The Rules of Engagement for
Bug Bounty Programs

Aron Laszka!, Mingyi Zhao?, Akash Malbari®, and Jens Grossklags*

! University of Houston
2 Snap Inc.
3 Pennsylvania State University
4 Technical University of Munich

Abstract. White hat hackers, also called ethical hackers, who find and
report vulnerabilities to bug bounty programs have become a signifi-
cant part of today’s security ecosystem. While the efforts of white hats
contribute to heightened levels of security at the participating organi-
zations, the white hats’ participation needs to be carefully managed to
balance risks with anticipated benefits. One way, taken by organizations,
to manage bug bounty programs is to create rules that aim to regulate
the behavior of white hats, but also bind these organizations to certain
actions (e.g., level of bounty payments). To the best of our knowledge,
no research exists that studies the content of these program rules and
their impact on the effectiveness of bug bounty programs.

We collected and analyzed the rules of 111 bounty programs on a major
bug bounty platform, HackerOne. We qualitatively study the contents
of these rules to determine a taxonomy of statements governing the ex-
pected behavior of white hats and organizations. We also report specific
examples of rules to illustrate their reach and diversity across programs.
We further engage in a quantitative analysis by pairing the findings of
the analysis of the program rules with a second dataset about the per-
formance of the same bug bounty programs, and conducting statistical
analyses to evaluate the impact of program rules on program outcomes.

1 Introduction

Opposing malicious hackers, so-called white hats or ethical hackers strive to con-
tribute to the security efforts of organizations by finding and reporting security
vulnerabilities. Various factors motivate white hats, such as monetary benefits,
increasing reputation, or job opportunities. Others aim to acquire knowledge by
identifying bugs in systems.

White hats frequently work for specific target organizations under the um-
brella of paid or unpaid bug bounty programs [9,12,25]. Further, these pro-
grams are now often facilitated by bug bounty platforms such as HackerOne,
BugCrowd, Cobalt, etc. As part of bug bounty programs, organizations allow
white hats to perform ethical hacking on their systems, to identify the loopholes
that their internal security teams could not identify (given personnel, time, ex-
pertise, and cost constraints) and which could become important targets of black

2 Aron Laszka, Mingyi Zhao, Akash Malbari, and Jens Grossklags

hats. Platforms facilitate the process by, for example, managing the payment of
bounties, serving as a point of contact for conflicts between white hats and bug
bounty programs or even law enforcement, and perhaps most importantly, acting
as a central point of attraction for white hats and organizations alike.

In this paper, we are contributing to existing work on vulnerability discovery
by conducting the first study of bug bounty programs’ rules of engagement,
which are the program rules governing the interaction between white hats and
organizations. They fulfill at least two key functions. First, they state for each
bug bounty program the expectations regarding white hats’ behaviors when they
engage in vulnerability discovery on the program’s site, and when they submit
vulnerability reports to the program. Second, they also bind organizations to
certain actions, e.g., the size of bounty payments for specific types of discovered
vulnerabilities, expected speed of resolving identified issues, etc.

A careful management of these various factors specified in the program rules
may also help to address two key problems, a high number of reports that are
later categorized as invalid [13] and a high number of duplicate findings [26]. The
annual reports from bug bounty platforms show that the resulting outcomes can
be quite inefficient (see, for example, [5, 6]).

Going beyond the direct relationship between a program and white hats, the
rules likely also shape the competitive process between the different programs on
a platform. The stated terms may contribute to attract white hat researchers,
or they may dissuade them from working for a particular program. All these
factors are so far largely unexplored.

In this paper, we collected and analyzed the program rules of 111 bounty
programs on a major bug bounty platform, HackerOne. We qualitatively study
the contents of these rules to determine a taxonomy of statements governing
the expected behavior of white hats and organizations. We also report specific
examples of rules to illustrate their reach and diversity across programs. We
further engage in a quantitative analysis by pairing the findings of the analysis
of the program rules with a second dataset about the performance of the same
bug bounty programs, and conducting statistical analyses to evaluate the impact
of program rules on program outcomes.

We will proceed as follows. In Section 2, we discuss related work. In Section 3,
we describe our dataset. In Section 4, we present qualitative results. We then pro-
vide a quantitative investigation of the program rules and program performance
including a regression analysis in Section 5. In Section 6, we discuss various as-
pects of the rules along with some suggestions for program improvements. We
offer concluding remarks in Section 7.

2 Related Work

In the academic domain, several studies have focused on the discovery of software
vulnerabilities (e.g., [4,7,17,18,21,23]), and software vulnerability markets [1—
3,19]. And, in recent years, there has also been a growing research interest in
bug bounty programs. Researchers have conducted multiple empirical analyses of
independently run bug-bounty programs. Studying the incentives and practices

The Rules of Engagement for Bug Bounty Programs 3

of organizations and white hats initiating and participating in such programs,
respectively, is crucial to understand their economic viability and impact on se-
curity. For example, Finifter et al. empirically investigated the Google Chrome
and Mozilla bug-bounty programs [9], and suggested that these programs are
more cost-effective compared to hiring full-time security researchers in terms of
finding security flaws. In an effort to better understand the human side of vulner-
ability discovery, Edmundson et al. conducted an experiment where participants
were asked to identify seven security vulnerabilities embedded in a code sample,
but no participant was able to accomplish this task alone. However, when the
researchers collected a random sample of 50% of the participants, the probability
of finding all bugs increased to 95% [8].

Researchers have also studied the dynamics of bug bounty platforms [25, 11,
15]. Zhao et al. conducted a comprehensive study of two emerging bug bounty
platforms, Wooyun and HackerOne, to understand their characteristics, trajec-
tories and impact [25]. One key finding of their work is that not only top con-
tributors are important for bug bounty platforms, but that also the long tail of
white hat researchers makes significant and diverse contributions (as a group).
In follow-up research, Maillart et al. empirically studied reward distribution and
hacker enrollments of public bounty programs on HackerOne and found that
growing rewards cannot match the increasing difficulty of vulnerability discov-
ery, and thus hackers tend to switch to newly launched programs to find bugs
more easily [15]. Our work may help to understand how programs aim to attract
(or retain) white hats by offering attractive rules of participation.

