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Abstract. One of the particularly daunting issues in the cybersecurity
domain is information leakage of business or consumer data, which is
often triggered by multi-stage attacks and advanced persistent threats.
While the technical community is working on improved system designs
to prevent and mitigate such attacks, a significant residual risk remains
that attacks succeed and may not even be detected, i.e., they are stealthy.
Our objective is to inform security policy design for the mitigation of
stealthy information leakage attacks. Such a policy mechanism advises
system owners on the optimal timing to reset defense mechanisms, e.g.,
changing cryptographic keys or passwords, reinstalling systems, installing
new patches, or reassigning security staff.
We follow a game-theoretic approach and propose a model titled Flip-
Leakage. In our proposed model, an attacker will incrementally and
stealthily take ownership of a resource (e.g., similar to advanced per-
sistent threats). While her final objective is a complete compromise of
the system, she may derive some utility during the preliminary phases
of the attack. The defender can take a costly recovery move and has to
decide on its optimal timing.
Our focus is on the scenario when the defender can only partially elim-
inate the foothold of the attacker in the system. Further, the defender
cannot undo any information leakage that has already taken place dur-
ing an attack. We derive optimal strategies for the agents in FlipLeakage
and present numerical analyses and graphical visualizations.

1 Introduction

Security compromises which cause information leakage of business or consumer
data are a particularly challenging problem in the cybersecurity domain. Affected
businesses frequently struggle to recover once the consequences of a breach be-
come apparent such as a competitor outpacing them in a race for the next inno-
vation, or data troves appearing on cybercriminal marketplaces and eventually
impacting consumer confidence. For example, data about small and medium-
sized businesses suggests that approximately 60% fail within six months after a
data breach [3].



Businesses struggle for multiple reasons to prevent information leakage. In
particular, the increasing prevalence of well-motivated, technically capable, and
well-funded attackers who are able to execute sophisticated multi-stage attacks
and advanced persistent threats (APT) poses significant challenges to prevent
information leakage. Such attacks may take time to execute, but they will even-
tually succeed with high likelihood. In a recent talk, the Chief of Tailored Access
Operations, National Security Agency, characterized the mindset of these attack-
ers in the following way: “We are going to be persistent. We are going to keep
coming, and coming, and coming [12].”

Further, carefully orchestrated attacks as employed during corporate, cyber-
criminal or nation-state sponsored cyber-espionage and sabotage (see Stuxnet
[4]) change our understanding of the likelihood to reliably detect stealthy attacks
before it is too late. Estimates for how long attacks remain undetected are dire.
For example, a recent presentation by the CEO of Microsoft suggested that the
time until detection of a successful attack is on average over 200 days [21].

All of these observations emphasize the need to reason about the suitable
response to stealthy attacks which cause continued information leakage. We know
that perfect security is too costly; and even air-gaped systems are vulnerable to
insider risks or creative technical approaches. Another mitigation approach is to
limit the impact of attacks by resetting system resources to a presumed safe state
to lower the chances of a perpetual undetected leak. However, in most scenarios
such actions will be costly. For example, they may impact productivity due to
system downtime or the need to reissue cryptographic keys, passwords or other
security credentials. As such, determining the best schedule to reset defense
mechanisms is an economic question which needs to account for monetary and
productivity costs, strategic and stealthy attacker behavior, and other important
facets of information leakage scenarios such as the effectiveness of the system
reset. To address this combination of factors, we propose a new game-theoretic
model called FlipLeakage.

In our proposed model, an attacker has to engage in a sustained attack effort
to compromise the security of a system. Our approach is consistent with two
scenarios. On the one hand, the attacker may conduct surveillance of the system
to collect information that will enable a security compromise, e.g., by pilfering
traffic for valuable information, or by gathering information about the system
setup. On the other hand, the attacker may incrementally take over parts of a
system, such as user accounts, parts of a cryptographic key, or collect business
secrets to enable further attack steps. In both scenarios, persistent activity and
the accumulated information will then enable the attacker to reach her objective
to compromise the system and to acquire the primary business secret; if the
defender does not interfere by returning the system to a presumed safe state.

In Fig. 1, we provide an initial abstract representation of the studied strategic
interaction between an attacker and a defender. The attacker initiates sustained
attack efforts at t1, t2, and t3 right after the defender’s moves, where each time
she also starts gaining information about the system. After accumulating suffi-
cient information about the system, the attacker will be able to compromise it.



The attacker’s benefit until the security compromise is completed is represented
as a triangle, which represents the value of the leaked information during the at-
tack execution. After the compromise, the attacker continues to receive benefits
from the compromised system which is represented as a rectangle.

The defender can take a recovery action (to reset the resource to a presumed
safe state) and can thereby stop the attack. In our model, we consider the sce-
nario when the defender only partially eliminates the foothold of the attacker
in the system. In Fig. 1 those defensive moves occur at t1, t2, and t3. Further,
the defender cannot undo any information leakage that has already taken place
during an attack.

