual func. represents the

number of virtual functions. The first four policies, from left to right in italic font (Bin types, Safe src types, Src types, and Strict

src types) allow virtual or non-virtual targets, while the remaining four policies inherently allow only virtual targets. This is

not a limitation of LLVM-CFI but rather how these were intended, designed and used in the original tools from where these

are stemming. The values in round brackets show the theoretical results after adapting the first four policies to only allow

virtual targets. Each table entry contains five aggregate values: minimal, 90th percentile: minimum/90th percentile/maximum,

maximal, median and average (Avg) number of targets per callsite. P: program, JS: NodeJS, TS: Traffic Server, C: Chrome, (1) -

(8) see Table 3.

the Chrome browser since this represents the largest (approx. 10
million LOC) analyzed program. The numbers on the gray shaded
bars represent the 90th percentile values, while the values on the
black shaded bars represent the average values for the ChromeWeb
browser. These values are reported in Table 4 on the last row from
top to bottom for the Chrome browser as well. The optimal score
is one and means that each callsite is allowed to target a single

calltarget. This is the case only during runtime. The lower the bar
is or the closer the value is to one, the better the score is.

The best score w.r.t. the 90th percentile and average values is
obtained for the strict sub-hierachy, which appears to be the best
CFI defense from the eight analyzed policies. It is interesting to
note that the best function signature based policy strict src types
has a slightly worse score than the second class based CFI defense
(sub-hierarchy). Lastly, note that these CFI-based forward-edge

9



P (1) (2) (3) (4) (5) (6) (7) (8)
Avg SD 90p Avg SD 90p Avg SD 90p Avg SD 90p Avg SD 90p Avg SD 90p Avg SD 90p Avg SD 90p

JS 59.72 21.0 92.92 7.41 6.32 17.71 6.51 6.44 17.71 0.26 0.54 1.54 97.27 0.0 97.27 0.23 0.63 0.86 0.13 0.46 0.11 0.13 0.46 0.1
TS 50.35 15.79 65.88 14.97 8.89 21.21 14.89 9.01 21.21 0.18 0.12 0.27 98.99 0.0 98.99 1.26 1.27 4.27 0.34 0.51 0.88 0.34 0.51 0.88
C 55.23 19.08 86.62 12.6 12.16 27.65 12.52 12.22 27.65 0.02 0.11 0.02 86.79 0.0 86.79 0.1 0.43 0.24 0.05 0.41 0.03 0.04 0.41 0.02

Avg 55.1 18.62 81.8 11.66 9.12 22.19 11.3 9.22 22.19 0.15 0.25 0.61 94.35 0.0 94.35 0.53 0.77 1.79 0.17 0.46 0.34 0.17 0.46 0.33

Table 5: Normalized results with the baseline (B) using only virtual callsites. Note that virtual callsites can be used for all eight

assesses CFI policies as these were designed in the original papers to be used for these types of callsites as well. Baseline: Total

number of possible virtual targets. Each entry contains three aggregate values: average-, standard deviation (SD) and 90th

percentile number of targets per callsite. The lower the Average value is the better the CFI defense is. P: program, JS: NodeJS

(Baseline 6.3K), TS: Traffic Server (Baseline 796), C: Chrome (Baseline 78,992).

Sheet1

Page 1

Bin types Safe src types Src types Strict src types all vTables vTable Hierarchy Sub-hierarchy Strict sub-hierarchy
201,477 64,315 64,315 48 68,560 192 25 15
128,452 29,315 29,127 57 68,560 78 78 32

1

10

100

1,000

10,000

100,000

1,000,000

Row 2

Row 3

N
u

m
b

e
r 

o
f c

a
llt

a
rg

e
ts

Figure 3: Scores obtained by each analyzed CFI defense.

policies are not optimal (i.e., they provide values larger than one)
and the desired goal is to develop policies, which provide one-to-one
mappings similar to shadow stack based techniques.

5.4 Ranking of CFI Policies

In this section, we normalize the results presented in RQ2 using
the baseline values (i.e., the number of possible target functions), in
order to be able to compare the assessed CFI policies against each
other w.r.t. calltarget reduction. This allows LLVM-CFI to compare
the analyzed CFI defenses on programs with different sizes and
complexities which would not be possible otherwise.