These research efforts also helped to identify hurdles which may limit the
further growth of bug-bounty platforms and programs. The data suggests that
bug-bounty platforms suffer from a high rate of submitted reports which for
a variety of reasons are considered invalid. The percentage of invalid reports
is currently significant, ranging from 35% to 55% on different platforms [14].
Programs may try to regulate the in-flow of invalid reports by adjusting the
rules and incentives to discourage certain behaviors [13]. Further, due to the
decentralized nature of vulnerability discovery, white hats may discover the same
issues and file reports which are then recorded as so-called duplicates [14]. This
problem can potentially be alleviated by designing an allocation plan for white
hats’ efforts and diversifying the workforce [26].

We are unaware of any work which has investigated the program rules for
vulnerability discovery to complement the aforementioned research efforts.

3 Dataset

Since its inception in 2012, HackerOne has continuously grown as a community
and has been attracting numerous white hats and organizations to participate in
its bounty bounty platform. By September 2017, white hats on HackerOne have
successfully contributed over 50,000 bug reports (which have been fixed), and
have been paid bounties totaling over $20 million. Participating organizations
have thanked over 4,500 hackers.

4 Aron Laszka, Mingyi Zhao, Akash Malbari, and Jens Grossklags

We collected data in January 2016. For the (then available) 112 public pro-
grams on HackerOne’s website, we downloaded the program descriptions and the
announced minimum bounty paid by the program. Of the 112 organizations, 52
register themselves with a clause of paying “no minimum bounty.” In our further
analysis, we consider 111 organizations by excluding HackerOne, which runs a
bounty program on its own platform, and consider only outside organizations
participating on HackerOne.

Of these 111 programs, we were able to download the detailed history of rule
description changes, bugs resolved, and hackers thanked for 77 programs. For
each one of these programs, we determined the date of the last major update
to the rule description before January 2016°, and we counted the number of
bugs resolved and hackers thanked in the interval between the last major rule
update and January 2016. By dividing these numbers with the length of the
time interval, we were able to determine the rate of hackers thanked and bugs
resolved for the program description that was in effect in January 2016.

In the subsequent sections, we focus on the program descriptions of the
bounty programs, which include the rules of engagement, and provide a qual-
itative analysis of their contents. We also conduct several analyses correlating
discernible features of these program rules with important metrics such as the
number of bugs resolved and hackers thanked.

We further pair the aforementioned data with an additional dataset. We
collected, following the methodology of previous research [24, 25, 15], data about
the average bounty and the age of bounty programs, and their Alexa ranks
(which is based on web traffic data). This additional data is used for a deeper
assessment of the rules’ impact in a regression analysis.

We are also aware of the limitations of this dataset. One limitation is that we
do not have data for private bug bounty programs, which are only accessible to a
selected group of (internal) researchers. In addition, other competing bug bounty
platforms, such as BugCrowd, could affect white hat behaviors on HackerOne as
well. However, our current dataset does not include these competing platforms.

4 Qualitative Study

On a high level, each line of a program description carries with it some meaning
and may provide important information to white hats who are interested in a
particular bug bounty program. On HackerOne, each organization has been given
the liberty to specify the description of the program in its own way, which on
the one hand promotes diversity, but on the other hand may complicate matters
for white hats and may affect the comprehensiveness of the information covered.
Since there is no framework for structuring rules, the necessary first step in
studying rules is to construct a general taxonomy. In this section, we aim to
provide such a taxonomy of the contents of the rules on the basis of “what they
are trying to convey” to capture a generic structure for the program description.

® We used the Python difflib implementation of the Ratcliff/Obershelp matching
algorithm [20] with parameter 0.9.

The Rules of Engagement for Bug Bounty Programs 5

To achieve this objective, the program descriptions were parsed statement by
statement and in iterations to extract information and to tabularize the different
statements contained in the rules according to the evolving taxonomy. We also
cross-verified the extracted information to check whether we followed a consistent
classification process. If a statement in the rules was found to fit in more than one
category, then it was marked accordingly. If a statement conveyed no concrete
guidance to the white hat, we categorized it under “other instructions.” Based
on this process, the rules specified by the 111 organizations could be categorized
and defined according to the following taxonomy. To save space, we list example
rule statements in Appendix A and only reference them in the main text.

4.1 In-scope areas

Statements of this type define the exact scope of the bug-bounty program. The
organizations state typically the list of system and product areas on which white
hats should work. The majority of the organizations will list their core produc-
tion websites as the target of bug bounty. Some organizations also list staging
websites, and encourage or require white hats to conduct vulnerability research
only against them (Example 1). Some organizations may also provide source
code to white hats (Example 2). In addition to web applications, there may be
other types of components, such as APIs, mobile applications, and desktop ap-
plications, which are in scope. Further, vulnerability discovery may also extend
to physical products with digital components. For example, ToyTalk allows the
search for “a security issue in our products or service” which include a doll and
a playhouse with voice capabilities.

4.2 Out-of-scope areas

Each organization can also explicitly specify all the domains and areas that they
do not wish the white hats to work on. We have identified the following reasons
for listing an area as out-of-scope. First, organizations typically exclude web
applications (e.g., blog, support, community, etc.) hosted by third-parties, as
these websites are not controlled by the organization, and/or have low risk (e.g.,
no user data) (Example 3). Second, customer websites or services are usually out
of scope as well (Example 4). Third, some organizations also exclude areas that
belong to business partners or subsidiaries (Example 5). Fourth, as discussed
above, organizations may set up staging sites, but also explicitly declare their
production site to be out of scope (Example 6).

