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Abstract— Individuals in computer networks not only have to
invest to secure their private resources from potential attackers,
but have to be aware of the existing interdependencies that
exist with other network participants. Indeed, a user’s security
is frequently negatively impacted by protection failures of even
just one other individual, the weakest link.

In this paper, we are interested in the impact of bounded ra-
tionality and limited information on user payoffs and strategies
in the presence of strong weakest-link externalities.

As a first contribution, we address the problem of bounded
rationality by proposing a simple but novel modeling approach.
We anticipate the vast majority of users to be unsophisticated
and to apply approximate decision-rules that fail to accurately
appreciate the impact of their decisions on others. Expert
agents, on the other hand, fully comprehend to which extent
their own and others’ security choices affect the network as a
whole, and respond rationally.

The second contribution of this paper is to address how
the security choices by users are mediated by the information
available on the severity of the threats the network faces. We
assume that each individual faces a randomly drawn probability
of being subject to a direct attack. We study how the decisions
of the expert user differ if all draws are common knowledge,
compared to a scenario where this information is only privately
known.

We further propose a metric to quantify the value of
information available: the payoff difference between complete
and incomplete information conditions, divided by the payoff
under the incomplete information condition. We study this ratio
metric graphically and isolate parameter regions where being
more informed creates a payoff advantage for the expert agent.

I. INTRODUCTION

Security practitioners frequently draw the analogy between
the strength of protective measures and the weakest-link
interdependency.1 In general, interdependencies occur when
the security actions of a given user have an effect on the
rest of the users in the network, in part or as a whole.
Specifically, in the weakest-link externality an attacker is able
(after approaching her target) to identify the least protected
point in the system of interconnected resources in which
the target is embedded. Depending on the type and security
actions of defenders the weaknesses of a system can be costly
to circumvent, and of surprising variety.

On the one hand, technology and code quality are often
the culprits of (un)predictable weaknesses in the chain of
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1See, for example, an interview with a security company CEO conducted
by the New York Times (September 12, 2007), “Who needs hackers,” avail-
able at http://www.nytimes.com/2007/09/12/technology/
techspecial/12threat.html, stating that: “As computer networks
are cobbled together [...] the Law of the Weakest Link always seems to
prevail.”

defense. The increasing complexity of software products (for
example, because of code bloat and feature creep) leaves
little doubt that most publicly available software products
include several significant security vulnerabilities [13]. But
even sophisticated and thoroughly tested security software
and protocols (e.g., certain hard disk encryption packages)
can sometimes be broken with non-standard attacks [21],
or large-scale brute-force efforts [26]. Legal, regulatory and
law enforcement requirements can also put limits on security
effectiveness (e.g., through mandatory escrow of encryption
keys or inclusion of back doors in hardware and software
technologies) [4].

On the other hand, many observers argue that the “human
factor is truly security’s weakest link” [28]. First, insiders
may maliciously interfere with data and network security
to the disadvantage of other individuals [31]. Second, an
abundance of incidents involving lost and stolen property
(e.g., laptops and storage devices), as well as individuals’
susceptibility to deception and social engineering are evi-
dence of breaches characterizing weakest-link vulnerabilities.
Third, users may out of convenience, cognitive limitations
or economic considerations engage in insecure practices.
The most common example is the prevalent use of weak
passwords in organizations reported in many empirical and
behavioral studies [5], [35].2 Password misuse can some-
times be remedied, but it “only requires one indiscretion to
destroy a secret” [8] such as the identities of members of a
darknet (for filesharing purposes).

The last observations can be generalized to the variety of
security precautions that users can implement to safeguard
their individual systems, and to limit the potential negative
externalities that their peers have to endure. Recent studies
show that users frequently fail to deploy, or upgrade security
technologies, or to carefully preserve and backup their valu-
able data [24], [30], which leads to considerable monetary
losses to both individuals and corporations every year.

In this paper, we continue the investigation of the weakest-
link security problem from an economic perspective. Prior
work includes the seminal study by Hirshleifer [22], Varian’s
investigation of public goods functions in the context of
security and reliability [34], and our own prior work [18],
[19]. In all of these studies end users rationally undertake a
cost-benefit analysis and decide for or against certain security

2For example, the analysis of a leaked password data set from phpbb.com
revealed that 16% of passwords matched a person’s first name, 14% of
passwords were patterns on the keyboard, 4% were variations of the word
“password” etc. Analysis available as online article “PHPBB Password
Analysis” at: http://www.darkreading.com/blog/archives/
2009/02/phpbb_password.html.



actions with implications for overall system security [14],
[32].

With the current analysis we want to emphasize two issues
of relevance for security decision-making. First, the risk
management explanation overemphasizes the rationality of
the involved consumers [7], [23]. In practice, consumers face
the task to “prevent security breaches within systems that
sometimes exceed their level of understanding” [3]. And
second, the amount of information users may be able to
acquire, is limited so that users have to implement their
security strategy under considerable uncertainty [1].

