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In a networked system, the risk of security compromises depends not only on each node’s security, but
also on the topological structure formed by the connected individuals, businesses, and computer systems.
Research in network security has been exploring this phenomenon for a long time, with a variety of modeling
frameworks predicting how many nodes we should expect to lose, on average, for a given network topology,
after certain types of incidents. Meanwhile the pricing of insurance contracts for risks related to information
technology (better known as cyber-insurance) requires determining additional information, for example, the
maximum number of nodes we should expect to lose within a 99.5% confidence interval. Previous modeling
research in network security has not addressed these types of questions, while research on cyber-insurance
pricing for networked systems has not taken into account the network’s topology. Our goal is to bridge that
gap, by providing a mathematical basis for the assessment of systematic risk in networked systems.

We define a loss-number distribution to be a probability distribution on the total number of compromised
nodes within a network following the occurrence of a given incident; and we provide a number of modeling
results that aim to be useful for cyber-insurers in this context. We prove NP-hardness for the general case of
computing the loss-number distribution for an arbitrary network topology, but obtain simplified computable
formulas for the special cases of star topologies, ER-random topologies, and uniform topologies. We also
provide a simulation algorithm that approximates the loss-number distribution for an arbitrary network
topology and that appears to converge efficiently for many common classes of topologies.

Scale-free network topologies have a degree distribution that follows a power law, and are commonly
found in real-world networks. We provide an example of a scale-free network in which a cyber-insurance
pricing mechanism that relies naively on incidence reporting data will fail to accurately predict the true
risk level of the entire system. We offer an alternative mechanism that yields an accurate forecast by taking
into account the network topology, thus highlighting the lack/importance of topological data in security
incident reporting. Our results constitute important steps towards the understanding of systematic risk,
and help to contribute to the emergence of a viable cyber-insurance market.
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1. INTRODUCTION

Computer systems, businesses, and individuals often form networks. Computers, for
example, are connected by physical and logical links; businesses provide services to
one another; and individuals make friends and acquaintances encompassing various
implicit levels of trust.
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While these networks can be very beneficial, they can also increase risks, as attack-
ers are often able to exploit the access and trust relationships that network connections
entail. For example, in 2011, RSA, a major security company, was compromised; and
information on about 40 million SecurelD tokens were stolen. This successful com-
promise was later used to attack Lockheed Martin, one of the world’s largest defense
contractors [Drew 2011]. As another example, hackers calling themselves the Syrian
Electronic Army sent e-mails to Financial Times employees containing phishing links,
which were used to gain access to FT.com corporate e-mail accounts. These accounts
were then used to propagate the social engineering attack to a larger number of FT.com
users, eventually compromising the organization’s website and Twitter account [Betts
2013]. More recently, the perpetrators of the Energetic Bear cyber-espionage campaign
exploited interdependence between energy companies and industrial control system
(ICS) manufacturers [Symantec 2014]. In order to penetrate highly-secure targets,
such as energy grid and petroleum pipeline operators in the U.S., Germany, and other
countries, the attackers compromised ICS manufacturers. Then, they inserted mal-
ware into software updates distributed by these manufacturers, which were down-
loaded and applied by the targets, leading to their compromise.

These examples serve to illustrate that implicit trust from network connections can
be used to compromise trusting neighbors through attacks on their peers. From the
attacker’s perspective, the network structure gives rise to what we might term sys-
tematic opportunity, because the opportunity for an attacker to strike a large payoff is
a consequence of the system itself. Correspondingly, the users of such systems become
subject to systematic risks, arising from the structure of their connections.

These systematic artifacts can have consequential effects on the motivations of users
of such systems, as they recognize that their security is dependent on the investments
of their peers. The resulting environment gives rise to well-documented problems such
as under-investment or free-riding [Laszka et al. 2014a], and it may also motivate
users to consider alternative risk-mitigation strategies such as purchasing insurance.

Insurance is a promising remedy to many risk-related problems because it facilitates
risk diversification; however, structural consequences of networked systems can also
affect insurers. Traditionally, insurance is based on the diversifiability of risks: if an
insurance provider has enough clients, the variabilities from individual risks cancel,
and the aggregate risk is predictable. But if individual risks are correlated, then even
for a large number of clients, there may be a non-negligible probability of a catastrophic
event in which many clients are compromised at the same time.

This risk of catastrophe is a consequence of the network structure formed by the
connected individuals, businesses and computer systems; and this causal relationship
warrants our attention. However, to the best of our knowledge, the effects of a net-
work’s connective structure on risk-mitigation concerns that would be relevant to a
cyber-insurance provider have not been researched. For example, Lelarge and Bolot
model interdependent security with insurance, but assume that there is an insurance
provider with an exogenously priced premium [Lelarge and Bolot 2009],! thus sidestep-
ping the question of whether an insurance provider would be willing to offer such
a contract. Many elements for understanding the relationship between a network’s
structure and the resulting risk to its components can be found in related work ad-
dressing cyber-insurance, models of interdependent security, or properties of scale-free
networks. But a persistent research gap remains.

Contributions: In this paper, we provide a mathematical basis for studying the
distribution of the number of compromised nodes from within a set of interconnected
nodes, after individual risk propagates through a network structure following a secu-

IThis means that the price is a parameter of the model that is not chosen by any of the players.
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rity event. We illustrate and explain why network-wide risk-mitigation solutions, such
as cyber-insurance, must consider the variability of the number of compromised nodes;
and that in contrast to its expected value, the variability of the number of compro-
mised nodes cannot be naively estimated from sampling a small part of the network.
This failure is especially interesting from a practical point of view, as many real-world
business and social networks are resilient against comprehensive data collection, so
that the only viable prediction mechanism for determining the risk portfolio of these
networks relies on extrapolation from smaller samples.
This article extends our previous papers [Laszka et al. 2014b; Johnson et al. 2014b;
Johnson et al. 2014a] with the following new contributions:
(1) We introduce and study a multiple-hop variant of our propagation model.
(2) We provide a new proof for the NP-hardness of computing the loss-number distri-
butions, which—in contrast to the previous proof—covers the multiple-hop model.
(3) Finally, we provide a new example involving the multi-hop model applied to scale-
free network topologies to illustrate the biased nature of random samples.
Organization: The rest of the paper is organized as follows. In Section 2, we discuss
related work from the areas of risk mitigation, interdependent security, and network
structures. Section 3 introduces our network risk propagation models, which are de-
rived from existing models from the literature on interdependent security games. In
Section 4, we address the computational complexity of computing the distribution of
the number of compromised nodes for these models. Section 5 addresses the question
of systematic risk for scale-free networks. Finally, Section 6 concludes the paper. Ad-
ditional illustrations may be found in Appendix A. Additional proofs may be found in
Appendix B.

2. RELATED WORK

First, we present current challenges in risk mitigation with a focus on risk-transfer
mechanisms and specifically cyber-insurance. Then, we summarize previous work on
interdependent security models, which model how risk is propagated between con-
nected nodes, the main concern of our study. Finally, we discuss scale-free networks,
which realistically model many real-world networks and which form the basis of our
simulation-based analysis.

2.1. Cyber-Insurance

Markets for risk-transfer mechanisms, such as cyber-insurance, suffer from the diffi-
culty to correctly assess systematic risk in networks. A functioning market for cyber-
insurance and a good understanding of the insurability of networked resources are
both important because they signal that stakeholders are able to manage modern
threats as succinctly stated in Anderson’s principle that “[a] trusted component or sys-
tem is one which you can insure [Anderson 1994; B6hme 2010].” However, the cyber-
insurance market is developing at a slow pace due to a number of factors and is still
not fully understood from an economic modeling perspective. (See, in particular, the
survey by Bohme and Schwartz [Bohme and Schwartz 2010]).