4.3 Eligible vulnerabilities

This category provides additional detailed rules focused on the types of vul-
nerabilities which the organizations want the white hats to find. In general,
organizations encourage white hats to spend their effort on those types of vul-
nerabilities which they likely consider of particular severity to their organiza-
tions. Frequently mentioned vulnerability types across many organization are:

6 Aron Laszka, Mingyi Zhao, Akash Malbari, and Jens Grossklags

SQL Injection, Remote Code Execution, Cross-Site Request Forgery, Directory
Traversal, Cross-Site Scripting, Information Disclosure and Logical Issues.
Rules can be fairly precise and may even include additional conditions such as
the potential for financial damage. One example is from Coinbase (an exchange
for digital assets) (Example 7). However, some organizations may not rely on
specifying a set of vulnerability types. For example, Envoy’s rules state that
reports should be about “issues that are very clearly security problems.”

4.4 Non-eligible vulnerabilities

Certain types of vulnerabilities are often excluded from being rewarded with a
bug-bounty, because they have very low or no security risk from the perspective
of an organization. Frequently mentioned examples include Self-XSS, Logout
CSRF, no maximum password length, etc. Some of these issues may also be
rather easy to identify for a white hat. Listing such non-eligible vulnerabilities
in an upfront manner can reduce the cost of processing reports which may even
be declared invalid. Please note that invalid reports are very common, and a
significant challenge to bug bounty programs [13]. Denial of Service (DoS) is
another typical type of non-eligible vulnerability as some organizations already
know their general vulnerability to this type of attack, or doubt that any white
hat report would yield novel insights (Example 8).

4.5 Deepening engagement with organizations

This category includes further instructions to the white hats (going beyond the
scope and eligible vulnerabilities categories) in regards to how they can better
engage in vulnerability research for the organization. Specifying such instructions
helps the white hats to align their effort with the organization’s interest, and to
more likely find bugs which will be rewarded. For example, some organizations
ask white hats to create dedicated test accounts (Example 9). Another inter-
esting case is Square’s Capture-the-flag (CTF) challenge within its bug-bounty
program. Basically, Square hides a secret flag inside its system, and whoever finds
it can qualify for a $1,000 reward. Understanding the impact of such mechanisms
on white hat engagement is an interesting aspect for future work.

4.6 Prohibited or unwanted actions

Rules in this category list further instructions to the white hats in regards to
what they should not do (going beyond the scope restrictions and non-eligible
vulnerabilities) when they are searching for vulnerabilities for the organizations.
These instructions specify detailed bounds to the work of white hats which or-
ganizations may use to protect their business interests, while participating in
crowdsourced security research.

There are several subcategories within this rule. First, many organizations
forbid or limit the use of automated scanning, because they can lead to a large
amount of false positive reports, and may cause a significant amount of traffic
to the site (Example 10). Another subcategory rule disallows interaction with

The Rules of Engagement for Bug Bounty Programs 7

other users’ accounts, in order to reduce the risk potentially caused by vulner-
ability research (Example 11). Third, other dangerous activities, such as social
engineering (Example 12) and physical access to a data center (Example 13),
are also prohibited.

Disregarding rules in this section may disqualify the white hats from receiving
a bounty reward or participating in the program in the future. Violations could
also cause white hats to face legal actions against them or exclusion from the
entire platform.

4.7 Legal clauses

Some organizations explicitly specify details of legal issues related to bug bounty.
Statements of one subcategory promise not to bring legal actions against white
hats, if rules are followed (Example 14). Another subcategory is to remind the
white hats to comply with all relevant laws and regulations (Example 15). An-
other type of statements withhold the right to modify the rules at anytime (Ex-
ample 16). We will analyze the occurrence of legal statements in Section 5.1.

4.8 Participation restrictions

Although bug-bounty platforms are known for their openness to welcome white
hats from around the world, some organizations explicitly exclude certain types
of individuals from participating. Some organizations disallow their employees to
participate, possibly in fear of misaligned incentives (Example 17). Organizations
might also restrict participation based on white hats’ nationality (Example 18).
Some programs include explicit age restrictions (Example 19).

4.9 Submission guidelines

In this category, the organizations may describe what kind of details about
discovered vulnerabilities they wish to have included in reports submitted by
the white hats. Some organizations are very particular about report standards
and they expect reports in a specific format with sufficient details like screen-
shots, pages visited, etc. (Example 20).

4.10 Disclosure guidelines

Organizations may also state whether they allow white hats to engage in public
disclosure of the identified problems, or they may ask white hats to give them
enough time to triage and fix the issue before public disclosure. We will discuss
this aspect in Section 5.1 (Example 21). In addition, a bug bounty platform may
have specific rules that apply to all programs concerning disclosure. HackerOne,
for example, listed a process in its Vulnerability Disclosure Guidelines.”

5 HackerOne’s Privacy Policy (https://www.hackerone.com/privacy/) states as a gen-
eral policy that “we welcome minors to submit reports to HackerOne.” However,
the site is not directed at minors below 13 who would need to have their par-
ents/guardians submit vulnerability reports and to set up an account.

" HackerOne’s Vulnerability Disclosure Guidelines (https://www.hackerone.com/
disclosure-guidelines/)

8 Aron Laszka, Mingyi Zhao, Akash Malbari, and Jens Grossklags

4.11 Reward evaluation

Rules in this category specify the concrete point system or evaluation process
that the organization uses to determine whether white hats’ submissions are eli-
gible for rewards or appreciation. Some organizations list detailed reward evalu-
ation criteria for different types of vulnerabilities. For example, Twitter provides
a table in its rules statement which matches reward amounts to specific types
of vulnerabilities, areas of the site, and various other conditions. Other organi-
zations may simply specify a minimum reward (Example 22).

Another rule in this category is a “Duplicate Report Clause,” which states
whether only the first submission of a particular vulnerability is eligible for a
reward, or whether later submissions may also receive (partial) rewards (Example
23). We will analyze the occurrence of such statements in Section 5.1. Further,
organizations often state that they have the final decision authority whether a
reward will be given (Example 24).