Table 5 depicts the average, standard deviation and 90th per-
centile results obtained after analyzing only virtual callsites. Unless
stated otherwise, we use the CTR metric. For these callsites, all
eight CFI policies can be assessed. Here, we calculated the average
over the three C++ programs after normalization. By considering
these aggregate average values, the eight policies can be ranked
(from best (smallest aggregate average) to worst (highest aggregate
average)) as follows: (1) strict src types (0.15), (2) strict sub-hierarchy
(0.17), (3) sub-hierarchy (0.17), (4) vTable hierarchy (0.53), (5) src
types (11.3), (6) safe src types (11.66), (7) bin types (55.1), and (8) all
vTables (94.35).

From the class hierarchy-based policies strict sub-hierarchy per-
formed best in all three aggregate results (Avg, SD and 90th per-
centile). In comparison, strict sub-hierarchy performs better w.r.t.
average and standard deviation but worse w.r.t. 90th percentile. The
results indicate that these two policies are the most restrictive, but
a clear winner in all evaluated criteria cannot be determined.

Bin types Safe src types Src types

P B Avg SD 90p Avg SD 90p Avg SD 90p
a 32,478 64.0 20.43 92.92 3.82 5.83 17.71 3.38 5.64 17.71
b 6,201 54.03 18.76 87.89 13.54 9.27 21.21 13.46 9.36 21.21
c 232,593 56.83 19.84 86.62 11.71 12.11 27.65 11.64 12.16 27.65
d 1,949 52.18 26.5 92.0 2.7 3.01 8.21 2.46 3.01 8.21
e 594 65.25 27.81 97.98 2.94 3.18 7.41 2.93 3.19 7.41
f 225 69.75 7.11 68.89 1.0 0.97 0.89 1.0 0.97 0.89
g 1,270 54.91 24.85 92.28 6.38 4.56 11.73 6.36 4.57 11.73
h 2,880 65.19 16.51 84.62 1.25 2.52 1.88 1.2 2.52 1.88

Avg 34,773 60.3 34.39 87.9 5.4 5.18 12.09 5.3 5.17 12.08
Table 6: Normalized results using all indirect callsites.

Table 6 depicts (similar to Table 5) normalized results with the
difference that all indirect callsites (both virtual and pointer based)
are analyzed. Shortnames: B: baseline, a) NodeJS, b) Apache Traffic
Server, c) Google’s Chrome, d) Httpd, e) LightHttpd, f) Memcached,
g) Nginx, h) Redis. Thus, the baseline values used for normalization
include virtual and non-virtual targets. By taking into account the
aggregate averages and the standard deviation of the three policies
in Table 6, we can rank the policies as follows (from best to worse):
(1) src types (Avg 5.3 and SD 5.17), (2) safe src types (Avg 5.4 and
SD 5.18), and (3) bin types (Avg 60.3 and SD 34.39). In contrast, by
considering the 90th percentile values, we conclude that for the
most vulnerable 10% of callsites, bin types only restricts the target
set to 87.9% of the unprotected target set. As such, these callsites
essentially remain unprotected. Meanwhile, the safe src type and src
type policies restrict to only around 12% of the unprotected target
set.

5.5 General Results

Table 7 depicts the results for the three policies which can provide
protection for both C and C++ programs. Abbreviations: P: program,
(1) bin types, (2) safe src types, (3) src types; a) NodeJS, b) Apache
Traffic Server, c) Google’s Chrome, d) Httpd, e) LightHttpd, f) Mem-
cached, g) Nginx, and h) Redis. In contrast to Table 4, all indirect
calls are taken into account (including virtual calls). Therefore, the
targets can be virtual or non-virtual. Intuitively, the residual attack
surface grows with the size of the program. This can be observed
by comparing the results for large (e.g., Chrome) with smaller (e.g.,
Memcached) programs.

In contrast, Table 4 depicts the overall results obtained after ap-
plying the eight assessed CFI policies to virtual callsites only. The
first four policies (italic font) cannot differentiate between virtual
and non-virtual calltargets. Therefore, for these policies the baseline
of possible calltargets includes all functions (both virtual and non-
virtual). This is denoted with baseline all func. Since the remaining
four policies can only be applied to virtual callsites, they restrict

10



Targets (Non-) & virt. func.