In our model, we focus on periodic defensive moves for the defender. That
means the time between any two consecutive moves is assumed the same mo-
tivated by practical observations for security policy updates of major software
vendors such as Microsoft and Oracle which we will discuss in detail in Section 3.
Within this context, we aim to determine the defender’s best periodic defensive
strategies when the moves of the attacker are unobservable to the defender, i.e.,
the attacks succeed to be stealthy. At the same time, we assume that the attacker
can observe the defender’s moves. The latter assumption rests on two observa-
tions. On the one hand, the attacker will be cut off from access to a partially
compromised system when a recovery move takes place. On the other hand,
many defensive moves may actually be practically observable for attackers, e.g.,
when a patch for a software system becomes available which makes a particular
attack strategy impractical. The scenario under investigation is a security game
of timing, e.g., we are studying when players should move to act optimally.

Attacker

Defender

t1 t2

t

t3

Fig. 1. FlipLeakage is a two-player game between an attacker and a defender competing
with each other to control a resource. t1, t2, and t3 represent the defender’s move times.
During the time when the attacker launches her attack, she incrementally benefits from
information leakage which is shown as red triangles.

In the following, we provide a brief summary overview over our contributions.
• We develop a game-theoretic model titled FlipLeakage. In our model, an

attacker will incrementally take ownership of a resource (e.g., similar to advanced
persistent threats). While her final objective is a complete compromise of the
system, she may derive some utility during the preliminary phases of the attack.
The defender can take a costly periodic mitigation move and has to decide on
its optimal periodic timing.



• We consider the scenario when the defender only partially eliminates the
foothold of the attacker in the system. Further, the defender cannot undo any
information leakage that has already taken place during an attack.
•We derive optimal strategies for the agents in our model and present numer-

ical analyses and graphical visualizations. One of our findings corroborates an
intuition: the higher the defensive cost, the slower the defender’s periodic move
rhythm. Moreover, our numerical observations imply that the defender moves
faster when the attacker’s average time to totally compromise the defender’s
system is lower.

In the presence of stealthy attacks and information leakage, defenders have
to set a schedule for updating and resetting their defense mechanisms without
any feedback about the occurrence of attacks. This poses significant challenges
for the design of new methods to mitigate such attacks. The objective of our
theoretical model is to provide a systematic approach for the defender’s best
schedule to reset his system to a presumed safe state to lower the chances of a
perpetually undetected leak. As such, our work provides important steps towards
building a rigorous model for an optimal defender’s response to these unknowns.

Roadmap: The rest of our paper is organized as follows. We discuss related
work in Section 2. In Section 3, we develop the FlipLeakage model followed by
payoff calculations in Section 4. We analyze our proposed model in Section 5.
In Section 6, we present numerical examples. Finally, we conclude our paper in
Section 7.

2 Related Work

Game theory is widely used in cybersecurity and privacy scenarios to study in-
terdependencies [7, 10, 13, 27], and dynamic interactions between defenders and
attackers of varying complexity [5, 17, 19]. One recently emphasized aspect of
security games is the consideration of when to act to successfully mitigate at-
tacks. In particular, the issue of optimally timing defensive actions to successfully
thwart stealthy attacks has attracted attention in the cybersecurity domain with
the introduction of the FlipIt game [2, 29] which broadens the games of timing
literature initiated in the cold-war era [1, 28]. In what follows, we provide a brief
description of the FlipIt game as well as theoretical follow-up research.

FlipIt is a two-player game between a defender and an attacker competing
with each other to control a resource which generates a payoff to the owner of
the resource. Moves to take over the resource, i.e., flips, are costly [2, 29]. In [29],
the authors studied the FlipIt game with different choices of strategy profiles
and aimed to calculate dominant strategies and Nash equilibria of the game in
different situations. Pham and Cid [26] extended the FlipIt game by considering
that players have the ability to check the state of the resource before their moves.

Feng et al. [6] and Hu et al. [9] modified the FlipIt game by considering
insiders in addition to external adversaries. Zhang et al. [31] studied the FlipIt
game with resource constraints on both players. Pawlick et al. extended the
FlipIt game with characteristics of signaling games [25]. Wellman and Prakash



developed a discrete-time model with multiple, ordered states in which attackers
may compromise a server through cumulative acquisition of knowledge rather
than in a one-shot takeover [30].

The original FlipIt paper assumed that the players compete with each other
for one resource. Laszka et al. [14] addressed this limitation by modeling multiple
contested resources in a game called FlipThem. Other authors extended this
game by considering a threshold for the number of contested resources which
need to be compromised to achieve the attacker’s objective [18]. In a similar
way, a variation of the game has been proposed with multiple defenders [24].
Laszka et al. [15, 16] studied timing issues when the attacker’s moves are non-
instantaneous. Moreover, they considered that the defender’s moves are non-
covert and the attacker’s type can be targeting and non-targeting. Johnson [11]
et al. investigate the role of time in dynamic environments where an adversary
discovers vulnerabilities based on an exogenous vulnerability discovery process
and each vulnerability has its corresponding survival time.

Complementing these theoretical analyses, Nochenson and Grossklags [22]
as well as Grossklags and Reitter [8] study human defensive players when they
interact with a computerized attacker in the FlipIt framework.