As a first contribution, we address the problem of bounded
rationality by proposing a simple but novel modeling ap-
proach. We anticipate the vast majority of users to be un-
sophisticated (or naı̈ve), and to apply approximate decision-
rules that fail to accurately appreciate the impact of their
decisions on others [1]. In particular, we assume non-expert
users to conduct a simple self-centered cost-benefit analysis,
and to neglect interdependencies. Such users would secure
their system only if the vulnerabilities being exploited can
cause a direct annoyance to them (e.g., their machine be-
comes completely unusable), but would not act when they
cannot perceive or understand the effects of their insecure
behavior (e.g., when their machine is used as a relay to send
moderate amounts of spam to third parties).

In contrast, a sophisticated (or expert) user fully compre-
hends to which extent her own and others’ security choices
affect the network as a whole, and responds rationally. We
study the strategic optimization behavior of such an expert
user in an economy of naı̈ve end users for the weakest-link
interdependency by applying a decision-theoretic approach
[6], [15].

The second contribution of this paper is to address how
the security choices by users are mediated by the information
available on the severity of the threats the network faces.
We assume that each individual faces a randomly drawn
probability of being subject to a direct attack. We study
how the decisions of the expert user differ if all draws
are common knowledge, compared to a scenario where this
information is only privately known. With this approach we
provide two important baseline cases for the impact of the
expert agent.

We further propose a metric to quantify the value of
information available to the agents. Specifically, we conduct
a graphical analysis of a ratio metric for the total expected
payoff for the expert user considering the two information
conditions. By evaluating this metric for a range of param-
eters, we can determine when being less informed does not
significantly jeopardize an expert user’s payoff.

The rest of this paper is organized as follows. We first
discuss selected work related to our analytic model and
describe the model in detail, including our assumptions about
agent behaviors and information conditions (Section II).
Then, we present our methodology and formal decision-
theoretic analysis in Section III. We discuss the results and
their implications, and our metric approach to the measure-
ment of information inefficiencies and conduct a preliminary

graphical analysis in Section IV. Finally, we are offering
concluding remarks in Section V and describe our plans for
future work in Section VI.

II. DESCRIPTION OF DECISION-THEORETIC MODEL

We base our model on our previously proposed framework
[18], and extend it to the case of an economy consisting of an
expert user and several unsophisticated users. Our analysis
significantly differs from prior decision-theoretic approaches
that we summarize briefly in the following.

A. Relation to other decision-theoretic approaches

Gordon and Loeb present a model that highlights the trade-
off between perfect and cost-effective security [15]. They
consider the protection of an information set that has an
associated loss if compromised, probability of attack, and
probability that an attack is successful. They show that an
optimizing firm will not always defend highly vulnerable
data, and only invest a fraction of the expected loss. Cavu-
soglu et al. [6] consider the decision-making problem of a
firm when attack probabilities are externally given compared
to a scenario when the attacker is explicitly modeled as
a strategic player in a game-theoretic framework. Their
model shows that if the firm assumes that the attacker
strategically responds then in most considered cases its profit
will increase.

B. Model overview

Self-protection and self-insurance. In practice, the ar-
senal of a defender may include several actions to prevent
successful compromises and to limit losses that result from
a breach [10]. In Grossklags et al. we provide a model
that allows a decoupling of investments in the context of
computer security [18]. On the one hand, the perimeter
can be strengthened with a higher protection investment
(e.g., implementing or updating a firewall). On the other
hand, the amount of losses can be reduced by introducing
self-insurance technologies and practices (e.g., backup pro-
visions). Formally, player i chooses a self-insurance level
0 ≤ si ≤ 1 and a protection level 0 ≤ ei ≤ 1. b ≥ 0
and c ≥ 0 denote the unit cost of protection and self-
insurance, respectively, which are homogeneous for the agent
population. So, player i pays bei for protection and csi for
self-insurance.

Interdependency. We focus in this work on the weakest-
link security game which is an example for tightly coupled
networks [22], [34]. In a tightly coupled network all defend-
ers will face a loss if the condition of a security breach is
fulfilled whereas in a loosely coupled network consequences
may differ for network participants. The interdependency is
modeled with a public goods “contribution” function that
characterizes the effect of ei on agent’s utility Ui, subject to
the protection levels chosen (contributed) by all other players
[34]. The weakest-link contribution function is defined as
H = min(ei, e−i), where, following common notation, e−i

denotes the set of protection levels chosen by players other



than i. We require that H be defined for all values over
(0, 1)N .

