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ABSTRACT
Computer users express a strong desire to prevent attacks and to re-
duce the losses from computer and information security breaches.
However, security compromises are common and widespread and
highly damaging. Next to attackers’ increased sophistication, a root
cause for the harm inflicted is that users often fail to optimally pro-
tect their resources or to recover gracefully from a security breach.

We argue that users often underestimate the strong mutual depen-
dence between their security strategies and the economic environ-
ment (e.g., threat model) in which these choices are made and eval-
uated. This misunderstanding weakens the effectiveness of users’
security investments, and is compounded by heterogeneity within
the user population, in some cases further reducing incentives for
cooperation and coordination.

We study how economic agents invest into security in five dif-
ferent economic environments, that are characteristic of different
threat models. We consider generalized models of traditional pub-
lic goods games (e.g., total effort and weakest link) and two re-
cently proposed games (e.g., weakest target game). Agents may
split their contributions between a public good (protection) and a
private good (self-insurance).

Our analysis centers on how agents respond to incentives when
important parameters of the game (i.e., loss probability, loss mag-
nitude, and cost of technology) are heterogeneous in the agent pop-
ulation. We also highlight key differences to the case of homo-
geneous decision makers. For example, security investments may
become substantially more sensitive to the size of the network. We
extend our results to discuss important modes of intervention.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer-Communication
Networks; J.4 [Computer Applications]: Social and Behavioral
Sciences—Economics; K.4.4 [Computers and Society]: Electronic
Commerce—Security
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1. INTRODUCTION
A majority of computer and network users indicate interest in

preventing attacks and limiting the damages from security breaches
[1]. At the same time, measurement studies and surveys [4, 7, 36]
show strong evidence that security precautions, be they patching,
spyware-removal tools, or even sound backup strategies, are absent
from a vast majority of systems surveyed.

As a result, security problems seem to be multiplying – see for
instance [28, 29, 30] for some of the cases most discussed in pop-
ular media. Threats include attacks on the network as a whole, at-
tacks on selected end-points, racketeering and/or blackmail linked
to distributed denial of service, undesirable forms of interactions
such as spam e-mail, and annoyances such as Web pages that are
unavailable or defaced.

While precise estimates of the impact of each of these threats
are still subject to debate, a somewhat general consensus is that
taken all together, security incidents have caused billions of dollars
in damages, and could easily be dwarfed by future losses, if the
situation is not addressed quickly [41]. Damages include loss of
information, incapacity to conduct business for extended periods
of time, productivity losses, and surcharge in repair and mainte-
nance, to name a few. The situation has degraded to the point that
underground markets capitalizing on security issues are emerging
[15, 24].

It therefore becomes urgent to understand why most individu-
als and corporations either do not implement sufficient security on
their systems, or invest in the wrong things, when, by and large,
security technology is readily available, and most end-users have a
stated interest in improving the security of the systems they own or
operate.

To obtain elements of answers to the above research question,
we focus on an analysis of five stylized “security games,” with a
small number of decision parameters upon which each user can act.
These five games provide a series of simple abstractions that can
capture the essence of most of the security interactions observed in
the field [19].

To that effect, we build upon public goods literature [22, 39],
and consider the classical best shot, total effort, and weakest link
games in a security context with heterogeneous agents. We also
revisit our proposed “weakest target” game [19], which allows us
to describe a whole class of attacks ranging from insider threats to
very aggressive worms. Compared to prior work, the key novelty
of the model behind our proposed security games is to decouple
protection investments (e.g., setting up a firewall) from insurance



coverage (e.g., archiving data as back up). In short, our work is the
first to tackle security as a hybrid between a private and a public
good.

The first contribution of the present paper is to extend and gener-
alize models we previously proposed for homogeneous agents [19]
to the significantly more complex heterogeneous agent case.

The second contribution of this paper is to exploit the results
from the analysis to evaluate the impact of possible (centralized
or distributed) intervention policies aiming at reaching an outcome
beneficial to society as a whole.