Our work differs from the previous FlipIt literature regarding two key con-
siderations. First, we take into account the problem of information leakage and
propose a more realistic game-theoretic framework for defender’s best time to
update his defense mechanism. We propose a model in which an attacker will
incrementally take ownership of a resource. Note that the attacker’s goal is to
compromise the defender’s system completely, but she may acquire already some
benefit during the initial steps of her attack. Second, we consider the possibility
of the defender’s defense strategy not being able to completely eliminate the
attacker’s foothold in the system. As a result, our work overcomes several signif-
icant simplifications in the previous literature which limited their applicability
to realistic defense scenarios.

3 Model Definition

In this section, we provide a description of the FlipLeakage model which is a
two-player game between a defender (D) and an attacker (A). We use the term
resource for the defended system, but also for the target of the attack which
will leak information during the attack and after the successful compromise. The
attack progresses in a stealthy fashion. However, the defender can regain partial
control over a compromised resource by taking a defensive recovery move (e.g.,
a variety of system updates).

In the FlipLeakage model, we emphasize the following aspects which we will
discuss below: (1) uncertainty about the time of compromising the defender’s
resource entirely, (2) process of information leakage, (3) quality of defen-
sive moves, (4) strategies of both players, and (5) other parameters which are
necessary for our model.



Uncertainty about Attack Launch and Success Timings: In Flip-
Leakage, the defender is the owner of the resource at the beginning of the game.
The resource is in a secure state, when it is completely controlled by the defender.
However, due to the stealthy nature of many practically deployed attacks, e.g.,
related to cyber-espionage and advanced persistent threats, it is reasonable to
assume that the defender cannot acquire any information about the time when
an attack is launched as well as its success [21].

In contrast, we assume that the attacker can observe the time of a defender’s
move. One motivating practical example for this consideration is that many
software companies publicly announce the arrival of new patches for previously
discovered vulnerabilities. Hence, an attacker could infer when a certain system
weakness is not available anymore. It follows that we model asymmetry with
respect to knowledge between the two players.

Furthermore, we differentiate between the time of launching an attack and
the time of an attack’s full effectiveness (i.e., the resource is completely compro-
mised). It is worth mentioning that the value of this time difference is not known
to both the defender and the attacker. Hence, this time difference is represented
by a random variable tA with probability density function fA(tA). The value
of tA depends on many factors such as the defender’s defense strategy and the
attacker’s ability to compromise the defender’s system.

The gap between these two factors can be interpreted as the attacker requir-
ing a nontrivial amount of time and effort to control the resource completely,
e.g., to gather leaked information from the resource and to conduct subsequent
attack steps. Further, the time of launching an attack can be understood as the
time that the attacker starts to gather information from the defender to execute
the attack successfully (e.g., by conducting surveillance of the system setup or
pilfering traffic to collect information that will enable a security compromise).
For simplicity, we assume that the value of tA is chosen according to a random
variable, but it is constant during each round of the attack. For future work, we
are going to consider the case where the values of tA are different for each round
of the attack. Note that we assume that other important parameters of the game
are common knowledge between the players. The extension of the framework to
uncertainty about game-relevant parameters is subject of future work

Process of Information Leakage: After initiation of the attack move,
the attacker’s reward until a complete compromise is accomplished is based
on the percentage of the whole resource which is currently controlled by the
attacker. For this purpose, we consider a function gA(t) (which is increasing
on the range [0, 1]). gA(t) can also be interpreted as the normalized amount of
leaked information accessible to the attacker over time which can be used by her
to improve her attack effectiveness. Recall that the time of completing an attack
successfully is represented by a random variable tA. It follows that the function
gA(t) should be dependent on tA. In doing so, we define a general function gA(t)
reaching to 1 (i.e., the amount at which the attacker would control the whole
resource completely) at one unit of time. We represent, as an example, a simple
version of this function in the left-hand side of Fig. 2. To represent the described



dependency, we use then the function gA (t/tA) for the reward calculation for
the attacker during the time of completing the attack successfully, i.e., as shown
on the right-hand side of Fig. 2.

1 1 

t t 1 

Fig. 2. The attacker’s reward function during the time of completing an attack suc-
cessfully depends on tA. To show this dependency in our model, we define a function
as shown on the left-hand side of this figure with one unit of time to reach 1. The figure
on the right-hand side is gA (t/tA) representing this dependence.

Defense Quality: In FlipLeakge, we consider the quality of the defender’s
recovery action (or alternatively the ability of the attacker to transfer informa-
tion from a previous attack to the next attempt). That is, the defender’s recovery
action does not guarantee regaining complete control over the resource, so that
the attacker has an initial advantage (during the next attack attempt) and re-
tains a foothold in the system. In other words, the defender’s defense strategy
cannot entirely eliminate previous attacks’ effects. Motivating examples for this
imperfect recovery model are advanced persistent threats. These attacks are typ-
ically driven by human staff who intelligently make use of any available and
gathered information during the next multi-stage attack step which may include
an initial compromise, foothold establishment, reconnaissance, etc. In this sce-
nario, any recovery move by the defender will frequently only partially remove
the attacker from the system, or at the very least cannot eliminate any infor-
mation advantage by the attacker. In the FlipLeakage game, we introduce a
new random variable, i.e., α with range [0, 1], to represent the fraction of re-
tained control over the previously compromised resource by the attacker after
the defender’s recovery move.