P Value Callsite
write
cons.

Baseline
all func.

(1) (2) (3)

Min 885 0 0
90p 30,179 5,751 5,751

a Max none 32,478 32,478 5,751 5,751
Med 21,950 88 56
Avg 20,787 1,242 1,099
Min 357 0 0
90p 5,450 1,315 1,315

b Max none 6,201 6,201 1,315 1,315
Med 2,608 1,315 1,315
Avg 3,350 840 835
Min 3,612 0 0
90p 201,477 64,315 64,315

c Max none 232,593 232,593 64,315 64,315
Med 97,041 8,672 7,394
Avg 132,182 27,238 27,074
Min 99 0 0
90p 1,793 160 160

d Max none 1,949 1,915 160 160
Med 1,070 18 16
Avg 1,017 53 48
Min 37 0 0
90p 582 44 44

e Max none 594 582 44 44
Med 395 6 6
Avg 388 17 17
Min 92 0 0
90p 155 2 2

f Max none 225 221 17 17
Med 155 2 2
Avg 157 2 2
Min 422 1 1
90p 1,172 149 149

g Max none 1,270 1,259 149 149
Med 719 75 75
Avg 697 81 81
Min 1,266 1 1
90p 2,437 54 54

h Max none 2,880 2,635 391 391
Med 1,994 16 14
Avg 1,877 36 35

Table 7: Results for virtual and pointer based callsites.

the possible calltargets to only virtual functions. Thus, the baseline
for these policies includes only virtual functions (baseline virtual
function). For a better comparison between the first and second cat-
egories of policies, we also calculated the target set when restricting
the first four policies to only allow virtual callsites. For bin types,
safe src types, src types, and all vTables the results indicate that there
is no protection offered. The three-class hierarchy-based policies
perform best when considering the median and average results.
In addition, the strict src type policy performs surprisingly well,
especially after restricting the target set to only virtual functions.

5.6 Towards Automated CRA Construction

In this section, we show how LLVM-CFI is used to automate one
step of a COOP-like attack, namely finding protected targets which
can be legitimately called. This attack bypasses a state-of-the-art
CFI policy-based defense, namely VTV’s sub-hierarchy policy. This
case study is architecture independent, since LLVM-CFI’s analysis is
performed at the IR level during LTO time in LLVM. Note that LLVM
IR code represents a higher level representation of machine code

(metadata), thus our results can be applied to other architectures
(e.g.,ARM) as well. Our case study assumes an ideal implementation
of VTV/IFCC. Breaking the ideal instrumentation shows that the
defense can be bypassed in any implementation. More specifically,
we present the required components for a COOP attack by studying
the original COOP attack [46] against the Firefox Web browser and
demonstrate that such an attack is easier to perform when using
LLVM-CFI.

For example, the original COOP attack presented by Schuster
et al. [46] consists of the following four steps: (1) a buffer over-
flow filled with six fake counterfeit objects by the attacker, (2)
precise knowledge of the Firefox libxul.so shared library layout,
(3) knowledge about a COOP dispatcher and other gadgets (ML-G)
resides in libxul.so, and (4) how to pass information from one
gadget to the other in order to open a Unix shell. As demonstrated
by COOP, the attacker first needs to find an exploitable memory
corruption (e.g., buffer overflow, etc.) and fill it with fake objects.
Next, the attacker calls different gadgets (virtual C++ functions)
located in libxul.so. Note that these functions would be in the
benign execution not callable as these reside in distinct class hi-
erarchies. Further, with fine-grained CFI defenses in place these
calltargets would be protected during an attack. LLVM-CFI helps
with identifying the protected targets (see step (3) above) and if
desired the attacker can use other targets depending on his goals
and the type of deployed CFI defense.

As such, we assume that NodeJS contains an exploitable memory
vulnerability (i.e., buffer overflow), and that the attacker is aware
of the layout of the program binary. Next, we assume that the at-
tacker wants to bend the control flow to only per callsite legitimate
calltargets since in this way he can bypass the in-place CFI policy.
Next, the attacker wants to avoid calling targets located in other
program class hierarchies or protected targets. Therefore, he needs
to know which calltargets are legitimate for each callsite located in
the main NodeJS binary and which targets are protected.