We point out that this study relies on game theory, mostly using
Nash equilibrium concepts, which may present some limitations
[11]. We nevertheless postulate that the models and results derived
here allow to gain valuable insights into user behavior and policy
impact, which we ultimately plan on validating through behavioral
user studies.

The rest of this paper is organized as follows. We elaborate in
Section 2 on the relationship of our work with related research,
and extend our game-theoretic models to take into account agent
heterogeneity in Section 3. We analyze Nash equilibria stemming
from these games in Section 4, and use this analysis to look into
possible intervention mechanisms in Section 5. We conclude in
Section 6.

2. BACKGROUND AND MOTIVATION
Using economic tools to aid in security analysis has gained in-

creasing relevance over the past few years. Indeed, attackers have
become more and more akin to rational economic actors, e.g., mo-
tivated by greed [15]. In addition, the democratization of informa-
tion networks has led to numerous business opportunities, which
have in turn translated in a change in the behavior of network par-
ticipants. They are indeed becoming increasingly self-interested,
and increasingly view information networks as competitive mar-
kets rather than cooperative platforms [12].

2.1 Economics of security
The key findings coming from studying network security through

the prism of economics are that misaligned incentives and posi-
tive and negative externalities play significant roles in the strategies
used by each party in the battle between attackers and potential vic-
tims [2, 3, 26].

A large body of research [5, 18, 21, 34] has been devoted to an-
alyzing optimal security investments from an individual choice’s
perspective. For instance, some of these works attempt to char-
acterize optimal patching strategies at a end-host when patching
itself is a costly operation. As such, this research considers agents
as acting in isolation, in response to a given exogenous threat. Our
work, on the other hand, considers strategic interactions when play-
ers face network effects, that is, when each individual choice affects
the security of the whole network. While players are not necessar-
ily hostile to each other (although they may be), they usually do not
have the best interest of the whole network in mind when making
their security choices.

2.2 Security as hybrid goods
Our work builds on the public goods literature [22, 39] by treat-

ing security as a hybrid between public and private goods. We
identify two key components of a security strategy: self-protection
(e.g., patching system vulnerabilities) and self-insurance (e.g., hav-
ing good backups) [19].

Self-protection denotes the ability to reduce the probability of a
loss. Self-insurance, on the other hand, characterizes a reduction in
the magnitude of a loss, when a disastrous event occurs. Similar to

the exposition by Varian [39], individual self-protection strategies
(chosen by each player) have an effect on the protection levels of
all players in the network, which is a key characteristic of public
goods. Self-insurance only affects the player who subscribes to it,
and is consequently a private good.

Our analysis complements the work of Ehrlich and Becker, who
were the first to consider the joint concepts of self-protection and
self-insurance [14], by extending the discussion to the public goods
and security context.

2.3 Heterogeneity in system security
In a stark contrast to our previous work [19], the salient feature

of the research presented in this paper is to consider security as a
combination of private and public goods in the context of heteroge-
neous agents.

Both the homogeneous and heterogeneous cases are relevant to
security analysis. Homogeneous agents are characteristic of large
populations following the same practices and choices by end-users,
for instance, when most security decisions (e.g., patching) are au-
tomated, and all users run similar software. The lack of diversity,
in particular in the market for operating systems, lends credibility
to such scenarios [17], and is cited as a strong motivator for devel-
opers of malicious code to exploit the resulting correlated risks or
to cheaply repeat attacks.

However, there are strong reasons to compare our earlier findings
with a model that includes heterogeneous agents into a model of
security decision making.

Security through diversity. Recent technical proposals aim to
achieve higher resilience to attacks by introducing diversity in net-
work and protocol design. For example, Zhuang et al. report of a
set of formal analysis tools that introduce heterogeneity in multi-
person communication protocols [42]. O’Donnell and Sethu de-
velop and test distributed algorithms optimizing the distribution
of distinct software modules to different nodes in a network [31].
Research in IT economics has evaluated the decision making of a
firm when faced with the option of increased diversity in its soft-
ware base. In Chen et al., the decision for increased heterogeneity
depends largely on the assumed risk attitudes of the organization
[10]. Investments into heterogeneity will change the expectation
of losses and attack probabilities, but they also impact the cost of
protection and self-insurance.