In the worst case, the defender’s recovery move does not impact the level of
the resource being controlled by the attacker (i.e., α = 1). In contrast, α = 0
represents the situation when the defender’s recovery is perfect. Then, the at-
tacker has to start with a zero level of knowledge during her next attack. We
model α as a continuous random variable with PDF fα(.) in which α chooses
values between zero and one, i.e., α ∈ [0, 1]. Note that in the FlipLeakage model,
the attacker never starts with a higher level than the level attained in the most
recent compromise attempt, i.e., we assume that defense moves are not counter-
productive. For simplicity, we assume that the random variable α takes its value
after the first attack and it remains constant during the game. For future work,
we will consider the case where the values of α are completely independent from
each other in each step of the attack.



Players’ Strategies: In FlipLeakage, we assume that the defender moves
according to periodic strategies, i.e., the time interval between two consecutive
moves is identical and denoted by δD. In what follows, we provide two examples
to show that in practice, several major software vendor organizations update
their security policies in a periodic manner to underline the practical relevance
of this assumption.

The first example that we take into account are Microsoft’s security policy
updates which are known as Patch Tuesday, i.e., according to [20], ”Microsoft
security bulletins are released on the second Tuesday of each month.” We visu-
alize the time differences among security updates from March 14th, 2015, until
March 12th, 2016, which is shown in Fig. 3(a). In this figure, the vertical axis
represents the number of security updates for each update instance. On the hor-
izontal axis, 0 represents the first security update we take into account which
took place on March 14th, 2015. Based on this figure, Microsoft security policy
updates are almost perfectly periodic. We only observe two dates with out-of-
schedule security updates. These two security updates are corresponding to an
update for Internet Explorer and a vulnerability in a Microsoft font driver which
allowed remote code execution.

Another example are Oracle’s critical patch updates. These updates occur in
January, April, July, and October of each year. To visualize the time differences
between updates, which are shown in Fig 3(b), we consider Oracle’s critical patch
updates from 13 July, 2013, to January 19, 2016, based on available information
at [23]. We calculate the time differences between two consecutive patch updates
in terms of days and divided this number by 30 in order to calculate an approxi-
mate difference in months. In this figure, 1 along the vertical axis represents the
occurrence of a patch update. We observe that Oracle’s policy for critical patch
updates is almost periodic.1
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Fig. 3. In practice, many organizations update their system according to periodic
strategies. As examples, we provide two organizations: (1) Microsoft and (2) Oracle.

1 Note that in our model, we do not consider the case where a software vendor has the
ability to conduct out-of-schedule security updates. We are going to consider this
issue in future work.



In the FlipLeakage model, we assume that the attacker moves right after the
defender. We follow with this assumption the results of [16] who showed that
in the scenario of a defender with a periodic strategy, the best strategy for the
attacker, who has the ability to observe the defender’s defense strategy, is to
move right after the defender.

Other Parameters: The cost of the defender’s recovery moves and the at-
tacker’s attack moves are represented by cD and cA, respectively, and we assume
that they do not change over time. Examples of the defender’s moves are changes
of passwords, reinstallations of systems, and the application of new patches. Tak-
ing steps to incrementally infer cryptographic keys, brute-force passwords, or to
inject malware are examples of the attacker’s moves.

Once the attacker controls the resource completely, she receives an immediate
reward which is represented by a constant value IA. The rationale behind the
introduction of this parameter is that once the attacker infers the defender’s
secret such as a cryptographic key, she can, for example, decrypt secret messages
which she has collected.

For the time that the attacker (defender) controls the resource completely,
we assume that the defender’s (attacker’s) reward is equal to zero and the at-
tacker (defender) receives BA (BD) per unit of time controlling the resource.
For example, these incremental earnings for the attacker represent newly arriv-
ing messages which can be decrypted with the compromised key. Note that the
resource is controlled by the attacker completely after a successful attack and
before the next recovery move by the defender.

4 Payoff Model

In this section, we develop the payoff functions for the FlipLeakage model based
on what we presented in Section 3.

The time required to execute an attack successfully is defined by a continu-
ous random variable with PDF fA. We consider one of the realizations of this
random variable as tA. Moreover, the time between two consecutive defender’s
moves is represented by δD. Based on the tA realization, we have two possible
cases, i.e., tA ≥ δD and tA < δD. In what follows, we consider each of these two
cases separately and then combine them according to the probability of each
case to propose the payoff function.

Case 1: tA < δD
In this case, the attacker can complete her attack before the defender’s re-

covery move. Hence, she receives the immediate reward for compromising the
resource completely, i.e., IA, as well as the reward for controlling the resource
completely, i.e., BA.

In our model, we assume that the attacker’s control over the resource does not
fall to zero right after the defender’s recovery move. As discussed in Section 3,
we have introduced a new parameter, α, and described the resulting changes
to players’ payoffs. For tA < δD, the attacker controls the resource completely



before the next recovery move by the defender. Then, right after the defender’s
move, the attacker controls a fraction α of the resource. For the remainder of
the resource to be taken over, i.e., (1− α), the attacker can gain control based
on gA (t/tA). Hence, the attacker’s benefit for this period is then based on α +
(1− α) gA (t/tA). The attacker’s payoff is as follows:

u1A(tA, α, δD) =

∫ tA

0

(
α+ (1− α) gA

(
t

tA

))
dt+ IA +BA(δD − tA)− cA

δD
.