In addition, rewards are not restricted to monetary bounties, but could also
represent other forms of appreciation, such as hacker points or swags (Exam-
ple 25). As previously stated, about 50% of the organizations do not pay any
monetary rewards.

4.12 Company statements

In our efforts to iteratively classify rules, this last category contains statements
which are more of a description rather than clear instructions or other reward-
relevant information. A key objective of this category appears to be demonstrat-
ing an organization’s willingness to improve security, and to collaborate with the
white hat community (Example 26).

5 Quantitative Analysis

In this section, we provide an exploratory quantitative analysis of our rule
dataset. Note that for measuring the rates of bugs resolved and hackers thanked,
we restrict our analysis to the 77 programs for which detailed history was avail-
able. This restriction ensures that we compute the rates for each program in a
time interval when the rules of the program did not change significantly.

We first study whether more detailed rule descriptions lead to greater suc-
cess (Section 5.1). To answer this question, we study the relationships between
description length and the number of bugs resolved and hackers thanked by a
program. We show that programs with longer descriptions generally tend to be
more successful, which suggests that detailed program descriptions are an impor-
tant factor in success. Then, we investigate the readability of program rules using
established metrics from the field of readability studies (Section 5.1), and show
that the readability of program descriptions could be significantly improved in
practice. Next, we study three important clauses that program rules may include:
duplicate reports, legal actions and public disclosure (Section 5.1). We show that
the presence or absence of these clauses can have a very strong impact on the
success of a program, which implies that organizations need to include them

The Rules of Engagement for Bug Bounty Programs 9

in their rules if they wish to be successful. We also study statements for stag-
ing sites, test accounts, and source code availability in the program description.
Finally, we perform a detailed regression analysis (Section 5.2), and study the
combined effects of description length, various clauses, etc.

5.1 Descriptive Analysis

a
n
e | €5 135]
R § IR
o T 90 it
° o 1201 I
2d 5 &
= o 60+ H
Es s
2% oof L E2 Ll |
g 3 Z g
g Q % =
= = \ l_\l \ i g i \ ,TI \ i
0-250 250-500 500-750 750- 0-250 250-500 500-750 750-
Length of Description Length of Description
(Number of Words) (Number of Words)

Fig. 1. Statistics for programs grouped by description length (measured as number of
words). Please note the logarithmic scaling of the vertical axes.

Length of Bug Bounty Rules The average length of program rules is 481
words (N = 77). The shortest description is 72 words (Vulners) and the longest
one is provided by ownCloud with 1,744 words. To provide an initial overview of
the data, we categorize the organizations into four groups based on program de-
scription length (measured as number of words). These groups contain programs
with word counts of 1) 0 - 250 words (N = 13), 2) 250 - 500 words (N = 36),
3) 500 - 750 words (N = 16), and 4) 750+ words (N = 12). Figure 1 shows the
average rates of bugs resolved and hackers thanked for each group. Note that the
rates were computed for each program over a time interval in which the descrip-
tion was unchanged, dividing the number bugs resolved and hackers thanked by
the length of the interval in years. Tables 2, 3, and 4 in Appendix B list the
descriptive statistics of word count, bugs resolved, hackers thanked and bounty
paid for all organizations (Table 2), organizations paying minimum bounty (Ta-
ble 3) and organizations paying no minimum bounty (Table 4), respectively.

It is noteworthy that the length of program rules is positively associated with
the average rate of bug resolved as well as the average rate of hackers thanked
(see Figure 1 and Table 2). These observations also hold for all organizations
paying a minimum bounty (N = 44, see Table 3). For organizations that are not
paying a minimum bounty (N = 33), these relationships hold very consistently
(see Table 4). However, there is no obvious trend observable for the relationship
between the length of program rules and the average bounty paid by programs
for valid discoveries (see Tables 2 and 3).

10 Aron Laszka, Mingyi Zhao, Akash Malbari, and Jens Grossklags

Readability of Program Rules We computed various metrics for the read-
ability of program rules. For brevity, we report the results only for the Flesch
Reading-Ease Score [10] here (see Figure 2), which is an established metric in
the field of readability studies. Results for other metrics are shown in Figure 6 in
Appendix D, but they do not differ in a meaningful way regarding the following
basic observations.

The higher the score, the easier a document is to read. Scores towards 100
indicate that a minor in 5th grade would likely understand the document without
problems. A score of 30 and below typically requires a college degree. Law review
articles and technical documents frequently score in the 30s.

(]

3 80 T T T =
Q ° °

wn °

v L]

@ 601 °, % . .
El iee Lt g

o0 % o » o °

=] * s Btee®? o e

kS 40 -“'.?-.n.. —
g e o . . .
= 90 won e

9 | | | |

R~ 0 500 1,000 1,500

Description Length [Number of Words]

Fig. 2. Length and readability of program descriptions.

We find that the average level of the Flesch Reading-Ease Score for the sample
of program rules is 39.6, indicating a set of documents requiring some college
education (on average). The least readable document scored 12.2, whereas the
most readable document had a score of 74.4. There are 18 program rules that
score below 30, which indicates documents that are very difficult to read.

While our analysis does not yet account for the specific characteristics of
program rule documents (e.g., technical terminologies, tables etc.), it is indica-
tive that improvements could be undertaken to make these documents more ap-
proachable. Perhaps in contrast to the going practice for many forms of legal
agreements, program rules should be written with the intention of being read
and understood by white hats who search for vulnerabilities in a particular pro-
gram. A lack of readability may be a contributing factor to inefficient outcomes,
and might encourage white hats to prefer other programs.

Statements about Duplicate Reports, Legal Actions, and Public Dis-
closure In the taxonomy section, we already provided an initial overview of the
various rules included in the program description. In the following, we study
three key rules numerically.