A primary difficulty for insurance providers is risk correlation. A group of defend-
ers might appear as a particularly appealing target to an attacker because of a high
correlation in their risk profiles. For example, even though individual computer sys-
tems may be independently owned and administrated, they may exhibit highly homo-
geneous software configurations which in turn can be vulnerable to the same attack
vector [Birman and Schneider 2009; Geer et al. 2003]. Bchme and Kataria as well as
Chen et al. study the impact of correlations that are due to such so-called monoculture
risks [Bohme and Kataria 2006; Chen et al. 2011].
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Our research is complementary to the studies cited above: they investigate (the effect
of) correlations arising from nodes having the same software configurations, while we
study how correlations arise from nodes being connected to each other.

2.2. Scale-Free Networks

Many real-world networks are believed to be scale-free, including social, financial, and
biological networks [Barabasi 2009]. A scale-free network is one whose degree dis-
tribution approximates a power law distribution. That is, the fraction of nodes in the
network having degree k approximates k=" for large k. Here +y is a constant parameter.

Recent interest in scale-free networks started with [Barabasi and Albert 1999], in
which the Barabasi-Albert (BA) model is introduced for generating random scale-free
networks. The BA model is based on two concepts: network growth and preferential
node attachment. We discuss this model in detail in Section 5. Li et al. introduce a
new, mathematically more precise, and structural definition of scale-free graphs [Li
et al. 2005], which promises to offer a more rigorous and quantitative alternative. The
networks discussed in our paper satisfy this definition as well.

One of the most important questions addressed by our paper is whether small sam-
ples can be used to predict systematic risks in scale-free networks. Stump et al. show
that the degree distributions of randomly sampled subnets of scale-free networks are
not scale-free [Stumpf et al. 2005]; thus, subnet data cannot be naively extrapolated
to every property of the entire network. However, random samples are unbiased esti-
mators of some properties (e.g., average degree). In Section 5, we investigate whether
they are unbiased estimators of systematic risk.

2.3. Interdependent Security

The notion of correlated risks can be extended to capture the underlying interdepen-
dent nature of networks. That is, the mere vulnerability of a large number of systems
to a particular attack is less significant if an attacker cannot easily execute a suffi-
ciently broad attack. One key attack method to cause wide-ranging compromises is
attack propagation, but an attacker can also directly attack multiple defenders, e.g.,
by using some form of attack automation.

Interdependence has been considered in different ways in the academic literature
[Laszka et al. 2014a]. Varian, for example, studies a security-compromise setting
where an overall prevention objective (i.e., security is a public good) depends on the
(investment-prevention) contributions of independently-owned systems [Varian 2004].
In his model, security compromises are often the result of misaligned incentives of
the independently-owned systems which manifest as coordination failures, such as
free-riding on others’ prevention investments. Grossklags et al. extend this work by
allowing independently-owned systems to do a private investment in system recovery,
and they find that it can serve as a viable investment strategy to sidestep such coor-
dination failures [Grossklags et al. 2008]. However, the availability of system recovery
will further undermine incentives for the overall prevention objective. Johnson et al.
add the availability of cyber-insurance to this modeling framework, and identify solu-
tion spaces in which these different investment approaches may be used as bundled
security strategies [Johnson et al. 2011]. However, due to the fact that those models
capture two security outcomes (i.e., everybody is compromised, or nobody is compro-
mised), they can only serve as approximate guidance for realistic insurance models.

A second group of economic models derives equilibrium outcomes for decisions by
independently-owned systems to inoculate themselves (or not) against a compromise
by a virus or other attack in a network, and thereby also to contain the propagation
of the attack. For example, the models by Aspnes et al. as well as Moscibroda et al.
would be applicable to the study of loss distributions, however, several simplifying
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assumptions in those models limit the generality of the results [Aspnes et al. 2006;
Moscibroda et al. 2006]. Those limitations include the assumption that every infected
node deterministically infects all unprotected neighbors.

A third class of propagation models that has been widely studied is the class of
epidemic models, which describe the process how a virus spreads or extinguishes in
a network. In the literature on epidemic models, the results of Kephart and White
[Kephart and White 1991] are the closest to our analysis. They study one of the
simplest of the standard epidemic models, the susceptible-infected-susceptible (SIS)
model, using various classes of networks. The SIS model captures the initial infection
process, but also allows for recovery of the nodes (and eventual reinfection of nodes
after recovery). For example, for Erd6és-Rényi random graphs [Erdés and Rényi 1959;
Erdés and Rényi 1960], they approximate both the expected value and the variance
of the number of infected nodes using formulas. For the more realistic hierarchical
network model, they show that the expected number of infected nodes does not in-
crease with the number of nodes in the graph, but that there are scenarios in which
the number of infected nodes fluctuates significantly in an irregular fashion. Kephart
and White extend their analysis also to other variations of epidemiological models in
follow-up research [Kephart and White 1993]. Pastor-Satorras and Vespignani ana-
lyze real data from computer virus infections in order to define a dynamical SIS model
for epidemic spreading in scale-free networks [Pastor-Satorras and Vespignani 2001].
Likewise, Eguiluz and Klemm study the spreading of viruses in scale-free networks
with high clustering and degree correlations (between the degree of a node and the
degrees of its neighbors) [Eguiluz and Klemm 2002]. Pastor-Satorras and Vespignani
study epidemic dynamics in finite-size scale-free networks, and show that, even for
relatively small networks, the epidemic threshold is much smaller than that of homo-
geneous systems [Pastor-Satorras and Vespignani 2002]. Wang et al. propose a general
epidemic threshold condition, which applies to arbitrary graphs, based on the largest
eigenvalue of the adjacency matrix [Wang et al. 2003; Chakrabarti et al. 2008]. In a
follow-up work, Ganesh et al. obtain the same epidemic threshold result (along with
other results) using another approach [Ganesh et al. 2005].

Finally, a popular approach to model interdependent risk is taken by Kunreuther
and Heal, and forms the basis for our formal analysis [Kunreuther and Heal 2003;
Heal and Kunreuther 2004]. The basic premise of this work is to separately consider
the impact of direct attacks and propagated attacks. We explain the details of the
model in Section 3. The model has been generalized to consider distributions of at-
tack probabilities [Johnson et al. 2010] and a strategic attacker [Chan et al. 2012].
Similarly, Ogut et al. proposed a related model that allows for continuous (rather than
binary) security investments [Ogut et al. 2005]. Lelarge and Bolot study another exten-
sion of the model, which is more similar to our multiple-hop model [Lelarge and Bolot
2008a; Lelarge and Bolot 2008b]. In a follow-up work, they investigate the supply-side
of insurance [Lelarge 2009]; however, they do not consider the correlation of risks. Our
analysis setup draws from these extensions by implicitly considering a continuum of
risk parameters to study the distribution of outcomes.

3. MODEL OVERVIEW

Our modeling framework builds on the interdependent security game introduced by
Kunreuther and Heal [Kunreuther and Heal 2003; Heal and Kunreuther 2004]. This
model has been studied and extended by many authors (e.g., [Chan et al. 2012; Dhall
et al. 2009; Johnson et al. 2010; Kearns and Ortiz 2004]), with a common focus on
understanding how individuals in a networked system make security investment de-
cisions in response to potential threats, along with how these decisions affect other
individuals in the network.
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Although we use the risk propagation structure of this model, our focus is different
from prior work. We concentrate exclusively on properties of the network’s loss dis-
tribution, and study how this distribution is shaped by the direct risk probabilities of
individual nodes as well as by the risk propagation probabilities between neighbors.

More specifically, we focus most of our attention on the number of compromised
nodes in an outcome of the model, with special attention given to the probability distri-
bution over this number. We refer to this distribution as the loss-number distribution.

For a list of symbols used in this paper, see Table I in Appendix A.