Attack probabilities, network size and endowment.
Each of N ∈ N agents receives an endowment M . If she
is attacked and compromised successfully she faces a loss
L. We restrict our attention to cases with N ≥ 2, and
0 ≤ b, c ≤ L ≤ M ; that is, there is no bankruptcy due
to security attacks. We assume that each agent i draws
an individual attack probability pi (0 ≤ pi ≤ 1) from a
uniform random distribution. This models the heterogeneous
preferences that attackers have for different targets, due
to their economic, political, or reputational agenda. The
choice of a uniform distribution ensures the analysis remains
tractable, while already providing numerous insights. We
conjecture that different distributions (e.g., power law) may
also be appropriate in practice.

C. Player behavior

At the core of our analysis is the observation that ex-
pert and non-expert users differ in their understanding of
the complexity of networked systems. Indeed, consumers’
knowledge about risks and means of protection with respect
to privacy and security can be quite varied [1], and field
surveys separate between high and low expertise users [33].

Sophisticated (expert) user. Advanced users can rely
on their superior technical and structural understanding of
computer security threats and defense mechanisms when
they select an adequate security strategy [9]. In the present
context, expert users, for example, have less difficulty to con-
clude that the problem of safeguarding a corporate network
is indicative of a weakest-link optimization problem [18].
Accordingly, a sophisticated user correctly understands her
utility to be dependent on the weakest-link interdependencies
that exist in the network:

Ui = M − piL(1− si)(1−min(ei, e−i))− bei − csi .

Naı̈ve (non-expert) user. Average users underappreciate
the interdependency of network security goals and threats
[1], [33]. We model the perceived utility of each naı̈ve
agent to only depend on the direct security threat and the
individual investment in self-protection and self-insurance.
The investment levels of other players are not considered
in the naı̈ve user’s decision making, despite the existence
of interdependencies. We define the perceived utility for a
specific naı̈ve agent j as:

PUj = M − pjL(1− sj)(1− ej)− bej − csj .

Clearly, perceived and realized utility actually differ: by
failing to incorporate the interdependencies of all agents’
investment levels in their analysis, naı̈ve users may achieve
sub-optimal payoffs that actually are far below their own
expectations. This paper does not aim to resolve this con-
flict, and, in fact, there is little evidence that users will
learn the complexity of network security over time [33].
We argue that non-expert users would repeatedly act in an
inconsistent fashion. This hypothesis is supported by findings

in behavioral economics that consumers repeatedly deviate
from rationality, however, in the same predictable ways [25].

Binary strategies. We further restrict the actions available
to each agent (of either type) to make the analysis tractable.
Instead of picking a continuous protection level 0 ≤ ei ≤ 1,
agents only have the choice between ei = 0 (“do not
protect”) or ei = 1 (“protect”). Likewise, the parameter space
for si is restricted to a binary choice si ∈ {0, 1}. While
this may seem a very strong restriction, prior analysis [18],
[19] showed that, for all models we look at, efficient Nash
equilibria are all of the form (ei, si) ∈ {(0, 0), (0, 1), (1, 0)}
(respectively, “passivity,” “full self-insurance,” and “full pro-
tection”) for all agents i, even when agents can choose ei and
si from a continuous spectrum of values. Further, in practice
many security choices are presented to individuals in discrete
format. For example, users have to decide whether to procure
and install a new security technology [27], [29], or whether
they want to apply a particular patch [2].

D. Information conditions
Our analysis is focused on the decision making of the

expert user subject to the bounded rational behaviors of the
naı̈ve network participants. That is, more precisely, the expert
agent maximizes their expected utility subject to the available
information about other agents’ drawn threat probabilities
and their resulting actions. Two different information condi-
tions may be available to the expert agent:

Complete information: Actual draws of attack probabili-
ties pj for all j 6= i, and her own drawn probability of being
attacked pi.

Incomplete information: Known probability distribution
of the unsophisticated users’ attack threat, and her own drawn
probability of being attacked pi.

Therefore, the expert agent can accurately infer what each
agent’s investment levels are in the complete information
scenario. Under incomplete information the sophisticated
user has to develop an expectation about the actions of the
naı̈ve users.

III. DECISION-THEORETIC ANALYSIS

Agents have three main strategies at their disposal. That
is, they may either prefer to invest in protection, or self-
insurance, or they can remain passive. The basic approach of
our analysis is to conduct pairwise comparisons between the
three strategies and to derive the conditions for the important
parameters under which each of the strategies is optimal.

A. Basic methodology
In the remainder of this discussion, we will always use

the index i to denote the expert player, and j 6= i to denote
the naı̈ve players. Our analysis proceeds via the following
five-step procedure.

1) Determine player i’s payoff within the weakest link
game for selected strategies of passivity, full self-
insurance, and full protection.

2) Determine the conditions on the game’s parameters (b,
c, L, N , pi, and if applicable, pj for j 6= i) under
which player i should select each strategy.



3) Determine additional conditions on the parameters
such that the probability (relative to pi) of each case,
as well as the expected value of pi within each case
can be easily computed.