First, we recorded whether the program rules include a duplicate report
clause, i.e., whether the organization explicitly specifies if submitting a duplicate

The Rules of Engagement for Bug Bounty Programs 11

report will affect the white hat’s eligibility for a bounty or not. Please note that
duplicates occur very frequently in practice, and may pose a significant problem.
For Google’s bug bounty program and on the BugCrowd platform, the number
of duplicates is higher than the number of valid reports. The ratio of duplicates
is lower on HackerOne, but still substantial. It is therefore likely that white hats
prefer to work with programs that are aware of this challenge and discuss it in
their program rules.

Second, we identified programs that have some form of a legal action clause.
Using a legal action clause, an organization informs white hats under what con-
ditions it may (or may not) bring a lawsuit against them. Due to several highly-
publicized incidents, where companies sued white hat hackers, or prevented them
from speaking at conferences or other events, we believe that such statements
can influence a white hat’s decision to work for a specific program.

Third, we investigated which programs include a specific statement regarding
public disclosure. Organizations may be particularly concerned about the inter-
nal security of their systems and applications, hence they may prohibit white
hats from disclosing any identified vulnerabilities to other entities for a specified
time period or until the bug has been fixed. HackerOne’s Vulnerability Disclosure
Guidelines allow white hats to publicly disclose information about bugs 180 days
after they have submitted the report. Hence, organizations who take the extra
step to alter their program policy may have specific concerns, and the presence
of such a clause may also influence white hat behavior.

In general, we believe that specifying these three policies is indicative of a
better developed program by the organization. To verify this, we investigated
the 111 programs and found that 51 organization mention at least one of the
three clauses in their programs. For these 51 organizations, we further show their
status in Figure 3. Only 10 out of these 51 organizations have all three clauses.

bli
Dll;gloslﬁre
10

Duplicate Legal
Report Action
11 1

Fig. 3. Venn diagram explaining extensibility of rules.

In Figure 4 (and Table 5 in Appendix C), we provide descriptive statistics of
how the presence or absence of these three rule clauses are related to the rate of
hackers thanked and rate of bugs resolved. We observe that the presence of these

12 Aron Laszka, Mingyi Zhao, Akash Malbari, and Jens Grossklags

rules is associated with more active programs. Both the rate of hackers thanked
and the rate of bugs resolved are significantly higher on average for programs
that include these statements in their program rules.

T T T
no public disc. clause [% XX = %« - x iﬁ
L | T A x .
public disc. clause T ‘ } ,
I
no legal clause |- S B— o | ox ox x ?
R T 1 ‘
legal clause |- o ‘ ; j N
no duplicate clause |- %::}—{_T * XX % x . XX x N
. T+
duplicate clause |- i ‘ } ?
| | | | | |
0 50 100 150 200 250

Number of bugs resolved (d) and hackers thanked () per year

Fig. 4. Statistics for duplicate report, legal action, and public disclosure clauses.

Statements about Staging Sites, Test Accounts, and Source Code
Availability Other important indicators of sophistication are whether the or-
ganization provides white hats with a staging site for identifying vulnerabilities,
whether it asks them to create designated testing accounts, and whether it allows
them to download a copy of the application/software for testing.

Our classification shows that 5 out of 111 organizations have staging sites,
24 ask white hats to use a test account, and 13 provide source code of the
application/software. When we investigate whether the availability of a staging
site or source code impacts the rate of approved vulnerability reports and hackers
thanked, we do not observe a very strong pattern (see Figure 5 below and Table 6
in Appendix C). However, the requirement to use test accounts appears to have
positive impact.

5.2 Regression Analysis

For the findings stated above, further quantitative analysis is needed to substan-
tiate the observed effects. Particularly, we want to study the combined effects of
rule features, including the length of the rule (L), the Flesch Reading-Ease Score
that measures the readability of the description (R), the existence of legal action,
duplicate report, public disclosure, staging site, test account, and source code
download statements (LE, DU, DI, ST, T A, SC) on the success of a program,
which is measured by the number of bugs resolved (V). Therefore, we build the
following least square regression model:

The Rules of Engagement for Bug Bounty Programs 13

T T T
| I —— !
no source code |~ q i } x i x|
[—
source code |- e E— L — .
C—F+——— x x X X x
no test accounts [~ Co——— b+ soxxx x x x N
test accounts |- — I ’ , ! =
; o [— ! x
no staging site - — } ’ %]
; ; oy I E—
staging site |- ‘ }_{ n
! ! ! ! !
0 50 100 150 200 250

Number of bugs resolved (O) and hackers thanked (O) per year

Fig. 5. Statistics for statements of staging sites, test accounts, and source code.

V' = Bo+p1 L+PoR+ L3 LE+B4s DU+ 5 DI+ ST+ 57T A+Ps SC+Bo Z+e. (1)

In the regression model, we have considered other characteristics of bug
bounty programs that could affect both the success of a program and the textual
features, in order to mitigate the correlated omitted variable bias. More specifi-
cally, we add three control variables (represented as a vector Z in the regression
model), based on previous work [25,15]: B is the average bounty paid by the
program,® T is the age of the bug bounty program, and A is the log of the
Alexa rank of the organization’s website.? Alexa rank proxies for the complexity
of the website, and a more complex website is likely to have both longer rule
descriptions and inherently more vulnerabilities to find.

The results of our regression analysis can be found in Table 1'%, We incre-
mentally add the factors to the regression model, beginning with a simple model
explaining the number of discovered vulnerabilities through the varying length
of program rules. Other more complex models follow.

Our first observation is that the length of the rule description is positively
correlated with the number of vulnerabilities discovered. The correlation is sig-
nificant in three out of the four models. Several hypotheses could explain this
positive correlation. First, a long rule may indicate that the organization spends
more effort on improving the engagement with white hats (e.g., by giving more
guidance on what to look for), which in turn makes white hats more productive.

8 Since not all programs disclose their average bounty, we have to restrict our analysis
to 58 data points in this subsection.