(1)

In the above equation, based on our discussion in Section 3, the first term
in the numerator represents the attacker’s benefit due to information leakage.
Note that the utility function is divided by δD, since this function is the average
attacker’s payoff over time.

Since the defender’s move time is greater than the attacker’s time of complet-
ing an attack successfully, the defender only receives a partial benefit during the
period when the attacker is in the process of completing her attack. Therefore,
the defender’s payoff is as follows:

u1D(tA, α, δD) =

∫ tA

0

(
1−

(
α+ (1− α) gA

(
t

tA

)))
dt− cD

δD
. (2)

Both payoff functions, i.e., Equations 1 and 2, are a function of tA which is
a random variable with PDF fA as well as δD. Therefore, we need to calculate
the expected value of both payoff functions. Note that these expected payoff
functions are conditional, i.e., they are a function of a random variable tA given
that tA < δD. The conditional expected payoffs for these two functions are
calculated as follows:

u1A(α, δD) =

∫ δD

0

u1A(tA, α, δD)fA(tA)dtA∫ δD

0

fA(tA)dtA

, (3)

u1D(α, δD) =

∫ δD

0

u1D(tA, α, δD)fA(tA)dtA∫ δD

0

fA(tA)dtA

. (4)

Defender’s and attacker’s payoffs are both functions of α and δD. Finally, the
probability of tA < δD is calculated as follows:

P [tA < δD] =

∫ δD

0

fA(tA)dtA. (5)



Case 2: tA ≥ δD
In contrast to the previous case, the attacker cannot get the immediate re-

ward as well as the benefit from controlling the resource completely. In this case,
the attacker only reaches gA (δD/tA) level of control over the resource upon the
defender’s recovery move, and her reward is then equal to αgA (δD/tA) right
after the defender’s move. The attacker gains her control for the rest of the re-
source, i.e., (1− α), based on gA (t/tA). Hence, during the time between two
consecutive defender’s moves, the attacker’s benefit is equal to αgA (δD/tA) +
(1− α) gA (t/tA). Note that the upper integral bound changes into δD from tA
compared to the previous case.

u2A(tA, α, δD) =

∫ δD

0

(
αgA

(
δD
tA

)
+ (1− α) gA

(
t

tA

))
dt− cA

δD
. (6)

The defender’s payoff function is almost equivalent to Equation 2 except the
upper bound for the integral is changed into δD. Hence, the defender’s payoff is
as follows:

u2D(tA, α, δD) =

∫ δD

0

(
1−

(
αgA

(
δD
tA

)
+ (1− α) gA

(
t

tA

)))
dt− cD

δD
. (7)

Both players’ payoffs are functions of tA, α, and δD. We take the conditional
expectation over parameter tA in order to calculate the average payoffs with
respect to tA for this condition. The resulting equations are:

u2A(α, δD) =

∫ ∞
δD

u2A(tA, α, δD)fA(tA)dtA∫ ∞
δD

fA(tA)dtA

, (8)

u2D(α, δD) =

∫ ∞
δD

u2D(tA, α, δD)fA(tA)dtA∫ ∞
δD

fA(tA)dtA

. (9)

Furthermore, the probability that the required time by the attacker to com-
promise the resource entirely is greater than the time between two consecutive
recovery moves is given by:

P [tA ≥ δD] =

∫ ∞
δD

fA(tA)dtA. (10)



By taking into account the probability of occurrence of each condition as well
as their corresponding payoffs, we can calculate the defender’s and the attacker’s
payoff functions which are represented by the following equations, respectively.

uD(α, δD) = P [tA ≥ δD]u2D(α, δD) + P [tA < δD]u1D(α, δD), (11)

uA(α, δD) = P [tA ≥ δD]u2A(α, δD) + P [tA < δD]u1A(α, δD). (12)

In the above equation, each player’s payoff is a function of α and δA. As
mentioned before, α is a random variable whose range is in [0, 1] with PDF
fα(.). Therefore, we can calculate the expected value of the defender’s and the
attacker’s payoff functions with respect to α being represented in the following
equations, respectively.

uD(δD) =

∫ 1

0

uD(α, δD)fα(α)dα, (13)

uA(δD) =

∫ 1

0

uA(α, δD)fα(α)dα. (14)

5 Analytical Results

In the previous section, we have developed the general payoff functions for the
FlipLeakage model. Our payoff calculations are general and can be applied to
many cybersecurity problems and we did not quantify any of the parameters
being used in our model. For our analyses in this paper, we quantify gA(.),
fA(.), and fα(.), but we believe that the concrete functions we use still allow
for meaningful insights about the stealthy information leakage scenarios. The
instantiations of the other parameters in our proposed models would be specific
to the concrete scenario under consideration, e.g., the corresponding cost for
each player as well as the benefits.