4) Determine player i’s total expected payoff relative to
the distribution on pi and all other known parameters.

5) In the case of complete information, eliminate depen-
dence on pj for j 6= i by taking, within each parameter
case, an appropriate expected value.

B. Examples of computation

In the remainder of this section we exemplify this method
by highlighting the more difficult cases in the analysis.

Step 1: Payoff computation
Table I records the payoffs for the expert player given

the choice between the three security strategies. Each entry
in this table is determined by substituting the specified
information condition and selected strategy into the basic
utility function for player i,

Ui = M − piL(1−min(ei, e−i))(1− si)− bei − csi. (1)

As a result of these computations we derive case functions.
To make the information easier to present and manipulate, we
have included case divisions as row labels, so that all entries
can be expressed in a simple closed form. For example,
to compute the payoff for full protection with complete
information, we substitute (ei, si) = (1, 0) into Equation 1
to get:

M − b− piL(1−min
j 6=i

ej). (2)

Our assumptions about players j 6= i is that they play the
naı̈ve strategy. That is, they protect fully if and only if b ≤ c
and b ≤ pjL. Hence,

min
j 6=i

ej =

{
1 if b ≤ c and b

L ≤ minj 6=i pj

0 otherwise
. (3)

The payoff for full protection with complete information
can thus be expressed as the case equation:

Ui =

{
M − b if b ≤ c and b

L ≤ minj 6=i pj

M − b− piL otherwise
. (4)

By subdividing the various cases, we get the closed form
expressions listed in Table I.

Next, we consider the case of incomplete information. If
c < b, then we know none of the naı̈ve players will protect,
so the payoff for player i will always be:

M − b− piL. (5)

If b ≤ c, however, player i’s utility depends on the unknown
information minj 6=i ej . The best we can do with the infor-
mation we have is to compute an expected utility for player
i by evaluating:

M − b− piL(1− E[min
j 6=i

ej ]) (6)

(following Equation 2). Since minj 6=i ej takes values in
{0, 1}, its expected value is just Pr[minj 6=i ej = 1], which
(using Equation 3 and the assumption b ≤ c) is the proba-
bility that all the drawn pj’s are greater than b

L , and this in
turn is equal to

(
1− b

L

)N−1
. So the (expected) payoff for

protection under incomplete information and b ≤ c is

M − b− piL ·

(
1−

(
1− b

L

)N−1
)

. (7)

Step 2: Strategy selection
Now that the payoffs for each strategy have been explicitly

recorded, we seek to determine which of the three potential
strategies maximizes the payoff for player i, relative to all
known parameters.

In the case c < b, the payoff expressions from Table I
are simple, and do not depend on the information conditions
(i.e., complete or incomplete). In this case, the payoff for
protection M−b−piL is always (weakly) dominated by the
payoff for passivity M−piL; hence it is never advantageous
in the case c < b for player i to choose protection. The
choice then is between self-insurance and passivity, with self-
insurance the preferable option when pi > c

L , and passivity
the better option if pi < c

L . In the case pi = c
L , the payoffs

for passivity and self-insurance are the same; for consistency
we adopt the convention that under these circumstances the
expert prefers to self-insure.

When b ≤ c in the case of complete information, de-
termining the strategy selection conditions is still relatively
easy. When b ≤ c and minj 6=i pj < b

L , the payoffs for all
three strategies are the same as above, and thus the strategy
selection conditions are also the same as above. In the case
b ≤ c and b

L ≤ minj 6=i pj , the payoff for protection is
now M − b. Thus, assuming that b ≤ c the payoff for
self-insurance M − c is always (weakly) dominated by the
payoff for protection. Hence, the expert reasonably selects
between protection M − b and passivity M − piL, with
protection preferable when pi > b

L and passivity preferable
when pi < b

L . In the case of a tie pi = b
L we follow the

convention that the expert selects protection.
The case b ≤ c with limited information is the more

difficult case. To determine the optimal strategy for player
i, we must select the maximum of the payoffs for passivity:
M − piL, self-insurance: M − c, and protection: M − b −
piL(1− (1− b/L)N−1). We should choose passivity if it is
better than self-insurance or protection, i.e. M−piL > M−c
and M − piL > M − b − piL(1 − (1 − b/L)N−1). We
should choose self-insurance if it is better than passivity
or protection, i.e. M − c ≥ M − piL and M − c >
M − b − piL(1 − (1 − b/L)N−1). We should choose
protection if it is preferable to passivity or self-insurance,
i.e. M − b − piL(1 − (1 − b/L)N−1) ≥ M − piL and
M − b− piL(1− (1− b/L)N−1) ≥ M − c.