3.1. One-Hop Network Risk Propagation Model

We begin with introducing the original risk propagation model proposed by Kun-
reuther and Heal, to which we will refer as the one-hop model. At a high level, this
model describes risk effects of any networked system in which security breaches may
have two levels of effect. First, a security breach at a network node damages the
breached node itself. Second, the perpetrators may also use the breached node as a
“digital beachhead,” and exploit the breached node’s network connections to compro-
mise and damage its neighbors as well. This propagation structure yields a simple
mechanism for studying network risk, and it captures the core dynamics of risk trans-
fer from a node-centric perspective. Any risk to a certain node may be categorized as
either originating outside the network or originating within the network. If the risk
originates outside the network, we may categorize it in terms of the probability of a
direct security breach; while if the risk originates from within the network, from one of
its neighbors, we may quantify the magnitude of the risk derived from that connection.

Consider a network of N nodes. Each node has two types of connections: one type
which connects to other nodes in the same network, and another type which connects to
a system outside the network. For an illustration, see Figure 9 in Appendix A. Threats
originate outside the network, and subject each node to some risk of compromise. If an
outside threat successfully reaches a node, that node is compromised. This outcome is
binary so that each node is either compromised or not.

If a node is compromised, the risk may propagate within the network to that node’s
direct neighbors. In our interpretation of the model, the risk does not propagate fur-
ther than one hop, so that each node is threatened only by external threats against
itself and its immediate neighbors. While this model does not encompass all conceiv-
able multiple-hop propagation structures, it strikes a good balance between realistic
risk transfer properties and conceptual simplicity since it captures a wide range of in-
terdependent security phenomena [Laszka et al. 2014a], yet it is analytically tractable.

Risk of direct compromise threatens each node ¢ with probability p;, and for the anal-
ysis we assume that direct compromises for different nodes are independent events.
Our framework is agnostic about the origin of direct risk, although it could be moti-
vated in an active attacker model by assuming that each node has a different attacker.

If node i is directly compromised, it transfers risk to each neighboring node j with
probability ¢;;. If a node is not directly compromised, it cannot transfer risk to any
other node. Notice that we can use an N x N matrix (), whose elements are the risk
transfer probabilities ¢;;, to directly specify network topology alongside risk propaga-
tion simply by requiring ¢;; = 0 whenever node : is not connected to node j.

3.2. Multiple-Hop Network Risk Propagation Model

The propagation of compromises in the model of Kunreuther and Heal, which we in-
troduced in the previous subsection, is essentially limited to one hop: nodes that are
directly compromised can transfer risk to their immediate neighbors; however, non-
directly compromised nodes cannot transfer the risk any further. While a one-hop
model is suitable for many scenarios (e.g., when attacks are propagated manually by
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the attacker and, thus, are limited), there are many threats (e.g., computer worms)
which can be propagated over multiple hops.

In our multiple-hop propagation model, every node that becomes compromised (ei-
ther directly or non-directly) may be the origin of a non-direct compromise of its neigh-
bors. More specifically, a compromised node i has a one-time chance of compromising
each neighboring node j independently with probability ¢;;. Note that even if a node
could have become compromised due to multiple neighbors (or also due to direct com-
promise), it has only one chance to propagate the compromise through each outgoing
link. Equivalently, we could define the multiple-hop model as follows: each link (3, j) is
present in the network with probability ¢;;, and a node becomes compromised if there
is a directed path leading to it from a directly compromised node.

Other natural extensions of our one-hop model include the class of models in which
risk is allowed to be transferred exactly n times. Our current work focuses instead
on extensions allowing unlimited propagation for essentially two reasons. First, it is
much easier to find practical interpretations for models with unlimited propagation,
(e.g., viruses), than for exactly-n-hop models with n > 1. Second, the most direct n-
hop extension to our model — the one which differs only in the number of hops risk
is allowed to transfer — is equivalent to a one-hop model in which the matrix [¢;;]
of risk transfer probabilities between nodes, is replaced by its power graph [¢;;]". In
contrast, our multi-hop extension is defined in such a way that there is no obvious
direct translation to the one-hop case.

3.3. Game-Theoretic Actors

Many studies have used the one-hop model to understand interdependent security
by considering a game in which each individual can reduce the risk of her own node
by making a security investment. In this case, actors with various motivations make
choices that may decrease the node-centric risk parameters p; and ¢;; (e.g., host-based
IDS or firewalls). A variety of game-theoretic analyses, using a variety of solution con-
cepts, have been conducted — the aims of which are to inform us about the set of con-
figurations in which the model might be likely to end up after some time. Due to the
success of these analyses at determining various equilibrium configurations, we oc-
casionally find it useful to ground our thinking by considering the initial parameter
configurations of our model as equilibrium outcomes of some game played by node op-
erators. However, our work is not dependent on this interpretation, or any of its details.
In this paper, we focus exclusively on the probability distribution over the number of
compromised nodes in an outcome of the model, using the entire parameter space and
without making any additional assumptions about how the various values of parame-
ters got to where they are.

3.4. Loss Distribution

A loss outcome is an event in which some nodes are compromised and others are not.
To completely specify a loss outcome requires listing the set of compromised nodes. So
a complete distribution on loss outcomes is a probability distribution on all subsets
of nodes. This distribution is not tractable to analyze since the number of subsets of
nodes is exponential in the number of nodes. However, if we consider only the num-
ber of compromised nodes, then its distribution is tractable to analyze. Moreover, the
information obtained from studying this distribution remains highly relevant to net-
work security and insurability. Let NL be the random variable that counts the number
of compromised nodes in a loss outcome. Then, the loss-number distribution is a set of
N + 1 numbers giving Pr[NL = k] for k =0,..., N.
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4. COMPUTABILITY OF THE LOSS DISTRIBUTION
Notational Conventions

Whenever necessary for convenience throughout this paper, we adopt the following
common mathematical conventions:

0°=1, 2207 Hzl, (n):() whenever m < 0 or m > n.
m

1) 7]

4.1. General Formula for the One-Hop Model

We start by giving a general formula for the N + 1 terms of the loss distribution on NL
for the one-hop model.

LEMMA 4.1. Foreach k=0,...,N,

PrNL=K = Y [Hpi 11 (<1pi>(1H<1qﬁ>>)~H(<1p»H(lqm)].

C,D: €D {€C\D jE€D i¢C jE€D
cc{1,...,N},
DCC, |C|=k

The proof of Lemma 4.1 can be found in Appendix B.2.

Notice that the number of terms in each of the lemma’s formulas is exponential in
the number of nodes N. Consequently, the running time of a straightforward algo-
rithm computing the value of the formula is also exponential. Even for relatively small
networks, the number of terms can be considerably large; for example, the number of
150-element-subsets of the set {1,...,300} is approximately 10%%, which is greater than
the number of atoms in the observable universe. In practice, this prevents us from
using the above formula for large networks.

4.2. NP-Hardness of Computing the Loss Distribution

The question naturally arises: is this exponential running time a defect of our formula-
tion or an inherent property of the problem? Here we show that, unfortunately, the gen-
eral problem of computing the loss-number distribution is indeed NP-hard in both the
one-hop and multiple-hop models. Thus, assuming that P # NP2, no polynomial-time
algorithm can exist that computes the exact value of Pr[NL = k] for each k. However,
in the subsequent subsections, we also show that the distribution can be computed
efficiently for certain classes of networks in the one-hop model.

Our hardness proof is based on reduction from a well-known NP-complete problem,
the Minimum Set Cover problem. To perform the reduction, we first define a decision
problem that can easily be reduced to computing the distribution of NL.

Definition 4.2. Loss Probability: Given an integer N, probabilities p;, ¢;; for i, j =
1,... N, an integer k, and a real number §, does the network of N nodes having direct
compromise probabilities p; and indirect risk probabilities g;; satisfy Pr[NL > k| > §?