Eight Target Policies

CS #

Base

only

vFunc

Base

all

func

(1) (2) (3) (4) (5) (6) (7) (8)

a 5 6,300 32,478 31,305 4 4 1 6,128 1 1 1
b 2 6,300 32,478 21,950 719 719 49 6,128 57 53 49
c 3 6,300 32,478 27,823 136 136 1 6,128 1 1 1
d 1 6,300 32,478 12,545 810 810 1 6,128 72 12 12
e 1 6,300 32,478 1,956 810 810 1 6,128 72 13 13
f 1 6,300 32,478 1,956 810 810 6 6,128 20 19 19
g 3 6,300 32,478 1,956 810 810 6 6,128 20 19 19
h 2 6,300 32,478 3,106 35 35 8 6,128 48 13 5
i 2 6,300 32,478 3,106 2,984 2,984 49 6,128 53 53 49
j 2 6,300 32,478 3,106 719 719 49 6,128 53 53 19

Table 8: Ten controllable callsites & their legitimate targets

under the Sub-hierarchy CFI defense. #: passed parameters.

CS: Ten controllable callsites, for (1)-(8), see Table 3 caption.

Table 8 depicts ten controllable callsites (in total LLVM-CFI found
thousands of controllable callsites) for which the legitimate target
set, depending on the used CFI policy (1-8), ranges from one to
31,305 calltargets: a) debugger.cpp:1329:33, b) protocol.cpp:839:60, c)
schema.cpp:133:33, d) handle_wrap.cc:127:3, e) cares_wrap.cc:642:5,
f) node_platform.cc:25:5, g) node_http2_core.h:417:5, h) tls_wrap

11



.cc:771:10, i) protocol.cpp:839:60, and j) protocol.cpp:836:60. For
each calltarget, LLVM-CFI provides: file name, function name, start
address and source code line number such that it can be easily
traced back in the source code file. The calltargets (right hand side
in Table 8 in italic font) represent available calltargets for each
of the eight assessed policies. Further, the information shown in
Table 8 demonstrates the usefulness of LLVM-CFI when used by
an analyst. By using LLVM-CFI it can drastically reduce the time
needed to search for COOP-like protected and unprotected gadgets
after a certain CFI policy was deployed. Lastly, this helps to better
tailor attacks w.r.t. deployed CFI-based defenses.

6 RELATEDWORK

6.1 Defense Assessment Metrics

AIR [59], fAIR [49], and AIA [16] metrics have limitations (see
Carlini et al. [7]) and are currently the available CFI defense as-
sessment metrics which can be used to compare the protection
level offered by state-of-the-art CFI defenses w.r.t. only forward-
edge transfers. These metrics provide average values which shed
limited insight into the real offered protection level and thus can-
not be reliably used to compare CFI-based defenses. Most recently,
ConFIRM [56] also attempted to evaluate CFI, especially the com-
patibility, applicability, and relevance of CFI protections with a
set of microbenchmarking suites. In contrast, LLVM-CFI is not a
benchmark suite but rather a framework for modeling CFI defenses
and comparing them against each other w.r.t. protection level these
offer. Burow et al. [6] propose two metrics: (1) a qualitative metric
based on the underlying analysis provided by each of the assessed
techniques, and (2) a quantitative metric that is the product of the
number of equivalence classes (EC) and the inverse of the size of the
largest class (LC). In contrast, we propose LLVM-CFI, a CFI defense
assessment framework and CTR, a new CFI defense assessment
metric based on absolute forward-edge reduction set analysis, with-
out averaging the results. CTR provides precise measurements and
facilitates comprehensive CFI defense comparison.

6.2 Static Gadget Discovery

Wollgast et al. [55] present a static multi-architecture gadget detec-
tion tool based on the analysis of the intermediate language (IL) of
VEX, which is part of the Valgrind [45] programming debugging
framework. The tool can find a series of CFI-resistant gadgets. Com-
pared to LLVM-CFI, both tools leave the gadget chain building as a
manual effort. In contrast, when using LLVM-CFI, it is possible to
define a specific CFI-defense policy and search for available gadgets,
while the tool of Wollgast et al. specifies CFI-resistant gadgets by
defining their boundaries (start and end instructions). These have
to conform to some constraints and respect the normal program
control flow of the program in order to be considered CFI resistant.
These types of gadgets are more thoroughly described by Goktas et
al. [19], Schuster et al. [47].