Re-writing the above inequalities as linear constraints
on pi, we choose passivity if pi ≤ c/L and pi ≤

b
L(1−(1−b/L)N−1)

; we choose self-insurance if pi > c/L

and pi > c−b
L(1−(1−b/L)N−1)

; and we choose protection if



TABLE I
WEAKEST LINK SECURITY GAME: PAYOFFS FOR DIFFERENT STRATEGIES UNDER DIFFERENT INFORMATION CONDITIONS

Case Information Payoff Payoff Payoff
Type Passivity Self-Insurance Protection

c < b Complete M − piL M − c M − b− piL

b ≤ c and minj 6=i pj < b
L

Complete M − piL M − c M − b− piL

b ≤ c and b
L
≤ minj 6=i pj Complete M − piL M − c M − b

c < b Incomplete M − piL M − c M − b− piL

b ≤ c Incomplete M − piL M − c M − b− piL

(
1−

(
1− b

L

)N−1
)
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Fig. 1. Cases for incomplete information conditions (The highlighted regions indicate the four cases identified in Table II. The x-axis covers values for
protection cost b, and the y-axis shows self-insurance cost c. The loss penalty is fixed at L = 1. Displayed are graphs for three different network sizes.)

c−b
L(1−(1−b/L)N−1)

≤ pi ≤ b
L(1−(1−b/L)N−1)

.
For simplicity of computation, we would like to have

our decision mechanism involve only a single inequality
constraint on pi. To obtain this sub-result it is necessary and
sufficient to determine the ordering of the three terms: c

L ,
b

L(1−(1−b/L)N−1)
, and c−b

L(1−(1−b/L)N−1)
.

It turns out that there are only two possible orderings for
these three terms. The single inequality

c <
b

(1− b/L)N−1
(8)

determines the ordering: c
L < c−b

L(1−(1−b/L)N−1)
<

b
L(1−(1−b/L)N−1)

; while the reverse of Inequality 8 deter-
mines the reverse ordering on all three terms. This observa-
tion suggests we should add sub-cases under b ≤ c depending
on which of these two inequalities holds. See Table II.

Within each new sub-case the criterion for selecting the
strategy that gives the highest payoff can now be represented
by a single linear inequality on pi. If c ≤ b

(1−b/L)N−1 , then
passivity is preferable as long as pi < c/L; (because the new
case conditions also guarantee pi < b

L(1−b/L)N−1 ). Similarly,
self-insurance wins if pi ≥ c/L. Protection will never be
preferred in this case because we cannot have

c− b

L
(
1− (1− b/L)N−1

) ≤ pi ≤
b

L
(
1− (1− b/L)N−1

)
when we also have b

(1−b/L)N−1 < c−b

L(1−(1−b/L)N−1) . The

computations for the case b
(1−b/L)N−1 < c are similar; the

results are recorded in Table II.

Step 3: Case determination

Now that we have written down the payoffs and con-
ditions, it should be a straightforward task to write down
an expression for the expert player’s total expected payoff,
by taking an expected value over all possibilities for pi

and (where applicable) pj . Unfortunately, writing such an
expression at this point in the process requires considering
additional cases, essentially because some of the conditions
on pi from the previous step may not be compatible with
the requirement that pi is a probability in [0, 1]. Because the
computation of a total expected payoff is already somewhat
cumbersome, we take an additional step to produce an
efficient set of case constraints such that all the probabilities
and expected values necessary to compute the total expected
payoffs can be written in closed form given the additional
breakdown of cases.

Consider the various linear constraints on pi from Table II.
Because we have assumed from the onset that 0 ≤ b, c ≤ L,
the only difficulty arises with the case b

(1− b
L )N−1 < c under

the conditions of incomplete information. Here (referring
to Table II for the values) we must introduce additional
cases to determine how the quantities b

L(1− b
L )N−1 and

c−b

L
(
1−(1− b

L )N−1
) relate to 1, and to each other.

From the case assumption b

(1− b
L )N−1 < c we can deduce

that b

L(1− b
L )N−1 is both less than 1 and also less than

c−b

L
(
1−(1− b

L )N−1
) . Hence, it remains to know the greater of



TABLE II
WEAKEST LINK SECURITY GAME: CONDITIONS TO SELECT PROTECTION, SELF-INSURANCE OR PASSIVITY STRATEGIES

Case Information Conditions Conditions Conditions
Type Passivity Self-Insurance Protection

c < b Complete pi < c
L

pi ≥ c
L

NEVER!
b ≤ c and minj 6=i pj < b

L
Complete pi < c

L
pi ≥ c

L
NEVER!

b ≤ c and b
L
≤ minj 6=i pj Complete pi < b

L
NEVER! pi ≥ b

L

c < b Incomplete pi < c
L

pi > c
L

NEVER!
b ≤ c ≤ b

(1− b
L )N−1 Incomplete pi < c

L
pi ≥ c

L
NEVER!

b

(1− b
L )N−1 < c Incomplete pi < b

L(1− b
L )N−1 pi > c−b

L
(
1−(1− b

L )N−1
) b

L(1− b
L )N−1 ≤ pi ≤ c−b

L(1−(1− b
L

)N−1)

1 or c−b

L
(
1−(1− b

L )N−1
) , and this is not determined by our

previous case conditions. We thus add this relation as an
additional case consideration, rewriting c−b

L
(
1−(1− b

L )N−1
) <

1 for consistency as the following linear inequality on c
yields

c < b + L

(
1−

(
1− b

L

)N−1
)

.