THEOREM 4.3. In both the one-hop and the multiple-hop models, the Set Cover
problem can be reduced to the Loss Probability problem in polynomial time.

The proof of Theorem 4.3 can be found in Appendix B.1.

2P # NP is a widely accepted conjecture; if it were not true, we would be able to solve all NP-hard problems
in polynomial time.
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4.3. Special Case Topologies in the One-Hop Model

Since the problem of computing the exact distribution is NP-hard, we have two viable
options for large networks. First, we can focus on restricted classes of networks. In
the following subsubsections, we give efficient formulas for three such classes in the
one-hop model. A second option is to use simulations to approximate the general case.
We follow this second approach in Section 4.4.

4.3.1. Homogeneous Topologies. For a homogeneous network, the topology of the net-
work is a complete graph; each node has a direct compromise probability of p, and
each edge has a propagation probability of ¢ (in both directions). Such topologies arise
in practice whenever the network is fully connected. See Figure 10a in Appendix A for
an illustration.

LEMMA 4.4. The probability of k nodes being compromised in a homogeneous net-
work is

pae =4 = (V)35 () -t (- @00
d=0

An alternative formulation derived using the binomial distribution is

Pz == () [1- - pa —pq>N-1]k Ja-pa- s

The proof of Lemma 4.4 can be found in Appendix B.3.

4.3.2. Star Topologies. A star graph is a tree with one internal node and N — 1 outer
nodes. See Figure 10b for an illustration. We let py denote the direct compromise prob-
ability of the internal node, and assume that the outer nodes have a uniform direct
compromise probability, denoted by p;. Furthermore, we assume that the probability
of propagation is uniform from the internal node to the outer nodes, denoted by g,.:,
and from the outer nodes to the internal node, denoted by g;,,.

This can model, for example, a network that consists of a single server and N — 1
clients. We can assume that each client communicates directly only with the server;
e.g., there are strict firewalls or no physical connections between the clients. Hence,
there is no propagation between the clients.

LEMMA 4.5. The probability of k nodes being compromised in the star network is

N -1\ 1/k-1
PI‘[NL = kj] :<k 7 1) Z |:( J ) popcli(l _pl)N—l—d . q(()/:;tfl)fd ) (1 . qout)N_k
d=0

()P =Y (- (- g

(D) g

The proof of Lemma 4.5 can be found in Appendix B.4.

4.3.3. E-R Random Topologies. In the Erdés-Rényi (E-R) random graph model, undi-
rected edges are set between each pair of nodes with equal probability p, independently
of other edges [Erdés and Rényi 1960].

Assume that the propagation probability of every edge is ¢. Then, the probability
that a directly compromised node i propagates the compromise to any given node j is

Pr[i and j are connected] - ¢ = pq . (1)
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Consequently, the probability of any given node i being compromised in an E-R random
graph with a propagation probability of ¢ and an edge probability of p is equal to
the probability of i being compromised in a homogeneous network with a propagation
probability of pg. Therefore, the distribution of NL is the same for a random network
with parameters p, ¢, and p and for a homogeneous network with parameters p and pq.
See Figure 10c for an illustration.

COROLLARY 4.6. The probability of k nodes being compromised in an E-R random
network is

k

Pr[NL = k] = (g)z{ (’;)pd(l —p)ND (1 (1 pq)d)k—d (- pq)d)w—k)

d=0

PRrROOF. It follows immediately from Lemma 4.4 and the structure of the E-R ran-
dom network. 0O

Notice that for each of these network topologies, the number of terms in the formula
giving the distribution on the number of losses is at most quadratic in N. Thus, we can
compute the distribution efficiently for networks with these topologies.

4.4. Simulation

4.4.1. One-Hop Model. For more general network topologies, we use simulation to ob-
tain an approximate distribution. The simulation computes an empirical distribution
by repeatedly choosing outcomes that result from a simulated attack following the
direct compromise and propagation probabilities, as follows:

— In each iteration, choose an outcome randomly in the following way:

— First, for each node i, decide whether node i is directly compromised (or not) at
random according to p;.

— Second, for each directly compromised node i, iterate over the set of its non-
compromised neighbors. For each non-compromised neighbor j, decide whether
node ¢ propagates compromise to node j (or not) at random according to g¢;;.

— Count the nodes that have been compromised and add 1 to the number of occur-
rences of this outcome.

— After a fixed number of iterations, terminate the simulation and, for each outcome,
output the number of occurrences over the number of iterations as the empirical
probability of that outcome.

The running time of the above algorithm is polynomial in the size of the network,

given a constant number of iterations. Furthermore, we have from the strong law of

large numbers that the empirical distribution function converges to the actual function
almost surely. To show that convergence is fast enough in practice, we ran simulations
for a) randomly generated scale-free networks and b) special case topologies.

First, we randomly generated scale-free networks using the Barabasi-Albert (BA)
model [Barabasi and Albert 1999], and ran the simulation with varying numbers of
iterations. In each case, the shape of the distribution settled down to a smooth form
within a few tens of thousands of iterations. Figure 1 shows a series of simulated dis-
tributions using a single network and with varying numbers of iterations. The network
was generated with parameters N = 600, mg = 15, and m = 4, and the simulations
were performed with parameters p = 0.01 and ¢ = 0.1. (See Section 5 for a brief ex-
planation of how BA graphs are generated.) As can be seen from the figure, once the
number of iterations is sufficiently high, the empirical distribution reaches a fixed
state.

Second, we ran the simulations for homogeneous and star graph networks and com-
pared the approximate distributions to the exact ones. Two of these results are pre-
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Fig. 1: Distributions obtained from simulations with various numbers of iterations.

sented in Figure 2. The homogeneous network in that figure consists of 300 nodes with
p = 0.01 and ¢ = 0.2. We ran the simulation for 50,000 iterations for this network. The
star network in the adjacent sub-figure consists of 300 nodes with p, = 0.3, p; = 0.1,
and ¢;, = gout = 0.2, and we ran this simulation for 20,000 iterations. As can be seen
from these plots, the distributions obtained from the simulations, which consisted of
only relatively small numbers of iterations, are very good approximations to the exact
distributions.
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Fig. 2: Comparison of distributions obtained using simulation (solid red) to the exact
distributions obtained from the formulas (dotted green).

Notice that these distributions have multiple local maxima, which distinguish them
substantially from the common bell shape of a normal or a binomial distribution. To ex-
plain this phenomenon in the homogeneous network, the global maximum at the very
beginning represents the event in which no nodes are directly compromised, while
each consecutive local maximum primarily contains events in which one additional
node is directly compromised. In the star network, the first maximum primarily con-
tains events in which the center node is not compromised, and the second maximum
consists primarily of events in which the center node is compromised.

4.4.2. Multiple-Hop Model. We use a similar simulation to obtain approximate distri-
butions for the multiple-hop model, by choosing outcomes randomly in the following
way:

— First, for each link (i, j), decide whether link (7, ;) is present (or not) at random
according to g;;.

— Second, for each node ¢, decide whether node i is directly compromised (or not) at
random according to p;. If node i is directly compromised, then mark all nodes that
can be reached on a directed path from node ¢ as compromised.

Note that, if we use a breadth- or depth-first search which enqueues only uncompro-

mised nodes in the second step, the running time of choosing a random outcome is

linear in the size of the network. Finally, we evaluated the rate of convergence in
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practice for the multiple-hop model in the same way as we did for the one-hop model
in Figure 1. The results we obtained from this evaluation were very similar to the
results from the one-hop model; we omit their detailed discussion here due to space
limitations.