9 A lower value of Alexa rank represents a more popular website. For example, an
Alexa rank of 1 indicates the most-visited website.

10 Note that we use data from the entire history of each bug bounty program. We have
also tested the models using only data available after the last major rule update of
each program. The regression analysis shows the same directionality of effects, but
the dataset is much smaller to report a robust analysis.

14 Aron Laszka, Mingyi Zhao, Akash Malbari, and Jens Grossklags

Table 1. Regression Results

o 2 6 @

VARIABLES V Vv V |4
Length of the rule (L) 0.18*** 0.09* 0.09* 0.01
(0.04) (0.04) (0.04) (0.05)
Average bounty (B) 0.12* 0.12* 0.09*
(0.05) (0.05) (0.05)
Age of the program (T') 0.05 0.05 0.13%**
(0.04) (0.04) (0.05)
Log(Alexa rank) (A) -4.65 -4.30 -4.20
(2.86) (2.98) (2.88)
Readability score (R) -0.51
(0.79)
Has legal clause (LE) 23.04
(27.41)
Has duplicate report clause (DU) 47.39*
(22.08)
Has public disclosure clause (DI) 60.41%*
(24.45)
Has staging site (ST') 1.10
(40.70)
Has source code (SC) 45.56*
(27.03)
Asks to use test accounts (T'A) 1.01
(26.78)
Constant -15.21 23.21 34.25 -14.40
(18.95) (39.10) (45.93) (39.34)
Observations 54 54 54 54
R-squared 0.27 043 0.44 0.57

Robust standard errors in parentheses
¥ p<0.01, ** p<0.05, * p<0.1

Second, a long rule could also be associated with larger scope, leading to more
opportunities for finding bugs.

We do not observe a significant correlation between the readability score
and the number of bugs resolved. We see positive and statistically significant
coefficients for the existence of duplication clause, disclosure statements, and
source code.

In summary, the results indicate that rules with more content (e.g., more
detailed list of included / excluded areas and issues) and explicit statements on
duplication, disclosure, etc., are associated with more bugs resolved. This sug-
gests that rules could have indeed a tangible impact on bug bounty program
performance, and organizations should spend more effort to maintain and im-
prove their rules. On the other hand, we are also aware of limitations of our
regression analysis. Particularly, the sample size is rather small, and the dataset
has some additional limitations, as we have discussed in Section 3. As such, a
potential future work item is to include more data points into our regression.
One could also consider other bug bounty platforms, such as BugCrowd and
Cobalt, to conduct a cross-platform study.

The Rules of Engagement for Bug Bounty Programs 15

6 Discussion

The emergence of bug bounty platforms allows many different organizations,
such as Yahoo!, General Motors, and even the U.S. Department of Defense, to
harvest the power of the global white hat hacker community for improving secu-
rity. However, as previous research shows (e.g., [13]), effectively and efficiently
engaging white hats is a challenging task. In addition, there are risks for both
sides. For organizations, there are security risks associated with vulnerability
research and disclosure. For white hats, there are legal risks to worry about as
well as a potential lack of adequate appreciation of their findings. The program
rules serve as a key method to control the risk and facilitate engagement.

Currently, program rules are primarily created by participating organizations
independently. Therefore, they vary by content, length, style and many other
factors. The bug bounty rule taxonomy we assembled in Section 4 is a first step
toward organizing and studying these widely different bug bounty rules. Based
on HackerOne’s public bug bounty programs, we created 12 categories of rule
statements. In the future, this taxonomy can be referenced by organizations
when they create or update their own bug bounty rules. Further, the taxonomy
also provides a basis for academia to further analyze program rules on different
bug bounty platforms.

Our research mainly focuses on the rules of individual bug bounty programs.
However, it is also possible that a platform-wide rule influences hacker engage-
ment. We also examined the platform rule created by HackerOne, and deter-
mined that it only provides some high-level guidance, and that it primarily
refers to individual program’s rules for critical issues. In addition, we find a po-
tential issue with the following statement in the platform rule: “Security Teams
will pudblish a program policy designed to guide security research into a partic-
ular service or product. You should always carefully review this policy prior to
submission as they will supersede these guidelines in the event of a conflict.” It
is surprising that the guidelines do not state that white hats should read the
policy before doing vulnerability research, as the investigative process can bring
harm to an organization’s system if not properly conducted. We suggest that
platforms shall work more closely with individual programs to make the plat-
form rules consistent with the diverse program rules. Also, we suggest platforms
to create more comprehensive rules for cases not covered by individual rules.

7 Conclusion

As bug bounty platforms gain in perceived sophistication and impact, the par-
ticipation of organizations and white hats will likely continue to increase. As
such, it will become increasingly important to appropriately manage the rules
which govern the interactions between the different stakeholders.

Our analyses demonstrate that bug bounty programs are on average associ-
ated with better success characteristics if the level of comprehensiveness of their
rules of engagement increases. We demonstrate this finding for a high level met-
ric (i.e., program length) as well as detailed characteristics such as the presence

16 Aron Laszka, Mingyi Zhao, Akash Malbari, and Jens Grossklags

of legal action clauses, rules for duplicate submissions and rules for public dis-
closure. These observations are novel to the research literature on bug bounty
platforms. We anticipate that our analysis will be motivation to bug bounty
programs and platforms to pay greater attention to the detailed rules in order
to provide a fair and more effective workplace for white hat researchers.

Further work is desirable to solidify and extend our findings. In particular,
we plan an additional iterative analysis of the program rules to extract more
performance-relevant criteria and to embed them in the statistical analysis. Fur-
ther, the scope of the analysis could be broadened to include more bug bounty
platforms in order to add robustness to the findings.

Acknowledgment: We thank the anonymous reviewers for their comments.
The research activities of Jens Grossklags are supported by the German Institute
for Trust and Safety on the Internet (DIVSI).