RopDefender [12], ROPgadget [43], and Ropper [44] are non-
academic gadget detection tools based on binary program analysis.
These tools are used to search inside program binaries with the goal
to find consecutive machine code instructions, which are similar
to a previously specified set of rules that define a valid gadget.
While allowing a fast search, these tools cannot detect defense-
aware gadgets, since these tools do not model the defense applied

to the program binary. As such, these tools cannot determine which
gadgets are usable after a certain defense was applied.

6.3 Dynamic Attack Construction

Newton [51], is a runtime binary analysis tool which relies on taint
analysis to help significantly simplify the detection of code reuse
gadgets defined as callsite and legal calltarget pairs. Newton can
model part of the byte memory dependencies in a given program.
Newton is further able to model a series of code reuse defenses by
not focusing on a specific attack at a time. Newton is able to craft
attacks in the face of several arbitrary memory write constraints.
A substantial difference compared to Newton is that LLVM-CFI uses
program source code, which captures more precise information
about the caller-callee pair than binary analysis based approaches.

StackDefiler [10] presents a set of stack corruption attacks that
leverage runtime object allocation information in order to bypass
fine-grained CFI defenses. Based on the fact that Indirect Function-
Call Checks (IFCC) [49] (also valid for VTV) spill critical pointers
onto the stack, the authors show how CRAs can be built even in
presence of a fine-grained CFI defense. Compared to LLVM-CFI,
which is based on control flow bending to legitimate targets, Stack-
Defiler shows an alternative approach for crafting CRAs. More
specifically, the authors show that information disclosure poses
a severe threat and that shadow stacks which are not protected
through memory isolation are an easy target for a skilled attacker.

ACICS [14] gadgets are detected during runtime by the ADT
tool, in a similar way as Newton detects gadgets. Note that the
ACICS gadgets are more constrained then those of Newton. For
example, only attacks where the function pointer and arguments
are corruptible on the heap or in global memory are taken into
consideration. Similar to LLVM-CFI, the ADT tool is able to craft
an attack in the face of IFCC’s CFI defense policy by finding pairs
of indirect callsites that match to certain functions which can be
corrupted during runtime. In contrast, LLVM-CFI, is not program
input dependent as it is not a runtime tool. Therefore, it can find
all corruptible indirect callsite and function pairs under a certain
modeled CFI policy.

Revery [53] crafts attacks by analyzing a vulnerable program
and by collecting runtime information on the crashing path as for
example taint attributes of variables. Revery fails in some cases
to generate an attack due to complicated defense mechanisms of
which the tool is not aware. Lastly, in some cases, Revery cannot
generate exploits due to dynamic decisions which have to be made
during exploitation.

7 CONCLUSION

We have presented LLVM-CFI, a control-flow integrity (CFI) defense
analysis framework that allows an analyst to thoroughly compare
conceptual and deployed CFI defenses against each other. LLVM-CFI
paves the way towards automated control-flow hijacking attack
construction. We implemented LLVM-CFI, atop of the Clang/LLVM
compiler framework which offers the possibility to precisely ana-
lyze real-world programs during compile time. We have released
the source code of LLVM-CFI. By using LLVM-CFI, an analyst can
drastically cut down the time needed to search for gadgets which
are compatible with state-of-the-art CFI defenses contained inmany
real-world programs. Our experimental results indicate that most
of the CFI defenses are too permissive. Further, if an attacker does
not only rely on the program binary when searching for gadgets

12



and has a tool such as LLVM-CFI at hand to analyze the vulnerable
application, then many CFI defenses can easily be bypassed.

ACKNOWLEDGMENTS

We are grateful to Elias Athanasopoulos, our shepherd, who pro-
vided highly valuable comments that significantly improved our pa-
per. Further, we also would like to thank the anonymous reviewers
for their constructive feedback. Zhiqiang Lin is partially supported
by US NSF grant CNS-1834215 and ONR award N00014-17-1-2995.
Gang Tan is partially supported by US NSF grant CNS-1801534 and
ONR award N00014-17-1-2539.

REFERENCES

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. 2005. Control Flow Integrity. In
Proceedings of the Conference on Computer and Communications Security (CCS).