Chameleonic threats. Increased diversity is not a sufficiently
strong protection against correlated security threats anymore. Al-
ready in 1995 the first macro viruses started targeting MS office
on all compatible systems.1 Modern cross-platform malware is ca-
pable of targeting also different operating systems. For instance,
Linux-Bi-A/Win-Bi-A is written in assembler and able to compro-
mise Windows and Linux platforms. Malicious code is also capable
of crossing the boundary between desktop and mobile devices. For
example, the hybrid pathogen Nimda, a worm that can spread as a
virus as well, has successfully propagated on different media such
as floppies, portable hard drives, and USB pen drives [40].

Potentially even more disruptive is malware carrying multiple
exploit codes at once. For example, Provos et al. report that Web-
based malware often includes exploits that are used ‘in tandem’ to
download, store and then execute a malware binary [32]. These
trends render users vulnerable to propagated threats if owners of
different IT systems perceive protection as too costly or ineffective.

1The macro virus (Winword-Concept) targeted Microsoft Word on
Apple and Microsoft systems. For more details see: http://
web.textfiles.com/virus/macro003.txt.



Heterogeneous investments patterns. Different organizations
follow distinct patterns of IT investment. Parts of organizations
often depend on legacy systems including weakly protected sys-
tems, or “boat anchors” with limited value to an organization [41].
Such legacy systems can allow skilled attackers to intrude a net-
work. More generally, organizations and end users justify secu-
rity investments with different assumptions about potential losses
and probabilities of being attacked. This often depends on different
knowledge about threats and means of protection and insurance [1].
This diversity is reflected in users’ choices and security practices
[4, 7]. Similarly, security decisions can follow different security
paradigms often reflected in different organizational structures, for
instance remote replication vs. offsite tape storage.

Finally, heterogeneous agents have notable implications in terms
of policy design. For instance, Bull et al. [8] observe the state
of heterogeneous networks and argue that no single security policy
will be applicable to all circumstances. They argue that, for a sys-
tem to be viable from a security standpoint, individuals need to be
empowered to control their own resources and to make customized
security trade-offs.

In this paper, we formally explore such theses, by studying in-
dividuals’ incentives in non-cooperative games. In particular, we
focus on the impact of heterogeneous agents on system security in
different network structures.

3. FIVE CANONICAL SECURITY GAMES
A security game is a game-theoretic model that captures essen-

tial characteristics of decision making to protect and self-insure re-
sources within a network of agents. In this section, we summarize
the security games we analyze, and extend models we previously
proposed [19] to the heterogeneous agent case.

As discussed earlier, we model security as a hybrid between pub-
lic and private goods. On the one hand, as was previously observed
by Varian [39], the success of security (or reliability) decision mak-
ing frequently depends on a joint protection level determined by
all participants of a network. The computation of the protection
level will often take the form of a public goods contribution func-
tion. Because network protection is a public good, it may allow, for
certain types of contribution functions, individuals to free-ride on
others’ efforts. At the same time, some individuals may also suffer
from inadequate protection efforts by other members if those have
a decisive impact on the overall protection level.

In addition to self-protection, network participants can decide to
self-insure themselves from harm. The success of insurance deci-
sions is completely independent of protection choices made by the
individual and others. Consequently, the games we consider share
qualities of private (on the insurance side) and public (on the pro-
tection side) goods.

All security games we introduce share the following key assump-
tions: (i) all entities in the network share a single purely public
protection output, and (ii) a single individual decides on protection
efforts for each entity – we do not assume a second layer of orga-
nizational decision making.

Different from our previous exposition [19], protection costs per
unit are not necessarily identical for each entity, and, while in the
formal analysis that follows we make the assumption that all deci-
sions are made simultaneously, we later discuss the impact of re-
laxing the synchronization assumption.