Figure 1 includes three plots of the four distinct cases for
the incomplete information condition as functions of b and
c, with fixed L and N , helping us to see more directly how
the parameters inform the case conditions.

Step 4: Total payoff computation
Now that the cases are established so that all best-strategy

decisions can be made by evaluating a simple linear inequal-
ity on pi, it is straightforward to compute the probability
(over pi) that each decision is reached, given a set of fixed
parameters (other than pi). These probabilities are recorded
in Table III. It is now also easy to compute the expected value
of pi within each decision case, but we have not included
a separate table of expected pi here because they are more
complicated to display and only serve as an intermediate step
during the process of payoff computation.

The total payoff for each parameter case is computed by
evaluating (Probability of passivity · Expected payoff for
passivity) + (Probability of self-insurance · Expected payoff
for self-insurance) + (Probability of protection · Expected
payoff for protection). As an example, we compute the
total expected payoff for the parameter case b ≤ c and
b
L ≤ minj 6=i pj . Here we have:

Payoff[passivity] · Pr[passivity]
+ Payoff[insurance] · Pr[insurance]
+ Payoff[protection] · Pr[protection]

= [M − E[pi] · L] ·
[

b

L

]
+ [M − c] · [0] + [M − b] ·

[
1− b

L

]
=
[
M −

(
b

2L

)
· L
]
·
[

b

L

]
+ [M − b] ·

[
1− b

L

]
= M − b2

2L
− b +

b2

L

= M − b +
b2

2L

The appropriate derivations for each of the remaining
parameter cases and information conditions are omitted due
to space considerations, but the results are recorded in
Table IV.

Step 5: Eliminating dependence on other players
The results in Table IV give the total expected payoffs

for player i conditioned on all parameters other than pi. In
the case of complete information, these results depend on
known information about pj for other players j. To facilitate
a comparison of expected payoffs between complete and
incomplete information, we seek to eliminate the dependence
on pj for the expert with complete information. We do this by
taking an additional expected value over all the pj . Because
the pj’s only occur in two case conditions this is relatively
straightforward and requires only one computation.

We get an expected payoff for complete information in the
case b ≤ c by computing (the probability that we are in the
sub-case b ≤ c and minj 6=i pj < b

L times the payoff for this
case) + (the probability that we are in the sub-case b ≤ c
and b

L ≤ minj 6=i pj times the probability that we are in this
case). We have:

Probabilitypj :j 6=i

[
min
j 6=i

pj <
b

L

]
· ExPayoff[that case]

+ Probabilitypj :j 6=i

[
b

L
≤ min

j 6=i
pj

]
· ExPayoff[that case]

=

(
1−

(
1− b

L

)N−1
)
·
[
M − c +

c2

2L

]
+
(

1− b

L

)N−1

·
[
M − b +

b2

2L

]
= M − c +

c2

2L
+
(

c− c2

2L

)(
1− b

L

)N−1

−
(

b− b2

2L

)(
1− b

L

)N−1

= M − c +
c2

2L
+
(

c− b− c2 − b2

2L

)(
1− b

L

)N−1

= M − c +
c2

2L
+ (c− b)

(
1− c + b

2L

)(
1− b

L

)N−1

This gives us an expected payoff for the case b ≤ c
under complete information conditions that we can directly



TABLE III
WEAKEST LINK SECURITY GAME: PROBABILITIES TO SELECT PROTECTION, SELF-INSURANCE OR PASSIVITY STRATEGIES

Case Information Probability Probability Probability
Type Passivity Self-Insurance Protection

WC1 c < b Complete c
L

1− c
L

0
WC2a b ≤ c and minj 6=i pj < b

L
Complete c

L
1− c

L
0

WC2b b ≤ c and b
L
≤ minj 6=i pj Complete b

L
0 1− b

L

WI1 c < b Incomplete c
L

1− c
L

0
WI2 b ≤ c ≤ b

(1− b
L )N−1 Incomplete c

L
1− c

L
0

WI3 b

(1− b
L )N−1 < c and Incomplete b

L(1− b
L )N−1 1− c−b

L
(
1−(1− b

L )N−1
) c−b

L(1−(1− b
L

)N−1)
− b

L(1− b
L )N−1

c < b + L

(
1−

(
1− b

L

)N−1
)