5. SYSTEMATIC RISK IN SCALE-FREE NETWORKS

To study how systematic risk is affected by the network topology, we ran a large num-
ber of simulations on scale-free networks. The networks were generated according to
one of the most prevalent models, the Barabasi-Albert (BA) model [Barabasi and Al-
bert 1999]. The BA model is based on the concept of preferential attachment, meaning
that the more connected a node is, the more likely it is to receive new connections.

The BA model generates scale-free graphs as follows. First, a clique of m initial
nodes is constructed. Then, the remaining N — my nodes are added to the network
one by one. Each new node is randomly connected to m < mg existing nodes with
probabilities proportional to the degrees of the existing nodes.

5.1. Measuring Systematic Risk

We begin this section with two prerequisite definitions involving insurance concepts.
For a given probability » and random variable X, the quantile function Q(r) specifies
the lowest value & such that Pr[X < k] = r. For example, in the case of the loss-number
distribution arising from an instance of our model, the 99% quantile gives the maxi-
mum number of compromised nodes that an insurer can expect in an outcome of the
model 99% of the time. In a similar veign, the safety loading at probability r is the
excess premium, above and beyond an unbiased premium, that would be required to
ensure that the probability of having to pay out more in total damages than what is col-
lected in total premiums is at most r. For example, if the variability of the loss-number
distribution is high, then the probability of an unusually-large number of nodes being
compromised may be non-negligible. In that case, for the insurance market to be vi-
able, the safety loading and — hence — the premiums, have to be relatively high. See
Section 5.3 for an example, and [Bohme 2005] for a more detailed definition.

In the remainder of this subsection, we compute the mean, the variance, the 99.9%
quantile, and the safety loading requirement at probability 99.9% for the loss distribu-
tions of several scale-free networks. We compare these quantities to those of binomial
distributions with the same mean. Binomial distributions are of special interest to us
because our goal is to measure the systematic risk caused by the interdependence be-
tween the nodes. If there were no interdependence (i.e., if the nodes were not connected
by a network), then the individual node compromise events would be independent of
each other. In this case, assuming that all the direct compromise probabilities are
the same, the loss distribution would be a simple binomial distribution by definition.
Consequently, the binomial distribution is the baseline to which the actual loss distri-
butions should be compared. Note that we use binomial distributions with the same
mean for the comparison because we are interested in riskiness (i.e., the variability of
the loss) not in the expected loss.

5.1.1. One-Hop Model. Figure 3 and Table II (see Appendix C) compare binomial dis-
tributions to the actual loss distributions resulting from various direct compromise
and propagation probabilities in the one-hop model. The network consists of N = 600
nodes, and it was generated using the parameters mqg = 15 and m = 4.

Even though the shapes of the actual loss distributions are in many cases simi-
lar to those of the binomial distributions, there is always a substantial difference in
variability; for example, the variance of the actual distribution is always almost twice
as high as that of the binomial. As expected, increasing the propagation probability
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Fig. 3: Comparison of the actual loss distribution in the one-hop model (solid red) to the
binomial distribution (dotted green) for various direct compromise and propagation
probabilities, and constant network size N = 600. (Note that the slightly irregular
subfigure for p = 0.005 and ¢ = 0.5 is correctly drawn.)

increases the difference between the actual loss distribution and the binomial dis-
tribution through increasing the interdependence between the nodes of the network.
Increasing the direct node compromise probability has a less pronounced effect in the
same direction. Again, this is unsurprising, since correlations are caused by interde-
pendence, which is not affected by direct node compromise probabilities in our model.
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Fig. 4: Comparison of the actual loss distribution in the one-hop model (solid red) to the
binomial distribution (dotted green) for various sizes and constant p = 0.01, ¢ = 0.1.

Figure 4 and Table III (see Appendix C) compare binomial distributions to the actual
loss distributions for various network sizes in the one-hop model. The direct compro-
mise and propagation probabilities are p = 0.01 and ¢ = 0.1, and the networks were
generated using the same parameters mo = 15 and m = 4. As can be seen, the dif-
ference between the actual loss distribution and the binomial distribution does not
diminish as the size of the network increases (in fact, the ratio between the variances
slightly increases from 2.76 to 2.82). This observation is very important, since insur-
ance is based on the idea of diversifiability, which means that individual risks cancel
out as the number of individuals increases. Since we would see a binomial distribution
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if all risks were independent, the fact that the difference does not diminish indicates
that these risks are not diversifiable, and highlights the importance of knowing the
actual loss distribution.

| q =0.05 0.1 0.5
< O 0]
< [*e) o]
- S S)
o o o
p= Iy H
0.005
ok ° l AN ° i
0 600 0 600 0 600
~— < [Te}
o < (2]
- < . o
o g o E o
0.01 L “
ok o J
0 600 0 600
:
s| i o
0.05
o i Ak o
0 600 0 600 0 600

Fig. 5: Comparison of the actual loss distribution in the multiple-hop model (solid red)
to the binomial distribution (dotted green) for various direct compromise and propaga-
tion probabilities, and constant network size N = 600. (Observe that the probability of
zero nodes being compromised is non-zero for ¢ = 0.5 and p = 0.005 or 0.01.)

5.1.2. Multiple-Hop Model. Figure 5 and Table IV (see Appendix C) compare binomial
distributions to the actual loss distributions resulting from various direct compromise
and propagation probabilities in the multiple-hop model. The network was generated
in the same manner as for the one-hop model.

Contrary to the one-hop model, the behavior of the multiple-hop model can vary sub-
stantially with different parameter values. Before we discuss specific cases, consider
the epidemic threshold for the propagation probability, that is, the minimum probabil-
ity that is sufficient for the compromise to spread to a large portion of the network.
Since the average degree is around 2 - m = 8, the threshold propagation probabil-
ity is around % for a random graph (otherwise, each new compromise would lead to
less than one other compromise on average). However, scale-free networks have high-
degree “hub” nodes, which are very likely to get compromised due to propagation from
one of their many neighbors. Once compromised, “hubs” can propagate the compromise
to large numbers of other nodes since they have many neighbors. Hence, compromise
spreads to a large portion of the network even at lower propagation probabilities.

In the first column (¢ = 0.05) of Figure 5, we see that the propagation probability
q is so extremely low that the compromise does not spread (note that the fairly high
expected value for p = 0.05 is mostly due to direct compromises). Nonetheless, the
difference between the actual and the binomial distributions is higher than in the
one-hop model (see Table IV). Next, in the second column (¢ = 0.1), we see that the
propagation probability ¢ is around the epidemic threshold. More specifically, we see
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that not spreading (first local maxima, around zero) and spreading to a large portion
of the network (second local maxima) are both likely, unless the number of directly
compromised nodes is extremely high (p = 0.05). Finally, in the third column (¢ = 0.5),
we see that the propagation probability ¢ is so high that the compromise spreads to
the whole network almost certainly. Note that spreading is only “almost certain”, since
the chance of no direct compromises occurring can be non-negligible (see the tall thin
line at zero for p = 0.005 and the short thin line for p = 0.01).

Some of these phenomena have already been studied in the context of percolation
theory and epidemic thresholds in scale-free graphs (e.g., [Pastor-Satorras and Vespig-
nani 2001]); however, we are rather interested in their implications for risk-mitigation
and cyber-insurance. First, for lower propagation probabilities (¢ = 0.05), the results
are similar to those in the case of the one-hop model: the actual distributions are long-
tailed compared to binomial distributions, which means that interdependence causes
systematic risk. Second, for propagation probabilities around the threshold (¢ = 0.1),
the variability of the actual loss distributions is extremely high. Hence, an insurance
provider has to ask for very high premiums, which the individual nodes will find un-
fair. Finally, for higher propagation probabilities (¢ = 0.5), the difference between the
actual and the binomial distributions is relatively small (see, e.g., p = 0.05). However,
providing insurance in this case is not viable, since every node is compromised almost
certainly (no one would provide insurance for certain events).?
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Fig. 6: Comparison of the actual loss distribution in the multiple-hop model (solid red)
to the binomial distribution (dotted green) for various network sizes and constant p =
0.01, ¢ = 0.1.