We develop security games from a basic model with the follow-
ing payoff structure. Each of N ∈ N players receives an individ-
ual endowment Mi. If she is attacked and compromised success-
fully she faces a loss Li. Attacks arrive with a probability of pi

(0 ≤ pi ≤ 1), which albeit exogenous, is also dependent on the

player under consideration; pi remains constant over time.2 Play-
ers have two security actions at their disposition. Player i chooses
an insurance level 0 ≤ si ≤ 1 and a protection level 0 ≤ ei ≤ 1.
Finally, bi ≥ 0 and ci ≥ 0 denote the unit cost of protection and
insurance, respectively. The generic utility function of Player i is
defined as:

Ui = Mi − piLi(1− si)(1−H(ei, e−i))− biei − cisi , (1)

where, following common game-theoretic notation, e−i denotes
the set of protection levels chosen by players other than i. H is
a contribution function of ei, which is required to be defined for
all values over (0, 1)N . However, we do not place, for now, any
further restrictions on the contribution function (e.g., continuity).

From Eqn. (1), the magnitude of a loss depends on three factors:
i) whether an attack takes place (pi), ii) whether the individual in-
vested in self-insurance (1− si), and iii) the magnitude of the joint
protection level (1−H(ei, e−i)). Self-insurance always lowers the
loss that an individual incurs when compromised by an attack. Pro-
tection probabilistically determines whether an attack is successful.
Eqn. (1) therefore yields an expected utility.

We rely on five games in the following discussion. In selecting
and modeling these games we paid attention to comparability of our
security games to prior research (e.g., [22, 35, 39]). The first three
specifications for H represent important baseline cases recognized
in the public goods literature. To allow us to cover most security
dilemmas, we add two games, which we originally introduced only
in the context of homogeneous agents [19].

Total effort security game: The global protection level of the
network depends on the sum of contributions normalized over the
number of all participants. That is, we define H(ei, e−i) = 1

N

∑
i ei,

so that Eqn. (1) becomes

Ui = Mi − piLi(1− si)(1−
1

N

∑
k

ek)− biei − cisi . (2)

Economists identified the sum of efforts (or total effort) contribu-
tion function long before the remaining cases included in this paper
[22]. We consider a slight variation of this game to normalize it to
the desired parameter range.

As a practical example of a total effort game in practice, consider
parallelized file transfers, as in the BitTorrent peer-to-peer service.
It may be the case that an attacker wants to slow down transfer of a
given piece of information; but the transfer speed itself is a function
of the aggregate effort of the machines participating in the transfer.
Note that, the attacker in that case is merely trying to slow down a
transfer, and is not concerned with completely removing the piece
of information from the network: censorship actually results in a
different, “best shot” game, which we discuss later.

Weakest-link security game: The overall protection level depends
on the minimum contribution offered over all entities. That is, we
have H(ei, e−i) = min(ei, e−i), and Eqn. (1) takes the form:

Ui = Mi − piLi(1− si)(1−min(ei, e−i))− biei − cisi . (3)

The weakest-link game is the most often recognized public goods
problem in computer security. Once the perimeter of an organiza-
tion is breached it is often possible for attackers to leverage this

2As will become clear through our mathematical exposition, rather
than pi or Li, the quantity that drives the computation of the various
equilibria is the expected loss due to attacks, piLi. Hence, the
results we derive here will be identical to those we would obtain if
we had p = pi for all i.



advantage. This initial compromise can be the result of a weak
password, an inconsistent security policy, or some malicious code
infiltrating a single client computer. Another example is that of a
two-way communication (e.g., TCP flow), where the security of
the communication is determined by the least secure of the com-
munication parties. For instance, a TCP flow between a host with a
perfectly secure TCP/IP stack and a host with an insecure TCP/IP
stack can be easily compromised.

Best shot security game: In this game, the overall protection level
depends on the maximum contribution offered over all entities.
Hence, we have H(ei, e−i) = max(ei, e−i), so that Eqn. (1) be-
comes

Ui = Mi − piLi(1− si)(1−max(ei, e−i))− bei − csi . (4)

Among information systems, networks with built-in redundancy
share resilience qualities with the best shot security game; for in-
stance, to completely take down communications between two (pre-
sumably highly connected and highly secure) backbone nodes on
the Internet, one has to shut down all possible routes between these
two nodes. Other examples of such networks with built-in redun-
dancy include peer-to-peer networks or sensor networks. Censorship-
resistant networks are another instance of best shot games. A piece
of information will remain available to the public domain as long
as a single node serving that piece of information can remain un-
harmed [13].