[2] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. 2009. Control Flow Integrity
Principles, Implementations, and Applications. In Transactions on Information
and System Security (TISSEC).

[3] M. Backes and S. Nuerenberger. 2014. Oxymoron: Making Fine-Grained Memory
Randomization Practical by Allowing Code Sharing. In Proceedings of the USENIX
Security Symposium (USENIX Security).

[4] BlueLotus. 2015. BlueLotus Team, bctf challenge: Bypass vtable read-only
checks. https://github.com/ctfs/write-ups-2015/tree/master/bctf-2015/exploit/
zhongguancun.

[5] D. Bounov, R. G. Kici, and S. Lerner. 2016. Protecting C++ Dynamic Dispatch
Through VTable Interleaving. In Proceedings of the Symposium on Network and
Distributed System Security (NDSS).

[6] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and M. Payer.
2017. Control-Flow Integrity: Precision, Security, and Performance. In CSUR.

[7] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T.-R. Gross. 2015. Control-Flow
Bending: On the Effectiveness of Control-Flow Integrity. In Proceedings of the
USENIX Security Symposium (USENIX Security).

[8] N. Carlini and D. Wagner. 2014. ROP is Still Dangerous: Breaking Modern
Defenses. In Proceedings of the USENIX Security Symposium (USENIX Security).

[9] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng. 2014. ROPecker: A Generic
and Practical Approach For Defending Against ROP Attacks. In Proceedings of
the Symposium on Network and Distributed System Security (NDSS).

[10] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen, M. Negro, M.
Qunaibit, and A.-R. Sadeghi. 2015. Losing Control: On the Effectiveness of
Control-Flow Integrity under Stack Attacks. In Proceedings of the Conference on
Computer and Communications Security (CCS).

[11] S. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi, A.-R. Sadeghi,
T. Holz, B. De Sutter, and M. Franz. 2015. It’s a TRaP: Table Randomization and
Protection against Function-Reuse Attacks. In Proceedings of the Conference on
Computer and Communications Security (CCS).

[12] L. Davi, A.-R. Sadeghi, and M. Winandy. 2011. ROPdefender: A Detection Tool
to Defend Against Return-Oriented Programming Attacks. In Proceedings of the
Asia Conference on Computer and Communications Security (AsiaCCS).

[13] M. Elsabagh, D. Fleck, and A. Stavrou. 2017. Strict Virtual Call Integrity Check-
ing for C ++ Binaries. In Proceedings of the Asia Conference on Computer and
Communications Security (AsiaCCS).

[14] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi, and S.
Sidiroglou-Douskosr. 2015. Control Jujutsu: On the Weaknesses of Fine-Grained
Control Flow Integrity. In Proceedings of the Conference on Computer and Com-
munications Security (CCS).

[15] Apache Foundation. 2019. Apache Traffic Server. http://trafficserver.apache.org/.
[16] X. Ge, N. Talele, M. Payer, and T. Jaeger. 2016. Fine-Grained Control-Flow Integrity

for Kernel Software. In Proceedings of the European Symposium on Security and
Privacy (Euro S&P).

[17] Google. 2019. Google Chromium. https://www.chromium.org/.
[18] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin. 2017. PT-CFI: Transparent Backward-Edge

Control Flow Violation Detection Using Intel Processor Trace. In Proceedings
of the 7th ACM Conference on Data and Application Security and Privacy. ACM,
Scottsdale, Arizona, USA.

[19] E. Göktas, E. Athanasopoulos, and H. Bos. 2014. Out Of Control: Overcoming
Control-Flow Integrity. In Proceedings of the Symposium on Security and Privacy
(S&P).

[20] I. Haller, E. Göktas, E. Athanasopoulos, G. Portokalidis, and H Bos. 2015.
ShrinkWrap: VTable Protection without Loose Ends. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC).

[21] Httpd. 2019. Httpd. https://httpd.apache.org/docs/2.4/programs/httpd.html.
[22] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer. 2018. Block Oriented

Programming: Automating Data-Only Attacks. In Proceedings of the Conference
on Computer and Communications Security (CCS).

[23] S. Krahmer. 2005. x86-64 buffer overflow exploits and the borrowed code chunks
exploitation technique. https://users.suse.com/~krahmer/no-nx.pdf.