Figure 6 and Table V (see Appendix C) compare binomial distributions to the actual
loss distributions in the multiple-hop model for various network sizes. Again, the net-
works were generated in the same manner as for the one-hop model, and the same
parameters were used. As can be seen, the difference between the actual loss distribu-
tion and the binomial distribution is substantial (e.g., the variance of the actual loss
distribution is an order of magnitude higher), which again shows high systematic risk.

5.2. Sampling Scale-Free Graphs

In the previous subsection, we illustrated the extent to which systematic risk is present
in scale-free networks. In this subsection, to study whether this systematic risk can
be estimated from smaller samples (e.g., using incident reports from a subset of the
nodes), we investigate the loss distributions of random samples of scale-free networks.
The network from which the samples are drawn is a scale-free network with parame-
ters N = 600, mo = 15, and m = 4, and with probabilities p = 0.05 and ¢ = 0.1.

3More specifically, if an insurer did provide insurance, then the premiums would have to be almost as high
as the potential loss values, so that honest individuals would not purchase it.
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Sample size

60 | 120 | 240

Fig. 7: Loss distributions of randomly drawn samples in the one-hop model (solid red)
compared to binomial distributions (dotted green). For each size, three randomly cho-
sen samples are used for the comparison. Parameters are N = 600, p = 0.05, ¢ = 0.1.

5.2.1. One-Hop Model. Figure 7 and Table VI (see Appendix C) compare the actual
loss distributions of randomly drawn samples to binomial distributions in the one-hop
model. We study four different sample sizes: 30, 60, 120, and 240 nodes. For each sam-
ple size, three samples of the given size were drawn uniformly at random from the set
of all nodes. For each sample, its loss distribution was computed by running the sim-
ulation for the entire network, but counting only the compromised nodes belonging to
the sample. This models the real-world scenario where incident reports are collected
from only a sample, but the security of this sample is affected by the rest of the world
through external connections. As before, the binomial distributions to which the sam-
ples are compared have exactly the same expected loss F[NL] as the corresponding
actual sample distributions.

Figure 7 shows the three random samples for each size, together with the corre-
sponding binomial distributions, while Table VI gives a more detailed comparison in
terms of the metrics we are considering. The figure shows that the loss distributions of
the samples are almost indistinguishable from binomial distributions for sample sizes
of 30 and 60 nodes. Consequently, by observing only a sample of the entire network, one
might arrive at the wrong conclusion that individual node compromises are indepen-
dent events. As the sizes of the samples increase, the loss distributions become more
distinguishable from the binomial distribution, eventually approaching the distribu-
tion of losses for the full network. This phenomenon can be explained by considering
the probability of two nodes sharing a neighbor, which could cause correlation between
them, or two nodes being connected. In smaller samples, this probability is negligible,
which means that individual risks are almost always independent; hence, the loss fol-
lows a binomial distribution.

5.2.2. Multiple-Hop Model. Figure 8 and Table VII (see Appendix C) compare the ac-
tual loss distributions of randomly drawn samples to binomial distributions in the
multiple-hop model. The samples were drawn and their distributions were computed
in the same way as for the one-hop model. Similarly to the one-hop model, we see that
for smaller sample sizes, the actual loss distributions can be almost indistinguishable
from binomial distributions. Again, this means that by observing only a smaller sam-
ple, one can easily underestimate the systematic risk of the complete network.
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Sample size
30 \ 60 \ 120 \ 240

Fig. 8: Loss distributions of randomly drawn samples in the multiple-hop model (solid
red) compared to binomial distributions (dotted green). For each size, three randomly
chosen samples are used for the comparison. Parameters are N = 600, p = 0.05, ¢ = 0.1.

5.3. Application to Cyber-Insurance

As a motivating example, consider an insurer who provides insurance coverage to in-
dividuals forming a network with parameters N = 600, p = 0.01, and ¢ = 0.1, against
threats which can be modeled using the one-hop model. Suppose that the insurer uses
a smaller sample of incident reports to estimate the risk associated with these in-
surance policies. Since even small samples are unbiased estimators of the average
probability that a given node is compromised?, it can correctly estimate the average
risk as E[NL]/N = 1.80% based on the individual incident reports. In order to keep
its probability of ruin (i.e., the probability that the loss exceeds the premiums) be-
low a given level 0.001, the insurer wants to compute the necessary amount of pre-
miums to be collected as Q(NL,0.999). In other words, it wants to compute the safety
loading Q(NL,0.999) — E[NL] using the quantile premium principle. Since the insurer
observes that risks are very close to independent (i.e., there is no systemic risk), it es-
timates the necessary safety loading based on a binomial distribution [Béhme 2005],
which gives a value of 11.2. However, its safety loading should be in fact 24.2 (see Ta-
ble II). This mistake has rather harsh consequences for the insurance provider: the
probability that the total loss exceeds the erroneously calculated insurance premium
is Pr[NL > E[NL] + 11.2] = 3.1%. In other words, the probability of ruin for the miscal-
culated premiums is 3.1% instead of the anticipated 0.1%.

6. CONCLUSIONS

Cybersecurity is not exclusively a technological problem. A 2012 article by prominent
computer scientists in the Proceedings of the IEEE titled “Privacy and Cybersecurity:
The Next 100 Years” summarized that our ability to manage security partly remains
haphazard since we are still lacking methods to appropriately assess either the cost
or value of security [Landwehr et al. 2012]. With more emphasis, leading cybercrime
researchers and security economists added that we remain “extremely inefficient at
fighting cybercrime” [Anderson et al. 2013].

From an economic perspective, there are at least two high-level challenges to ad-
dress this troubling status quo. On the one hand, we have to address the shortage of

4Table VI shows that the ratio % is independent of the sample size, which means that even small

samples are unbiased estimators of average risk. Note that, since Table VI is based on different parameter
values, the ratio is approximately 8.7% there.
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reliable data about security investments and incidents. On the other hand, we need
to overcome the dearth of appropriate models to understand cybersecurity. A partic-
ularly important task identified by a committee of cybersecurity experts is to adjust
existing risk management approaches so that they address the specific characteris-
tics of cyber-risk [Chong et al. 2009]. The objective is not to find the silver bullet to
eliminate all cybersecurity incidents, which would be unrealistic given the existing
constraints and complexities. However, progress is needed so that eventually “crime
does not pay” [Chong et al. 2009].

Unfortunately, up to this point, many specific risk management approaches remain
underdeveloped. In particular, cyber-insurance, which has been identified as one of
the most promising approaches for incentivizing the adoption of security best prac-
tices and efficient levels of investment in cybersecurity, is suffering from a lack of good
methods for reliable risk pricing [Chong et al. 2009]. However, this is needed for the
calculation of insurance premiums, internal company decision-making, and appropri-
ate public policy measures.

In our work, we took several concrete steps to improve our understanding of risk
pricing in networked systems with a particular focus on systematic risk, which mea-
sures vulnerability to catastrophic cyber-incidents that damage a vast number of nodes
at the same time. Systematic risk is a consequence of the complexity of the networked
system itself. In particular, it depends jointly on the topology of the network and the
security contributions of individual nodes. In our work, we study the properties of sys-
tematic risk with a general model of one-hop and multiple-hop risk propagation in a
networked system with particular emphasis on scale-free topologies.

Our results include theoretical contributions as well as insights driven by robust
simulation analyses. We found that the distribution of the number of compromised
nodes has a number of interesting properties. For the one-hop model, it is expressible
as a simple closed formula; and it is efficiently computable for several interesting spe-
cial cases. In general, it is NP-hard to compute; and it can be efficiently approximated
using simulation for arbitrary topologies.