To model the time of the attacker completing her attack successfully, we con-
sider an exponential distribution with rate parameter λA. The rationale behind
choosing an exponential distribution for the random variable tA is the memory-
less feature of this distribution. Due to the memoryless condition, if the defender
knows that his system is not compromised entirely at a specific time, it does not
give any further information to the defender about the time of the next po-
tential compromise. Moreover, the exponential distribution is a widely accepted
candidate to model waiting times for event-driven models. The exponential dis-
tribution with rate parameter λA is as follows:

fA(tA) =

{
λAe

−λAtA if tA ≥ 0

0 if tA < 0.
(15)

Moreover, for the random variable α ∈ [0, 1], we consider the uniform distri-
bution, since the defender does not have any knowledge about the ability of the



attacker to use previously leaked information and, accordingly, all values are pos-
sible with the same probability. The uniform distribution, fα(.), is represented
in Equation 16.

fα(α) =

{
1 if 0 ≤ α ≤ 1

0 Otherwise.
(16)

The attacker’s reward function during the time to launch her attack success-
fully can be represented by a linear function:

gA

(
t

tA

)
=


t

tA
if 0 ≤ t ≤ tA

0 Otherwise.
(17)

In the following, we provide our lemmas and theorem based on our payoff
calculation and the specification described above. First, the defender’s and the
attacker’s best responses are stated in Lemma 1 and Lemma 2, respectively.
Then, we propose the Nash equilibrium of the game being stated in Theorem 1.

Lemma 1 The defender’s best response is as follows:
- The defender plays a periodic strategy with period δ?D which is the solution

of Equation 18, if the corresponding payoff is non-negative, i.e., uD(δ?D) ≥ 0,
and it yields a higher payoff compared to other solutions of Equation 18.

BRD = e−λAδD

(
1

4
− 3

4
λAδD +

3

4
λA +

1

4λAδ2D

)
+

1

δ2D

(
cD −

1

4λA

)
− 3

4
λAΓ (0, λAδD) = 0.

(18)

- The defender drops out of the game (i.e., the player does not move anymore)
if Equation 18 has no solution for δD.

- The defender drops out of the game if the solutions of Equation 18 yield a
negative payoffs, i.e., uD(δD) < 0.

Note that in Lemma 1, Γ (0, λAδD) represents a Gamma function which is
defined as follows:

Γ (s, x) =

∫ ∞
x

ts−1e−tdt. (19)

Proof of Lemma 1 is provided in Appendix A.1.
Lemma 1 exhibits how we should calculate the defender’s time between his

two consecutive moves. As we see in Equation 18, the defender’s best response
is a function of cD and λA.

Lemma 2 describes the attacker’s best response in the FlipLeakage game.

Lemma 2 In the FlipLeakage game model, the attacker’s best response is:
- The attacker moves right after the defender if cA < M (δ) where



M (δD) =
3

4
δDλAΓ (0, δDλA) + IA +BAδD +

3

4λA
+BA

(
δD +

1

λA

)
e−δDλA

−
(
IA +BAδD +

3

4

(
δD +

1

λA

))
e−δDλA − BA

λA
.

(20)
- The attacker drops out of the game if cA > M (δ).
- Otherwise, i.e., cA = M (δ), dropping out of the game and moving right

after the defender are both the attacker’s best responses.

The proof of Lemma 2 is provided in Appendix A.2. This lemma identifies
conditions in which the attacker should move right after the defender, not move
at all, and be indifferent between moving right after the defender and not moving
at all. Note that the attacker’s decision depends on cA, δD, λA, IA, and BA.

The following theorem describes the Nash equilibria of the FlipLeakage game
based on our described lemmas.

Theorem 1 The FlipLeakage game’s pure Nash equilibria can be described as
follows.
A. If Equation 18 has a solution, i.e, δ?D, yielding the highest positive payoff
for the defender compared to other solutions (if other solutions exist), then the
following two outcomes apply:

1- If cA ≤M(δD), then there is a unique pure Nash equilibrium in which the
defender moves periodically with period δ?D and the attacker moves right after
the defender.

2- If cA > M(δD), then there exists no pure Nash equilibrium.
B. If Equation 18 does not have a solution or the solutions of this equation

yield a negative payoff for the defender, i.e., uD (δD) < 0, then there exists a
unique pure Nash equilibrium in which the defender does not move at all and the
attacker moves once at the beginning of the FlipLeakage game.

The proof of Theorem 1 is provided in Appendix A.3.
In this theorem, in the first case, the defender’s cost is lower than his benefit

when he moves according to the solution of Equation 18 and the attacker’s cost
is lower than Equation 20. Hence, the attacker moves right after the defender’s
periodic move. In the second case, if the defender moves periodically, it is not
beneficial for the attacker to move at all. Therefore, it is better for the defender
to not move at all. But, if the defender does not move at all, the attacker can
move once at the beginning of the game and control the resource for all time.
However, as a result, the defender should move in order to hinder this situation.
Because of this strategic uncertainty, in this scenario a Nash equilibrium does
not exist. The third case represents the situation where the defender’s benefit is
lower than his cost for defending the resource. Then, it is beneficial for him to
not move at all, and because of that the attacker has to move only once at the
beginning of the game.



6 Numerical Illustrations

In this section, we provide selected numerical illustrations for our theoretical find-
ings. First, we represent the defender’s best response curves, i.e., Equation 18, as
well as the defender’s payoff for different defender’s cost values, i.e., cD, which are
depicted in Fig 4. Then, we illustrate the defender’s best responses for different
values of cD and λA in Fig 5.
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Fig. 4. The defender’s best response curves and the corresponding payoff functions for
different values of cD are represented in Fig 4(a) and Fig 4(b), respectively. These two
figures depict the situation that Equation 18 has a solution, but the corresponding
payoff may be negative.