References

1. Algarni, A., Malaiya, Y.: Software vulnerability markets: Discoverers and buyers.
International Journal of Computer, Information Science and Engineering 8(3), 71—
81 (2014)

2. Bacon, D.; Chen, Y., Parkes, D., Rao, M.: A market-based approach to software
evolution. In: 24th ACM SIGPLAN Conference Companion on Object Oriented
Programming, Systems, Languages, and Applications (2009)

3. Bohme, R.: A comparison of market approaches to software vulnerability disclo-
sure. In: Miller, G. (ed.) Emerging Trends in Information and Communication
Security, pp. 298-311. Springer Berlin Heidelberg (2006)

4. Bozorgi, M., Saul, L., Savage, S., Voelker, G.: Beyond heuristics: Learning to clas-

sify vulnerabilities and predict exploits. In: Proceedings of the 16th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD). pp.

105-114 (2010)

Bugcrowd: The state of bug bounty (July 2015)

Bugcrowd: The state of bug bounty (June 2016)

Clark, S., Frei, S., Blaze, M., Smith, J.: Familiarity breeds contempt: The honey-

moon effect and the role of legacy code in zero-day vulnerabilities. In: Proceedings

of the 26th Annual Computer Security Applications Conference (ACSAC). pp.

251-260 (2010)

8. Edmundson, A., Holtkamp, B., Rivera, E., Finifter, M., Mettler, A., Wagner, D.:
An empirical study on the effectiveness of security code review. In: Engineering
Secure Software and Systems (2013)

9. Finifter, M., Akhawe, D., Wagner, D.: An empirical study of vulnerability rewards
programs. In: USENIX Security Symposium (2013)

10. Flesch, R.: A new readability yardstick. Journal of Applied Psychology 1948(32),
221-233 (1948)

11. Huang, K., Siegel, M., Madnick, S., Li, X., Feng, Z.: Poster: Diversity or concen-
tration? Hackers’ strategy for working across multiple bug bounty programs. In:
37th IEEE Symposium on Security and Privacy (S&P) (2016)

12. Kuehn, A., Mueller, M.: Analyzing bug bounty programs: An institutional perspec-
tive on the economics of software vulnerabilities. TPRC Conference Paper (2014)

13. Laszka, A., Zhao, M., Grossklags, J.: Banishing misaligned incentives for validating
reports in bug-bounty platforms. In: 21st European Symposium on Research in
Computer Security (ESORICS). pp. 161-178 (2016)

Noo

The Rules of Engagement for Bug Bounty Programs 17

14. Laszka, A., Zhao, M., Grossklags, J.: Devising effective economic policies for bug-
bounty platforms and security vulnerability discovery. Journal of Information Pol-
icy 7, 372-418 (2017)

15. Maillart, T., Zhao, M., Grossklags, J., Chuang, J.: Given enough eyeballs, all bugs
are shallow? Revisiting Eric Raymond with bug bounty markets. Journal of Cy-
bersecurity (2017)

16. Mc Laughlin, H.: SMOG grading - A new readability formula. Journal of Reading
12(8), 639-646 (1969)

17. Ozment, A.: The likelihood of vulnerability rediscovery and the social utility of
vulnerability hunting. In: Workshop on the Economics of Information Security
(WEIS) (2005)

18. Ozment, A., Schechter, S.: Milk or wine: Does software security improve with age?
In: USENIX Security Symposium (2006)

19. Ransbotham, S., Mitra, S., Ramsey, J.: Are markets for vulnerabilities effective?
MIS Quarterly 36(1), 43—64 (2012)

20. Ratcliff, J., Metzener, D.: Pattern-matching: The gestalt approach. Dr Dobbs Jour-
nal 13(7) (1988)

21. Rescorla, E.: Is finding security holes a good idea? IEEE Security & Privacy 3(1),
14-19 (2005)

22. Senter, R., Smith, E.: Automated readability index. Tech. rep., DTIC Document
(1967)

23. Shahzad, M., Shafiq, M., Liu, A.: A large scale exploratory analysis of software vul-
nerability life cycles. In: International Conference on Software Engineering (2012)

24. Zhao, M., Grossklags, J., Chen, K.: An exploratory study of white hat behaviors in
a web vulnerability disclosure program. In: 2014 ACM CCS Workshop on Security
Information Workers (2014)

25. Zhao, M., Grossklags, J., Liu, P.: An empirical study of web vulnerability discovery
ecosystems. In: 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS) (2015)

26. Zhao, M., Laszka, A., Maillart, T., Grossklags, J.: Crowdsourced security vul-
nerability discovery: Modeling and organizing bug-bounty programs. In: HCOMP
Workshop on Mathematical Foundations of Human Computation (2016)

A Example Bug Bounty Rule Statements

We list example rule statements below:

1. “Please report serious vulnerabilities in our website (https:// staging.factlink.com),
prozy (hitps://staging.fct.li), or other components (our annotation library, Wordpress
plugin, browser extensions, and gems)” (Factlink)

2. “Please note that Binary.com’s front-end code is open-sourced at [...] - please
feel free to report any vulnerabilities found in this code by submitting a pull-request in
github” (Binary)

3. “Not in scope: shopify.asia, go.shopify.com and investors.shopify. com are oper-
ated by third parties, and are not in scope” (Shopify)

4. “Any Sucuri customer website are out of the scope of this disclosure program”
(Sucuri)

5. “Mattel websites and services are owned and operated by Mattel and are explicitly
outside the scope of this bug bounty program” (ToyTalk)

6. “Please only use our staging environments for testing, they are otherwise identical
to production” (Factlink)

18 Aron Laszka, Mingyi Zhao, Akash Malbari, and Jens Grossklags

7. “In general, anything which has the potential for financial loss or data breach is of
sufficient severity, including: XSS, CSRF, Authentication bypass or privilege escalation,
Click jacking, Remote code execution, Obtaining user information, Accounting errors”
(Coinbase)