WI4 b

(1− b
L )N−1 < c and Incomplete b

L(1− b
L )N−1 0 1− b

L(1− b
L )N−1

b + L

(
1−

(
1− b

L

)N−1
)
≤ c

TABLE IV
WEAKEST LINK SECURITY GAME: TOTAL EXPECTED GAME PAYOFFS, CONDITIONED ON OTHER PLAYERS

Case Information Total Expected Payoff for player i
Type (conditioned on other players)

WC1 c < b Complete M − c + c2

2L

WC2a b ≤ c and minj 6=i pj < b
L

Complete M − c + c2

2L

WC2b b ≤ c and b
L
≤ minj 6=i pj Complete M − b + b2

2L

WI1 c < b Incomplete M − c + c2

2L

WI2 b ≤ c ≤ b

(1− b
L )N−1 Incomplete M − c + c2

2L

WI3 b

(1− b
L )N−1 < Incomplete M − c + b2

2L(1− b
L )N−1 +

(c−b)2

2L
(
1−(1− b

L )N−1
)

c < b + L

(
1−

(
1− b

L

)N−1
)

WI4 b

(1− b
L )N−1 < Incomplete M − b− L

2

(
1−

(
1− b

L

)N−1
)

+ b2

2L(1− b
L )N−1

b + L

(
1−

(
1− b

L

)N−1
)
≤ c

compare with the cases for incomplete information. The final
results for comparison are presented in Table V.

IV. RESULTS

In the previous section we derived total expected payoffs
for the expert user under complete and incomplete informa-
tion conditions. As some of these results contain as many
as five variables the chief goal of this section is to provide
the reader with a more meaningful and practically relevant
interpretation. We highlight several important features from
the tabulated results, and include several graphs to help
identify important patterns.

Result 1: The expert always receives the same or higher
payoff with complete information compared to having incom-
plete information.

Our graphs in Figure 2 give evidence of this result, and we
could also derive it algebraically by comparing pairwise the
expressions in Table V. For explanatory purposes, we offer a
more subtle and more general argument involving the way we
have modeled the information conditions. Fix values for all
the information parameters p1, . . . , pn, b, c, L,M,N . In the
case of complete information, the expert selects an optimal

strategy that maximizes her payoff given the values of these
parameters. By the definition of a maximum, the strategy
selected by the expert with incomplete information cannot
result in a higher payoff (assuming the same fixed parameter
values). The result we wish to show now follows from
the fact that taking expected values preserves inequalities.
I.e., the total expected payoff under incomplete information
cannot exceed that of complete information.

Result 2: When self-insurance cost are lower than pro-
tection expenses then defender strategies and payoffs are
identical for both information conditions.

When self-insurance is priced lower than protection, there
is no cost incentive for the other players to choose protection.
Hence, the additional knowledge about the naı̈ve users’
security risks does not give any advantage to the expert
player, or change her security strategy.

Result 3: When protection is cheaper than self-insurance
information matters.

In order to quantify this statement, we require a definition.
We define the value of information in the weakest-link
security game to be the payoff difference between complete



TABLE V
WEAKEST LINK SECURITY GAME: TOTAL EXPECTED GAME PAYOFFS, NOT CONDITIONED ON OTHER PLAYERS

Case Information Total Expected Payoff for player i
Type (not conditioned on other players)

WC1 c < b Complete M − c + c2

2L

WC2 b ≤ c Complete M − c + c2

2L
+ (c− b)

(
1− c+b

2L

) (
1− b

L

)N−1

WI1 c < b Incomplete M − c + c2

2L

WI2 b ≤ c ≤ b

(1− b
L )N−1 Incomplete M − c + c2

2L

WI3 b

(1− b
L )N−1 < c < b + L

(
1−

(
1− b

L

)N−1
)

Incomplete M − c + b2

2L(1− b
L )N−1 +

(c−b)2

2L
(
1−(1− b

L )N−1
)

WI4 b

(1− b
L )N−1 < b + L

(
1−

(
1− b

L

)N−1
)
≤ c Incomplete M − b− L

2

(
1−

(
1− b

L

)N−1
)

+ b2

2L(1− b
L )N−1

WN1 c < b Naive M − c + c2

2L

WN2 b ≤ c Naive M − b + b2

2L
− L

2

(
1− b2

L2

) (
1−

(
1− b

L

)N−1
)

(a) Payoff under Complete Information (b) Payoff under Incomplete Information (c) The Difference

Fig. 2. Payoff Comparison of Complete and Incomplete Information Conditions: with L = M = 1 and N = 5. (The first two plots show that under
either information condition payoff is high when protection or self-insurance is cheap; and payoff is lower when protection and self-insurance are both
expensive. The difference between information conditions is shown in the third graph. Observe the substantial change of scale. The difference between the
payoffs is less than 10% of the best-case payoff, and less than 20% of the worst-case payoff.)

and incomplete information conditions, divided by the payoff
under the incomplete information condition.