We plot Equation 18, i.e., the defender’s best response curve, for different
values of cD, i.e., cD = {0.2,0.4,0.7,1,1.5}, and λA = 0.3 in Fig 4(a). We illustrate
the defender’s payoff for these values in Fig 4(b), as well. For all of these different
cDs, Equation 18 has a solution. But as we see in Fig 4(b), the defender’s payoffs
are negative for cD = {0.7,1,1.5} for all values of δD. Therefore, the defender will
drop out of the game given these defense costs. For lower values of cD, i.e., cD
= {0.2,0.4}, the defender’s best responses are to move periodically with period
0.8711 and 1.4681, respectively. This also provides us with the intuition that
the higher the defender’s costs are, the slower will be the defender’s moves. To
examine this intuition, we calculate the defender’s best responses for different
values of cD.

Fig 5(a) represents the defender’s best response for different values of defense
costs in which λA = 0.5. This figure corroborates our intuition that the higher
the defense costs are, the slower will be the defender’s move period. When the
cost of defense is high, the defender’s best response is to drop out of the game
which is represented as δ?D = 0 in Fig 5(a).

We are also interested to see the relation between λA and δD. We represent
this relation in Fig 5(b). It is worth mentioning that an exponential distribution
with parameter λA has mean being equal to 1/λA. In the FlipLeakage game,
a higher value of λA means that the attacker will successfully compromise the
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Fig. 5. The impact of cD and λA on the defender’s best response

defender’s system faster on average which is corresponding to 1/λA. Fig 5(b)
represents the defender’s best response for different values of λA for specific
defender’s cost, i.e., cD = 0.3. This figure shows that the faster the attacker
can completely compromise the defender’s system on average, the faster will be
the defender’s periodic move. In other words, the defender moves faster when
the attacker’s average time to successfully compromise the defender’s system
is faster. But if the attacker’s average time to successfully compromise the de-
fender’s system is too fast, the rational choice for the defender is to drop out of
the game.

7 Conclusion

In this paper, we have proposed a novel theoretical model to provide guidance for
the defender’s optimal defense strategy when faced with a stealthy information
leakage threat. In our model, an attacker will incrementally take ownership of a
resource (e.g., as observed during advanced persistent threats). While her final
objective is a complete compromise of the system, she may derive some utility
during the preliminary phases of the attack. The defender can take a costly
mitigation move and has to decide on its optimal timing.

In the FlipLeakage game model, we have considered the scenario when the
defender only partially eliminates the foothold of the attacker in the system. In
this scenario, the defender cannot undo any information leakage that has already
taken place during an attack. We have derived optimal strategies for the agents
in this model and present numerical analyses and graphical visualizations.

We highlight two observations from our numerical analyses which match well
with intuition. First, the higher the defender’s cost, the slower is the defender’s
periodic move. The second observation is that the faster the attacker’s aver-
age time to compromise the defender’s system completely (i.e., higher λA), the
faster is the defender’s periodic move. In addition, our model also allows for



the determination of the impact of less-than-optimal strategies, and compara-
tive statements regarding the expected outcomes of different periodic defensive
approaches in practice, when information about the attacker and her capabilities
is extremely scarce. As this problem area is understudied but of high practical
significance, advancements that allow a rigorous reasoning about defense moves
against stealthy attackers are of potentially high benefit.

In future work, we aim to conduct theoretical and numerical analyses using
insights from data about practical information leakage scenarios. However, our
current study is an important first step to reason about frequently criticized
system reset policies to prevent information leakage in high-value systems. Reset
policies have to provide an expected utility in the absence of concrete evidence
due to the stealthiness of attacks which can be challenging to articulate. Our
work also illustrates the positive deterrence function of system reset policies
from a theoretical perspective. Further, we aim to consider a more general case
in which the values of tA and α are different in each step of the attack. In future
work, we will also consider the case where a defender (e.g., a software vendor)
has the ability to provide out-of-schedule security updates besides the periodic
one.
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meets network security and privacy, ACM Computing Surveys 45 (2013), no. 3,
25:1–25:39.

20. Microsoft, Microsoft security bulletin, Available at: https://technet.microsoft.
com/en-us/security/bulletin/dn602597.aspx.

21. S. Nadella, Enterprise security in a mobile-first, cloud-first world, 2015, Available
at: http://news.microsoft.com/security2015/.

22. A. Nochenson and J. Grossklags, A behavioral investigation of the FlipIt game,
12th Workshop on the Economics of Information Security (WEIS), 2013.

23. Oracle, Oracle critical patch updates, Available at: http://www.oracle.com/

technetwork/topics/security/alerts-086861.html.
24. R. Pal, X. Huang, Y. Zhang, S. Natarajan, and P. Hui, On security monitoring in

SDNS: A strategic outlook, Tech. report.
25. J. Pawlick, S. Farhang, and Q. Zhu, Flip the cloud: Cyber-physical signaling games

in the presence of advanced persistent threats, Proceedings of the Conference on
Decision and Game Theory for Security (GameSec), Springer, 2015, pp. 289–308.