By applying our methodology to scale-free networks, we found that the full network
possesses systematic risks, which may require large amounts of safety capital to prop-
erly insure. Yet, we found much lower systematic risk in random samples of the same
networks. This observation yields two contrasting applications to cyber-insurance. On
the one hand, it may be possible to insure random subsamples of a network with scale-
free properties while bearing only a modest loading cost. On the other hand, an insurer
cannot readily deduce the systematic risk of a network by taking random samples.

Moving forward, our research agenda contributes to a more principled understand-
ing and management of systematic risks in networked systems. In particular, for cyber-
insurance to be viable, insurers need not only to be able to assess the security practices
of their customers, but also consider the topology of physical and social connections.
Partly, our results are encouraging; still, further progress is needed to derive more
precise figures for the occurrence of systematic risks. With our work, we move one step
forward towards the emergence of an attractive and robust cyber-insurance market.
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A. LIST OF SYMBOLS AND ILLUSTRATIONS OF THE RISK MODEL

Table I: List of Symbols

48:21

Symbol Description
N number of nodes
P probability of direct compromise (when it is uniform over the
nodes)
i probability of node i being directly compromised
q probability of compromise propagation (when it is uniform over
the links)
dij probability of compromise propagation from node i to node j
(given that node i is directly compromised)
Qin probability of compromise propagation from an outer node to the
internal node in star topologies
Gout probability of compromise propagation from the internal node to
an outer node in star topologies
NL random variable measuring the number of compromised nodes
p edge inclusion probability in ER random graph model
mo size of the initial clique in the BA random graph model
m number of connections per additional node in the BA random
graph model

q15 @ 421

2 2

Fig. 9: Network risk arrival and propagation.
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Fig. 10: Special case topologies.

B. PROOFS
B.1. Proof of Theorem 4.3
The Minimum Set Cover problem is defined as follows.
Definition B.1. Minimum Set Cover: Given a universe U, a collection F of subsets

of U, and an integer m, is there a collection C of at most m subsets in F whose union
is U?

Now, we can prove Theorem 4.3.

PROOF. Given an instance (U, F,m) of the Set Cover problem, we construct an in-

stance (N, {p;},{qi;}, k., ) of the Loss Probability problem as follows (see Figure 11 for
an illustration).

— Let N = |F|+|U]| - |F|-
— For each subset S € F, there is a network node, denoted by S, with direct compro-
mise probability pg = ﬁ

— For each element u € U, there are | 7| network nodes, denoted by u, ..., u z, with
direct compromise probabilities p,, = 0,i=1,...,|F]|.
— For each pair (u, S) from U x F with u € S, there are edges from S to each u1, ..., u r|

with risk propagation probablhties Gsu, = L, i=1,...,|F|.

— Letk=1|U| -|F|and ¢ = \FI”"'

ofo¥oJoJolt
QQXX/

Fig. 11: Illustration for the NP-hardness reduction.

This reduction can be carried out in time and space that is polynomial (more specif-
ically, quartic) in the size of the Minimum Set Cover problem instance. To see this,
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observe that the size of the proscribed Loss Probability instance is at most quartic in
the size of the Minimum Set Cover instance, since the output is dominated by the | F]|

instances of the value ﬁ, which can represented by at most log, |F| - |F|-m < |F|?

bits. Furthermore, this value can computed néively in cubic time. It remains to show
that, in both the one-hop and the multiple-hop model, Pr[NL > k] > ¢ if and only if a
set cover C of size at most m exists.

First, observe that in the proscribed network, the one-hop and the multiple-hop
models lead to the same loss distribution. To see this, recall that the only difference
between the two models is that in the former, indirectly compromised nodes cannot
propagate the compromise, while in the latter, they can. In the proscribed network,
only the nodes u;, where u € U and i = 1,...,|F|, can be indirectly compromised, since
only these nodes have incoming edges. However, since these nodes have no outgoing
edges, they can never propagate the compromise to other nodes even in the multiple-
hop model. Consequently, in the proscribed network, the two models lead to identical
loss outcome distributions.

Next, observe that in every outcome for this network, the nodes u1,...,u;r corre-
sponding to the same element u € U are either all compromised or none of them is.
Consequently, if at least £ = |U| - | F| nodes are compromised, then all nodes corre-
sponding to the elements of U are compromised, since any set of |U| - | F| nodes either
contains at least one node for each element of U or it contains all nodes corresponding
to the subsets in F'.

Now, we show that there exists a collection C of at most m subsets in 7 whose union
is U if and only if Pr[NL > k] > 4.

For the forward direction, assume that there exists a collection C of at most m subsets
in F whose union is U. Then, if every node corresponding to a subset in C is directly
compromised, all |U| - |F| = k nodes corresponding to elements in U get compromised
since they are all covered by C. Hence, we have

. . 1 \"™
Pr[NL > k] > Pr[every subset in C is directly compromised] = (U__') =9.

Conversely, assume that there does not exist an m-cover of U, so that every collection
of sets in F that covers U has size at least m + 1. Then, we have

_ some collection C C F that
Pr[NL > k] = Pr [covers U is directly compromised}

< pr |, some collection C C F having at
= least m + 1 subsets is compromised

|F| Bt 1\ 1\™
(DG GG

B.2. Proof of Lemma 4.1

PROOF. We compute the probability of the event NL = k by enumerating all events
in which & nodes are compromised and summing their probabilities.

Let us first subdivide outcomes meeting the criteria NL = k into disjoint classes
according to which nodes were compromised directly, indirectly, or neither. Let C be
the set of all compromised nodes, and let D be the set of directly compromised nodes.
Then D C C and, for outcomes in the class specified by this pair (C, D), we know that:

(1) every node in D is directly compromised, and
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(2) every node in C' \ D is not directly compromised but is indirectly compromised by
at least one of the nodes in D, and

(3) every node not in C is neither directly compromised nor indirectly compromised by
anode in D.

Denoting these events with their numbers, respectively, we have

Pr[l] = H pi

€D

P2l = [T (0 =p(1-T[00-0))
1€C\D jE€D

Pr31) = [T (0= w0 [T - ai0)) -
igC jeD

In any outcome where 1 happens, events 2 and 3 are independent, which implies
Pr[2 A 3|1] = Pr[2/1] - Pr[3]1].
The probability of an event in the class (C, D) happening is then
Pr[1 A2 A 3] =Pr[1] - Pr[2 A 3]1]
= Pr[1] - Pr[2|1] - Pr[3]1] . (2)
The probability that any event satisfying NI = k happens can now be computed

by taking the sum of Equation (2) over all pairs C,D with D C C C {1,...,N} and
ICl=k. O

B.3. Proof of Lemma 4.4
PROOF. Suppose that for each node i and j, p;, = p and ¢;; = ¢. Fix C, D with

DCCC{l,...,N},|C|=k <N and |D| = d < k. Then,
[Ip:i=0r" 3)

i€D

IT (@-p(1-TI0-a0))=(@-n0 -0 ", (4)

ieC~D jeD
and
[I(a-p [[0-a0)=(-p-0)" " (5)
i¢C JjED

From Lemma 4.1, Pr[NL = k] has the form

k
> > Pr((C, D)] , ©6)

d=0 C,D:
CC{1,.,N}, DCC, |D|=d, |C|=k

where Pr[(C, D)] is the product of Equations (3), (4) and (5).
The number of pairs (C, D) with D C C C {1,...,N}, |C| = k, and |D| = d is exactly
() - (%); and Pr[(C, D)] is uniform over all pairs (C, D) satisfying these properties. So
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we have
Pr[NL = ] :é (]Z ) (’;) Pr((C, D)]
:(]Z)Z (G)ra=meoq-a-gnt @ -g) ™

d=0

For the alternative formulation, consider that in a homogeneous network topology
with parameters p and ¢, a node is not compromised precisely when it is not directly
compromised, and it is neither infected by any of its NV — 1 neighbors. Since these N
possibilities are mutually independent, the probability that a node is not compromised
may be computed as the product (1 — p) - (1 — pg)V~!. The alternative formula in the
lemma now derives directly from the formula for a binomial distribution with param-
eters N and (1—p)-(1-pg)V~t. O

B.4. Proof of Lemma 4.5
PrOOF. We divide the set of outcomes into three possibilities. Either

(1) the center node is directly compromised, or
(2) the center node is not directly compromised, but is indirectly compromised, or
(3) the center node is neither directly nor indirectly compromised.