Payoff[Complete]−Payoff[Incomplete]
Payoff[Incomplete]

(9)

This ratio is 0 in cases where information does not
matter, and it increases, potentially (though not actually)
without bound, as information becomes more significant.
With this definition in hand, we can give three additional
results addressing the value of information. We first give an
absolute upper bound on the value of information; secondly,
we address how the value of information is affected by self-
insurance and protection costs; and thirdly, we determine
how the value of information holds up as the number of
other players increases.

Result 4: While information does matter, the value of
information is bounded, and is in fact never overwhelmingly
significant.

In particular, for all parameter settings, the value of
information as we have defined it never exceeds 0.18; that
is to say that the difference in payoff between complete and
incomplete information is never more than 18% of the total
expected payoff under incomplete information. Interestingly,
the value of information reaches its highest point at a local

maximum with N = 4 and a value of about 0.1787. We have
not included the full range of plots or the algebraic reductions
necessary to demonstrate this assertion, but as an example,
Figure 3 plots the value of information as a function of b
and c, with L = M = 1 fixed and for a range of N .

Result 5: For the value of information to be noticeable, the
costs of self-insurance and protection must be selected from
a restrictive range of values. Furthermore, these restrictions
become more severe as the number of players increases.

For example, with an increase in the number of players,
information has a significant value only when protection
costs are very small. This feature is evidenced by the
sequence of graphs in Figure 3.

Self-insurance and protection must be “well-priced”, for
security choices to be interesting and challenging. Con-
versely, if these costs are not “well-priced”, then security
choices are obvious without additional security-related infor-
mation. This observation suggests that there may be value in
restricting our attention to those values of protection and self-
insurance costs that maximize the value of information. By
doing so we can more easily see how the value of information
depends on the potential losses and the number of players.

Result 6: As long as protection and self-insurance costs
are chosen to meet appropriate restrictions, the value of



(a) N = 2 (b) N = 5 (c) N = 25

Fig. 3. The Value of Information, as measured by the ratio: Payoff[Complete]−Payoff[Incomplete]
Payoff[Incomplete] with L = M = 1. (The three plots offer one measure

of the value of information, in terms of protection costs b and self-insurance costs c. Observe the similarity to the case conditions in Figure 1. The value
of information is always highest in the same case condition, case WI3, the case in which passivity, self-insurance, and protection are all viable options.)

information remains bounded away from zero, even with
many players.

In particular, as the number of players increases, there
remains a choice of self-insurance and protection costs such
that the value of information is at least 0.1; or to say it
another way, there always exist some self-insurance and
protection costs such that an expert without relevant security
information could expect to add 10% to her total expected
payoff by gaining that information.

To illustrate this result, we fix L = M = 1 and consider
the maximum, over all b, c with 0 ≤ b, c ≤ L, of the
value of information normally considered as a function of
b, c, L, M, N . These restrictions give us a function in the
single variable N . Figure 4 plots this function for N going
from 2 to 200. As can be seen from the graph, the value of
information approaches a constant (very close to 0.11) as N
increases.

V. CONCLUDING REMARKS

This paper extends the framework of our previous security
model to accommodate limited information and bounded
rationality. In conducting a comprehensive case analysis of
this scenario, we have built a framework in which further
extensions of our model can be more easily studied [20]. Our
main computational achievement takes the form of expected
payoffs for an expert user under two security information
conditions. Comparing these expected payoffs is complicated
because they involve functions of five parameters. To assist
with interpretation, we offer a further graphical and numeri-
cal analysis to isolate key features in these payoffs and draw
out practical implications. We also develop a concrete metric
for measuring the value of information. The upshot is that
information matters, to an extent. The overall significance
of information compared to other factors may be limited,
and there may only be an isolated set of costs for which
complete information gives a significant advantage, but those
costs always exist even in large networks.

VI. FUTURE WORK

First, we are currently extending our analysis to different
forms of security interdependencies. Following our own prior

work [18], we are considering best-shot and total effort
contribution functions [20].

Second, we intend to further explore the applicability of
different metrics to measure the value of information. In
particular, we interested in studying worst-case outcomes for
difference, payoff-ratio, and cost-ratio metrics.

Third, we are developing a set of laboratory experiments to
conduct user studies and attempt to measure the differences
between perfectly rational behavior and actual strategies
played [16]. Preliminary results are available for the weakest-
link game with incomplete information [17].

Finally, we want to mention our interest in a more detailed
exploration of the incentives of attackers. We have studied
a simple scenario with an endogenously modeled strategic
attacker [12]. However, we intend to conduct a more thor-
ough analysis to study opportunities for attack deterrence and
avoidance, and to better understand the interactions between
competing self-interested malefactors [11].
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