Weakest target security game (without mitigation): Here, an at-
tacker will always be able to compromise the entity (or entities)
with the lowest protection level, but will leave other entities un-
harmed. This game derives from the security game presented in
[11]. Formally, we can describe the game as follows:

H(ei, e−i) =

{
0 if ei = min(ei, e−i),
1 otherwise, (5)

which leads to

Ui =

{
Mi − piLi(1− si)− biei − cisi if ei = min(ei, e−i),
Mi − biei − cisi otherwise.

(6)
The weakest target game differs from the weakest link. There is

still a decisive security level that sets the benchmark for all individ-
uals. It is determined by the individual(s) with the lowest chosen
effort level. However, in this game all entities with a protection
effort strictly larger than the minimum will remain unharmed.

In information security, this game captures the situation in which
an attacker is interested in securing access to an arbitrary set of enti-
ties with the lowest possible effort. Accordingly, she will select the
machines with the lowest security level. An attacker might be in-
terested in such a strategy if the return on attack effort is relatively
low, for example, if the attacker uses a compromised machine to
distribute spam. Such a strategy is also relevant to an attacker with
limited skills, a case getting more and more frequent with the avail-
ability of automated attack toolboxes [38]; or, when the attacker’s
goal is to commandeer the largest number of machines using the
smallest investment possible [15]. Likewise, this game can be use-
ful in modeling insider attacks – a disgruntled employee may for in-
stance very easily determine how to maximize the amount of dam-
age to her corporate network while minimizing her effort.

Weakest target security game (with mitigation): This game is a
variation on the above weakest target game. The difference is that,
the probability that the attack on the weakest protected player(s) is
successful is now dependent on the security level min ei chosen.

That is,

H(ei, e−i) =

{
1− ei if ei = min(ei, e−i),
1 otherwise, (7)

so that

Ui =

{
M − piLi(1− si)(1− ei)− biei − cisi if ei = min(ei, e−i),
M − biei − cisi otherwise.

(8)
This game represents a nuanced version of the weakest target game.
Here, an an attacker is not necessarily assured of success. In fact, if
all individuals invest in full protection, not a single machine will be
compromised. This variation allows us to capture scenarios where,
for instance, an attacker targets a specific vulnerability, for which
an easily deployable countermeasure exists.

Limitations: Generalizing the above games, as we do in this pa-
per, to heterogeneous players, still shares some limitations of the
homogeneous case [19]. For instance, as hinted by Hirshleifer [22],
practical scenarios may involve social composition functions com-
bining two or more of these five games. Revisiting our earlier ex-
amples, protecting a communication flow between two hosts may
be a “weakest-link” game, until a certain level of host security is
reached at both hosts. At that point, the attacker may start to target
the routes between the hosts rather than the hosts themselves, and
it becomes a “best-shot” game. Other realistic environments may
be better characterized by slight variations on a given game (e.g.,
“the total of the three best shots”). We nevertheless believe that the
five games described above may capture a large number of prac-
tical cases, as our argument made in earlier work [19] is actually
strengthened by extending the models to heterogeneous players.

4. NASH EQUILIBRIUM ANALYSIS
In this section, we derive Nash equilibria for the five different

cases of security games. Our focus is to understand how the inclu-
sion of heterogeneous actors influences predictions compared to a
model with representative agents [19]. In Section 2, we have dis-
cussed arguments for and against homogeneity in security models.
In the modeling of economic phenomena, added complexity (e.g.,
adding agents with more diverse tastes) does not always change
strategic predictions substantially. On the other hand, we expect
that heterogeneity impacts the actions of agents in security games
in different ways, for example by: 1) Negotiating the trade-off be-
tween protection and insurance, 2) Highlighting certain strategies
and focal points due to the inherent differences in the agent pop-
ulation, 3) (De-)stabilizing equilibrium predictions derived in the
homogeneous case. We expect several conclusions from the ho-
mogeneous case to remain relevant. But as Hartley [20] argued
“representative agents models conceal heterogeneity whether it is
important or not.” This analysis aims at pinpointing key differences
and discuss their implications.