[24] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. 2014.
Code-Pointer Integrity. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI).

[25] B. Lan, Y. Li, H. Sun, C. Su, Y. Liu, and Q. Zeng. 2015. Loop-Oriented Programming:
A New Code Reuse Attack to Bypass Modern Defenses. In Proceedings of IEEE
Trustcom/BigDataSE/ISPA.

[26] J. Lettner, B. Kollenda, A. Homescu, P. Larsen, F. Schuster, L. Davi, A.-R. Sadeghi,
T. Holz, and M. Franz. 2016. Subversive-C: Abusing and Protecting Dynamic
Message Dispatch. In Proceedings of the USENIX Annual Technical Conference
(USENIX ATC).

[27] Lighthttpd. 2019. Lighthttpd. https://www.lighttpd.net/.
[28] LLVM. 2017. The LLVM Compiler Infrastructure. https://llvm.org/.
[29] LLVM. 2018. Clang/LLVM compiler framework. https://clang.llvm.org/.
[30] Memcached. 2019. Memcached. https://memcached.org/.
[31] P. Muntean, M. Fischer, G. Tan, Z. Lin, J. Grossklags, and C. Eckert. 2018. CFI:

Type-Assisted Control Flow Integrity for x86-64 Binaries. In Proceedings of the
Symposium on Research in Attacks, Intrusions, and Defenses (RAID).

[32] P. Muntean, S. Wuerl, J. Grossklags, and C. Eckert. 2018. CastSan: Efficient De-
tection of Polymorphic C++ Object Type Confusions with LLVM. In Proceedings
of the European Symposium on Research in Computer Security (ESORICS).

[33] Nginx. 2019. Nginx. https://nginx.org/en/.
[34] B. Niu and G. Tan. 2014. Modular Control-Flow Integrity. In Proceedings of the

Conference on Programming Language Design and Implementation (PLDI).
[35] B. Niu and G. Tan. 2015. Per-Input Control-Flow Integrity. In Proceedings of the

Conference on Computer and Communications Security (CCS).
[36] NodeJS. 2019. NodeJS. https://nodejs.org/en/.
[37] A. Pawlowski, M. Contag, V. van der Veen, C. Ouwehand, T. Holz, H. Bos, E.

Athanasopoulos, and C. Giuffrida. 2017. MARX: Uncovering Class Hierarchies
in C++ Programs. In Proceedings of the Symposium on Network and Distributed
System Security (NDSS).

[38] A. Prakash, X. Hu, andH. Yin. 2015. vfGuard: Strict Protection for Virtual Function
Calls in COTS C++ Binaries. In Proceedings of the Symposium on Network and
Distributed System Security (NDSS).

[39] A. Pslyak. 1997. Return-into-libc overflow exploit. https://seclists.org/bugtraq
/1997/Aug/63.

[40] G. Ramalingam. 1994. The Undecidability of Aliasing. In Transactions on Pro-
gramming Languages and Systems (TOPLAS).

[41] Redis. 2019. Redis. https://redis.io/.
[42] J. Rossie Jr. and D. Friedman. 1995. An Algebraic Semantics of Subobjects. In

Proceedings of the Annual Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA).

[43] J. Salwan. 2011. ROPgadget - Gadgets Finder and Auto-roper. http://shell-storm
.org/project/ROPgadget/.

[44] S. Schirra. 2017. Ropper. https://github.com/sashs/Ropper.
[45] S. Schirra. 2018. Valgrind Home. http://valgrind.org/.
[46] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz. 2015.

Counterfeit Object-oriented Programming: On the Difficulty of Preventing Code
Reuse Attacks in C++ Applications. In Proceedings of the Symposium on Security
and Privacy (S&P).

[47] F. Schuster, T. Tendyck, J. Pewny, A. Maaß, M. Steegmanns, M. Contag, and
T. Holz. 2014. Evaluating the Effectiveness of Current Anti-ROP Defenses. In
Proceedings of the Symposium on Research in Attacks, Intrusions, and Defenses
(RAID).

[48] H. Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-into-Libc
without Function Calls (On the x86). In Proceedings of the Conference on Computer
and Communications Security (CCS).

[49] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson, L. Lozano,
and G. Pike. 2014. Enforcing Forward-Edge Control-Flow Integrity in GCC and
LLVM. In Proceedings of the USENIX Security Symposium (USENIX Security).