8. “We are generally not interested in DoS vulnerabilities that are perceived by a
lack of rate-limiting or captcha. As a web-scale service, our threshold for rate limiting
is higher than you would probably expect. Of course, if you think you have found an
exception to this rule, please let us know” (Automattic)

9. “Please create a free account and (pen) test away our GhostMail, ChostChat and
GhostBoz” (Flox)

10. “Please note that automated testing is not permitted! System will ban you perma-
nently if you do” (DigitalSellz); “If you employ automated scanning tools, their requests
must be rate limited to not exceed 3 requests per second without prior approval” (Vimeo)

11. “Do not attempt to gain access to another user’s account or confidential infor-
mation” (Adobe)

12. “You are not allowed to conduct social engineering attacks against our support
team” (Coinbase)

13. “While researching, we’d like to ask you to refrain from: [...] Any physical
attempts against BitHunt property or data centers” (BitHunt)

14. “In order to encourage responsible disclosure, we promise not to bring legal
action against researchers who point out a problem provided they do their best to follow
the above” (Openfolio)

15. “You must comply with all applicable laws in connection with your participation
in this program. You are also responsible for any applicable taxes associated with any
reward you receive” (Twitter)

16. “Yahoo reserves the right to change or modify the terms of this program at any
time” (Yahoo)

17. “Yahoo employees and contingent workers, as well as their immediate family
members and persons living in the same household, are not eligible to receive bounties
or rewards of any kind under the Yahoo Bug Bounty Program, whether hosted by Yahoo
or any third party” (Yahoo)

18. “You must be eligible to work within the U.S.; meaning you are a U.S. citizen,
a noncitizen national of the U.S., a lawful permanent resident, or an alien authorized
to work within the U.S.” (Hack the Army)

19. “You must be 18 years of age or older. Please be an adult when messaging us.
We want to work with serious security professionals only” (Envoy)

20. “Share with us the full details of any problem found. Detailed steps on repro-
ducing the bug. If valuable, please include any screen-shots, links you clicked on, pages
visited, etc. Provide us with a concrete attack scenario. How will the problem impact
Bookfresh or our customers? Put the problem into context” (BookFresh)

21. “Provide us a reasonable amount of time to resolve the issue before any disclo-
sure to the public or a third-party” (ownCloud)

22. “Minimum reward is $100 for security vulnerabilities. The reward depends on
the vulnerability severity and will be paid via HackerOne only. Every researcher with
accepted vulnerability will be mentioned on hitp://hackerone. com/algolia/thanks” (Al-
golia)

23. “We only reward the first reporter of a vulnerability” (DropBox)

24. “Twitter will determine in its discretion whether a reward should be granted
and the amount of the reward” (Twitter)

The Rules of Engagement for Bug Bounty Programs 19

25. “Post on our Hall of Fame. Your very own Informatica Bug Bounty T-Shirt
With More Awesome Swag to Come” (Informatica)

26. “Security and privacy are top priorities at Coursera. We believe that no tech-
nology is perfect and that working with skilled security researchers across the globe is
crucial in identifying weaknesses in our technology” (Coursera)

B Statistics for Programs Grouped by Description
Length

Table 2. Statistics for Programs Grouped by Description Length

Number |Number of Mean Number Mean Number of Mean Number of Mean

of Words | Programs of Words Bugs Resolved Hackers Thanked Bounty Paid
(Per Year) (Per Year)

0-250 13 200 49 34 225

250-500 |36 340 36 28 392

500-750 |16 633 67 48 59

750- 12 1011 189 123 105

Overall |77 481 69 48 250

Table 3. Statistics for Programs Paying a Minimum Bounty (Grouped by Description
Length)

Number |Number of Mean Number Mean Number of Mean Number of Mean

of Words | Programs of Words Bugs Resolved Hackers Thanked Bounty Paid
(Per Year) (Per Year)

0-250 8 211 74 49 366

250-500 |15 318 13 10 941

500-750 |12 630 68 49 79

750- 9 1042 194 143 140

Overall |44 532 76 55 437

Table 4. Statistics for Programs Paying No Minimum Bounty (Grouped by Description
Length)

Number |Number of Mean Number Mean Number of Mean Number of Mean
of Words | Programs of Words Bugs Resolved Hackers Thanked Bounty Paid
(Per Year) (Per Year)

0-250 5 182 10 8 0

250-500 |21 355 53 41 0

500-750 |4 641 66 46 0

750- 3 918 176 65 0

Overall |33 415 59 39 0

(Please note that the last column, which shows that no bounties were paid, is correct.)

20 Aron Laszka, Mingyi Zhao, Akash Malbari, and Jens Grossklags

C Statistics for Programs Grouped by Clauses

Table 5. Statistics for Duplicate Report, Legal Action, and Public Disclosure Clauses

Clause Present Number of Mean Number of Bugs Mean Number of Hackers
Programs Resolved (Per Year) Thanked (Per Year)
duplicate yes 35 117 79
no 42 29 22
legal action yes 17 134 95
no 60 50 35
public disclosure | yes 38 102 73
no 39 36 24

Table 6. Statistics for Staging Sites, Test Accounts, and Downloading Source

Clause Present Number of Mean Number of Bugs Mean Number of Hackers
Programs Resolved (Per Year) Thanked (Per Year)
staging site |yes 5 51 41
no 72 70 49
test account | yes 24 133 97
no 53 40 26
source code |yes 13 40 34
no 64 75 51

D Further Readability Analysis

T T T
15 ') .. |
< 2oLt
(] ° ° o ° °
= . »’® S °e
10 [~ ‘- rd '- l. ° ° ® 1
%0 ...\ P o ° L]
E -.-.
n ° .
5 .
| | | |
0 500 1,000 1,500

Description Length [Number of Words|

Automated Readability Index

25

20

15

10

| |
500 1,000 1,500

Description Length [Number of Words]

Fig. 6. Program descriptions’ length and readability, measured using Smog Index [16]
and Automated Readability Index [22].