4.1 Total effort
The total effort game yields considerably different results de-

pending on the number of players involved.

Two-player game Let us first start the discussion for the simple
case N = 2. From the game description given by Eqn. (2), we get
U1(e1, s1) = M1−p1L1(1−s1)(1− (e1 +e2)/2)− b1e1− c1s1

for Player 1. The second partial derivative test indicates that there
is no local extremum, so that the only possible maxima of U1 are
given by U1(0, 0) = M1 − p1L1(1 − e2/2), U1(1, 0) = M1 −
p1L1(1/2 − e2/2) − b1, U1(0, 1) = M1 − c1, or U1(1, 1) =
M1 − b1 − c1. With b1 > 0, we immediately see that U1(0, 1) >
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Figure 1: Reaction functions for a two-player total effort game.
Bold lines and dots indicate potential Nash equilibria.

U1(1, 1), which tells us that fully insuring and protecting at the
same time is a strictly dominated strategy for Player 1. The passiv-
ity strategy (ei, si) = (0, 0) dominates the “protect-only” strategy
(ei, si) = (1, 0) when b1 > p1L1/2.

Assuming b1 ≤ p1L1/2, the “protect-only” (1, 0) strategy dom-
inates the “insure-only” (0, 1) strategy for Player 1 if and only if
(all quantities being assumed to be defined):

e2 > 1− 2
c1 − b1

p1L1
. (9)

A similar rationale yields the corresponding conditions for Player 2,
leading to the reaction functions e1 = r1(e2) and e2 = r2(e1)
plotted in Figure 1. By definition, Nash equilibria are character-
ized by fixed points e1 = r1(e2) = e2 = r2(e1). From the above
analysis summarized in Figure 1, this occurs for two values: when
both agents fully protect and when both agents abstain from invest-
ing in protection. We note that both fixed points are stable, meaning
that, if they are reached, minimal deviations in the strategy of one
player are unlikely to perturb the actions of the other player.

Result 1: The two-player total effort security game with heteroge-
neous agents presents the following equilibria:

• Full protection eq.: If b1 ≤ p1L1/2, b2 ≤ p2L2/2 (protec-
tion costs are modest for both players), and the initial values
e1(0) and e2(0) satisfy either e1(0) > 1−2(c2−b2)/(p2L2)
or e2(0) > 1 − 2(c1 − b1)/(p1L1) (at least one player
is initially fairly secure, or at least one player faces very
high insurance costs) then the (only) Nash equilibrium is
defined by both players protecting but not insuring, that is,
(ei, si) = (1, 0).

• Multiple eq. without protection: If the conditions above do
not hold, then we have an insecure equilibria. Both players
converge to e1 = 0 and e2 = 0. Their respective investments
in insurance depend on whether their insurance premium is
smaller than their potential losses: a player will fully insure
if and only if ci < piLi, and will be passive otherwise.

A particularly interesting feature of the two-player version of the
game is that expensive insurance or protection costs at either of the
players directly condition which equilibrium can be reached. For
instance, if one of the players has to pay a very high insurance pre-
mium in front of its protection costs, she will elect to protect, likely
leading the other player to protect as well. Conversely, if either of
the players faces a high protection premium (bi > piLi/2), the

game will likely converge to an equilibrium without protection ef-
forts. As we discuss later, this property can be used by some form
of intervention to have the game converge to a desirable equilib-
rium.

More generally, in this game, each of the two players generally
tracks what the other is doing. When moves are made perfectly si-
multaneously, this may result in oscillations between insecure and
secure configurations. The only exception to this tracking behavior
occurs when one player faces high security costs and a low insur-
ance premium, while the other faces the opposite situation (low
security costs, very high insurance premium). In such a case, the
game converges to the first player insuring, and the second player
protecting. In short, extreme parameter values allow to remove net-
work effects in this game.