We address each case separately, and then add their probabilities.

(1) In the first case, we further subdivide the space according to the number d of
directly-compromised exterior nodes. Fix the total number of compromised nodes &
and the number of directly compromised nodes d. In this sub-case we know that
k — d — 1 exterior nodes were not directly but indirectly compromised, and N — k
nodes were not compromised at all. The total probability of this case happening is
the product of the probabilities that
(a) the center node is directly compromised
(b) d exterior nodes are directly compromised
(¢) k—d—1 exterior nodes are not directly compromised but are indirectly compro-

mised
(d) N — k exterior nodes are neither directly nor indirectly compromised
which gives

pOpil((l _pl)qout)k_d_l((l _pl)(l - QOut))N_k

1 k—1)—d _
= pop(1 — p)N 1 gl T (1= )N

The number of ways to choose d and k in this case is (% ) - (*,'); and the total
probability of this case is obtained by summing the probabilities over all possible
values for d, i.e.,

k—1
N -1 kE—1 L o B
(kl)z[( d )'Popf(l—m)N R R G L Sl IR ()

d=0

(2) In the second case, each of the k — 1 external compromised nodes must be directly
compromised, because the center node is not directly compromised, and only the
center node can indirectly compromise external nodes. For a fixed choice of these
k—1 compromised external nodes, the probability of this configuration is the product
of the probabilities that
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(a) the center node is not directly compromised, but is indirectly compromised
(b) k — 1 exterior nodes are directly compromised

(c) N — k exterior nodes are not directly compromised

which gives

(L—po)- (1—(1—g)* ) -ph=t (1 —p)N 7k
=pi ' 1 —po)(X —p)VTF (1= (1 —gn)")

There are (J,\f__ll) ways to choose the external compromised nodes, so the probability
of this case is

@_11)1’]51(1 “po)(1=p)™ (1= (= a) ). ®)

(3) In the third case, there are k external compromised nodes, each of which must be
directly compromised; and for a fixed choice of these & compromised external nodes,
the probability of this configuration is the product of the probabilities that
(a) the center node is neither directly nor indirectly compromised
(b) k exterior nodes are directly compromised
(¢) N — 1 — k exterior nodes are not directly compromised
which gives

(1=po) - (1= gin)* - Py - (1 = )N ~17F

=pi(L—po)(L—p)V 7% (1 = gin)*

There are (N . 1) ways to choose the external compromised nodes, so the probability
of this case is

N -1\ . 1o
( k )P'f(l—po)(l—pl)N R gin)® )
Finally, the total probability of & losses is the sum of Equations (7), (8) and (9).
k—1
N -1 k—1 d Nel-d (k—1)—d N—k
(kl)dZZOK g )-popl(l—pl) oue |+ (1= Gout)

# ()P =) Y (- (- g

()b ¥ g
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C. NUMERICAL RESULTS

Table II: Comparison of the actual loss distribution in the one-hop model to the bi-
nomial distribution for various direct compromise and propagation probabilities, and
constant network size N = 600.

Variance Quantile Safety loading
» q¢ | E[NL] Var(NL) Q(NL,0.999) | Q(NL,0.999) — E[NL]
actual binomial | actual binomial | actual binomial
0.05 4.21 7.90 4.18 17 12| 12.79 7.79
0.005 0.1 541 | 15.30 5.36 25 14 | 19.59 8.59
0.5 14.72 | 154.90 14.36 83 28 | 68.28 13.28
0.05 8.41 | 1555 8.29 25 19 | 16.59 10.59
0.01 0.1 10.78 | 29.88 10.59 35 22 | 24.22 11.22
0.5 28.77 | 281.91 27.39 107 46 | 178.23 17.23
0.05| 41.29| 68.56 38.45 70 62 | 28.71 20.71
0.05 0.1 52.00 | 121.38 47.50 91 74 | 39.00 22.00
0.5 | 123.74 | 784.98 98.22 223 155 | 99.26 31.26

Table III: Comparison of the actual loss distribution in the one-hop model to the bino-
mial distribution for various network sizes and constant p = 0.01, ¢ = 0.1.

N | E[NL] | Variance Var(NL) | Quantile Q(NL,0.999)
actual binomial actual binomial

400 7.21 19.55 7.08 27 17
600 | 10.80 29.33 10.61 34 22
800 | 14.34 39.64 14.09 41 27
1000 | 17.91 49.65 17.59 47 32

Table IV: Comparison of the actual loss distribution in the multiple-hop model to the
binomial distribution for various direct compromise and propagation probabilities, and
constant network size N = 600.

Variance Quantile Safety loading
P q | E[NL] Var(NL) Q(NL,0.999) | Q(NL,0.999) — E[NL]
actual binomial | actual binomial | actual binomial
0.05| 10.10 203.77 9.93 82 21| 71.90 10.90
0.005 0.1 83.94 | 6006.82 72.20 213 111 | 129.06 27.06
0.5 |548.10|17401.00 4741 592 568 | 43.90 19.90
0.05| 19.21 326.60 18.59 90 34| 70.79 14.79
0.01 0.1 |125.18| 4366.15 99.06 218 157 | 92.82 31.82
0.5 |578.21| 1010.09 21.00 592 591 | 13.79 12.79
0.05| 71.86 414.28 63.25 129 97| 57.14 25.14
0.05 0.1 |188.71 398.83 129.36 245 224 | 56.29 35.29
0.5 |580.80 20.59 18.59 593 593 | 12.20 12.20
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Table V: Comparison of the actual loss distribution in the multiple-hop model to the
binomial distribution for various network sizes and constant p = 0.01, ¢ = 0.1.

N | E[NL] | Variance Var(NL) | Quantile Q(NL,0.999)
actual binomial actual binomial

400 | 70.21 | 2650.25 57.88 155 95
600 | 118.89 | 4250.06 95.37 214 150
800 | 171.37 | 5271.09 134.66 272 208
1000 | 219.96 | 5738.59 171.58 327 261

Table VI: Comparison of the actual loss distribution of randomly drawn samples in
the one-hop model to the binomial distribution for various sample sizes and constant
N =600, p = 0.05, ¢ = 0.1.

Sample | F[NL] | Variance Var(NL) | Quantile Q(NL,0.999)
size actual binomial actual binomial
30 2.48 2.39 2.28 8.00 8.00

60 5.22 5.31 4.76 13.33 13.33

120 | 10.11 11.68 9.26 22.00 20.67
240 | 20.81 30.14 19.01 40.00 35.33

Table VII: Comparison of the actual loss distribution of randomly drawn samples in the
multiple-hop model to the binomial distribution for various sample sizes and constant
N =600, p =0.05, ¢ =0.1.

Sample | E[NL] | Variance Var(NL) | Quantile Q(NL,0.999)
size actual binomial actual binomial
30 8.98 6.57 6.27 17.00 17.00

60 | 19.31 15.44 13.08 31.67 31.00

120 | 36.83 35.95 25.52 55.33 52.67
240 | 74.10 98.15 51.21 103.67 96.67
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