26. V. Pham and C. Cid, Are we compromised? Modelling security assessment
games, Proceedings of the Conference on Decision and Game Theory for Secu-
rity (GameSec), Springer, 2012, pp. 234–247.

27. Y. Pu and J. Grossklags, An economic model and simulation results of app adoption
decisions on networks with interdependent privacy consequences, Proceedings of the
Conference on Decision and Game Theory for Security (GameSec), Springer, 2014,
pp. 246–265.



28. T. Radzik, Results and problems in games of timing, Lecture Notes-Monograph Se-
ries, Statistics, Probability and Game Theory: Papers in Honor of David Blackwell
30 (1996), 269–292.

29. M. Van Dijk, A. Juels, A. Oprea, and R. Rivest, FlipIt: The game of “stealthy
takeover”, Journal of Cryptology 26 (2013), no. 4, 655–713.

30. M. Wellman and A. Prakash, Empirical game-theoretic analysis of an adaptive
cyber-defense scenario (Preliminary report), Proceedings of the Conference on De-
cision and Game Theory for Security (GameSec), Springer, 2014, pp. 43–58.

31. M. Zhang, Z. Zheng, and N. Shroff, Stealthy attacks and observable defenses:
A game theoretic model under strict resource constraints, Proceedings of the
IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2014,
pp. 813–817.

A Proof

A.1 Proof of Lemma 1

Based on our payoff calculation, i.e., Equation 13, as well as the quantified
parameters, i.e., gA(.), fA(.), and fα(.), the defender’s payoff is:

uD(δD) =
1

δD

(
1

4λA

(
1− e−λAδD

)
− cD

)
+

3

4
e−λAδD − 3

4
λAδDΓ (0, λAδD).

(21)
To find the maximizing time between two consecutive defender’s moves (if

there exist any), we take the partial derivative of Equation 21 with respect to
δD and solve it for equality to 0 as follows:

∂uD
∂δD

= − 1

δ2D

(
1

4λA
− cD −

1

4λA
e−λAδD

)
+

1

4
e−λAδD

−3

4
λAδDe

−λAδD − 3

4
λAΓ (0, λAδD) +

3

4
λAe

−λAδD = 0.

(22)

Note that Equation 18 is neither increasing nor decreasing on δD. Therefore,
we have three possibilities for the above equation: (1) no solution, (2) one solu-
tion, and (3) more than one solution. When there is no solution, the defender’s
best response is to drop out of the game. In the case of one solution, the defender
moves periodically with δD, i.e., the solution of Equation 18 if the resulting pay-
off is non-negative. When there is more than one solution, the defender plays
periodically with the solution with the highest non-negative payoff. Otherwise,
the defender drops out of the game. ut

A.2 Proof of Lemma 2

In order to calculate the attacker’s payoff, we first calculate the following based
on Equation 12.

uA(α, δD) =
1

δD

((
1 + α

2
−BA

)(
1

λA
− 1

λA
e−λAδD − δDe−λAδD

)
+

(BAδD + IA)
(
1− e−λAδD

)
+

1 + α

2
δDλAΓ (0, δDλA)− cA

)
.

(23)



According to Equation 14, the attacker’s payoff is as follows.

uA(δD) =
1

δD

((
3

4
−BA

)(
1

λA
− 1

λA
e−λAδD − δDe−λAδD

)
+

(BAδD + IA)
(
1− e−λAδD

)
+

3

4
δDλAΓ (0, δDλA)− cA

)
.

(24)

The attacker moves right after the defender if her payoff is positive, i.e.,
uA(δD) > 0. If the attacker’s payoff is negative, her reward is lower than her cost.
Then, a rational player does not have any incentive to actively participate in the
game. Hence, the attacker drops out of the game. If uA(δD) = 0, the attacker is
indifferent between moving right after the defender or dropping out of the game.
By considering Equation 24 and uA(δD) ≥ 0, we can derive Equation 20. ut

A.3 Proof of Theorem 1

In Lemma 1, we have provided the best response for the defender. The defender
has two choices: periodic move or dropping out of the game. Similarly, according
to Lemma 2, the attacker has two choices for her best response: she moves right
after the defender or drops out of the game. Note that Nash equilibrium is a
mutual best response.

In doing so, we first consider the case where the defender’s best response is to
drop out of the game (this means that Equation 18 does not have any solution(s)
giving non-negative payoff(s)). Therefore, the attacker’s best choice is to move
only once at the beginning of the game.

The other choice for the defender, according to Lemma 1, is to move pe-
riodically when Equation 18 has a solution which yields a positive payoff. By
calculating δ?D using this equation, we insert this value to Equation 20 and com-
pare it with cA. Based on Lemma 2, the attacker has two possible choices. First,
if cA ≤ M(δD), the attacker will initiate her attack right after the defender’s
move. Hence, the Nash equilibrium is to move periodically from the defender
side and the attacker should initiate her attack right after the defender’s move.
Second, if cA > M(δD), the attacker will drop out of the game. In this case, the
best response for the defender is to never move. Since he controls the resource
all the time without spending any cost. But, if the defender never moves, then it
is beneficial for the attacker to move at the beginning of the game. Hence, this
situation is not a Nash equilibrium. ut