[50] F. Tip, J.-D. Choi, J. Field, and G. Ramalingam. 1996. Slicing Class Hierarchies in
C++. In Proceedings of the Annual Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA).

[51] V. van der Veen, D. Andriesse, M. Stamatogiannakis, X. Chen, H. Bos, and C.
Giuffrida. 2017. The Dynamics of Innocent Flesh on the Bone: Code Reuse Ten
Years Later. In Proceedings of the Conference on Computer and Communications
Security (CCS).

[52] V. van der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen, S. Rawat, H. Bos,
T. Holz, E. Athanasopoulos, and C. Giuffrida. 2016. A Tough Call: Mitigating Ad-
vanced Code-Reuse Attacks at the Binary Level. In Proceedings of the Symposium
on Security and Privacy (S&P).

[53] Y. Wang, C. Zhang, X. Xiang, Z. Zhao, W. Li, X. Gong, B. Liu, K. Chen, and W.
Zou. 2018. Revery: From Proof-of-Concept to Exploitable. In Proceedings of the
Conference on Computer and Communications Security (CCS).

[54] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake, X. Yuan, P. Colp, M.
Zheng, V. P. Kemerlis, J. Yang, and W. Aiello. 2016. Shuffler: Fast and Deployable
Continous Code Re-Randomization. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI).

[55] P. Wollgast, R. Gawlik, B. Garmany, B. Kollenda, and T. Holz. 2016. Automated
Multi-architectural Discovery of CFI-Resistant Code Gadgets. In Proceedings of
the European Symposium on Research in Computer Security (ESORICS).

13

https://github.com/ctfs/write-ups-2015/tree/master/bctf-2015/exploit/zhongguancun
https://github.com/ctfs/write-ups-2015/tree/master/bctf-2015/exploit/zhongguancun
http://trafficserver.apache.org/
https://www.chromium.org/
https://httpd.apache.org/docs/2.4/programs/httpd.html
https://users.suse.com/~krahmer/no-nx.pdf
https://www.lighttpd.net/
https://llvm.org/
https://clang.llvm.org/
https://memcached.org/
https://nginx.org/en/
https://nodejs.org/en/
https://seclists.org/bugtraq/1997/Aug/63
https://seclists.org/bugtraq/1997/Aug/63
https://redis.io/
http://shell-storm.org/project/ROPgadget/
http://shell-storm.org/project/ROPgadget/
https://github.com/sashs/Ropper
http://valgrind.org/


[56] X. Xu, M. Ghaffarinia, W. Wang, K. Hamlen, and Z. Lin. 2019. CONFIRM: Eval-
uating Compatibility and Relevance of Control-flow Integrity Protections for
Modern Software. In 28th USENIX Security Symposium (USENIX Security 19).
Santa Clara, CA, 1805–1821.

[57] C. Zhang, S. A. Carr, T. Li, Y. Ding, C. Song, M. Payer, and D. Song. 2016. vTrust:
Regaining Trust on Virtual Calls. In Proceedings of the Symposium on Network

and Distributed System Security (NDSS).
[58] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song. 2015. vTint: Protecting

Virtual Function TablesÍntegrity. In Proceedings of the Symposium on Network
and Distributed System Security (NDSS).

[59] M. Zhang and R. Sekar. 2013. Control Flow Integrity for COTS Binaries. In
Proceedings of the USENIX Security Symposium (USENIX Security).

14


	Abstract
	1 Introduction
	2 Background
	3 Design
	3.1 Overview
	3.2 Analysis Primitives
	3.3 Constraints
	3.4 Describing CFI Defenses

	4 Implementation
	4.1 Data Collection and Aggregation
	4.2 CFI Defense Modeling
	4.3 CFI Defense Analysis
	4.4 Implementation Details

	5 Evaluation
	5.1 LLVM-CFI Supported Metrics
	5.2 NodeJS Use Case
	5.3 CFI Defenses Scores
	5.4 Ranking of CFI Policies
	5.5 General Results
	5.6 Towards Automated CRA Construction

	6 Related Work
	6.1 Defense Assessment Metrics
	6.2 Static Gadget Discovery
	6.3 Dynamic Attack Construction

	7 Conclusion
	References