N -player game (N large) In the more general case N ≥ 2, we
first notice that, for a security strategy to be meaningful, we need
to have bi < piLi/N . This means that, as the number of players
increases, individual protection costs have to become very small,
or expected losses have to considerably increase. Failing that, in-
surance or passivity is always a better option.

Second, from Eqn. (2), we obtain that Eqn. (9) is generalized to

1

N − 1

∑
j 6=i

ej > 1− N

N − 1

ci − bi

piLi
, (10)

as a condition for player i to select a protection-only strategy as
opposed to an insurance-only strategy. Eqn. (10) tells us that, for
large values of N , changes in a single player’s protection strategy
are unlikely to have much of an effect on the other players’ strate-
gies. Indeed, each player reacts to changes in the average protection
level over the (N − 1) other players.

This observation brings the question of exactly how robust the
N -player game is to a change in the strategy played by a given in-
dividual. Are “domino effects” possible, where changes in a single
player’s strategy, albeit with a minimal effect on all other play-
ers, lead another player to switch strategies, and eventually to large
groups changing their plays?

To help us answer this question, let us consider N > 2, and K ≤
N arbitrary players that are initially (at time 0) unprotected. For
instance, assume without loss of generality that Players 1, . . . , K
are initially unprotected, and that

c2 − b2

p2L2
≥ c3 − b3

p3L3
≥ . . . ≥ cK − bK

pKLK
.

Further assume that at a later time t > 0, Player 1 switches her
strategy to full protection, that is, e1(t) = 1. Assuming all players
may have an incentive to protect (i.e., for all i, bi < piLi/N ),
Player 2 would also switch to full protection only if

1

N − 1

∑
j 6=2

ej(t) > 1− 1

N − 1

c2 − b2

p2L2

that is, only if

1

N − 1

∑
j 6=2

ej(0) +
1

N − 1
> 1− 1

N − 1

c2 − b2

p2L2
,

which reduces to
1

N − 1

∑
j>K

ej(0) +
1

N − 1
> 1− 1

N − 1

c2 − b2

p2L2
. (11)

Player 2’s switch causes Player 3 to switch too only if

1

N − 1

∑
j 6=3

ej(t) > 1− 1

N − 1

c3 − b3

p3L3
,
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Figure 2: Reaction functions for a two-player weakest-link
game. Bold lines and dots indicate potential Nash equilibria.

that is,

1

N − 1

∑
j>K

ej(0) +
2

N − 1
> 1− 1

N − 1

c3 − b3

p3L3
. (12)

From Eqs. (11) and (12) we get

c2 − b2

p2L2
− c3 − b3

p3L3
< 1 .

Iterating over the K players that are initially not protecting, we get:

max
2≤i≤K

ci − bi

piLi
− min

2≤i≤K

ci − bi

piLi
< K − 1 .

We can follow an identical derivation for the case where the K
players switch from a protection strategy to a non-protection strat-
egy. We then obtain the following necessary condition for “domino
effects” to occur over K players, that is a switch in Player 1’s strat-
egy causing a switch in the strategy of K players:∣∣∣∣ max

2≤i≤K

ci − bi

piLi
− min

2≤i≤K

ci − bi

piLi

∣∣∣∣ < K − 1 . (13)

Result 2: We have derived a stability measure of the heterogeneity

of a total effort security game with N agents (Eqn. (13)). The more
heterogeneous the players are, the more unlikely Eqn. (13) is to
hold for large values of K. In other words, the more heterogeneous
a system is, the more likely it is to be resilient to perturbations due
to a single individual changing strategies.

4.2 Weakest-link
Here again, we start by considering a two-player game. Com-

puting partial derivatives in ei and si from Eqn. (3), we observe
that each player chooses either (ei, si) = (0, 1) (insurance strat-
egy) or (ei, si) = (minj 6=i ej , 0) (protection strategy, where in the
two-player version of the game minj 6=i ej is naturally equal to the
protection value chosen by the other player) in order to maximize
their utility function.

Looking at the payoffs that can be obtained in both cases leads us
to the reaction functions of both players, which we plot in Figure 2.
In the figure, we see that a fixed-point is attained when e1 = e2 = 0
(insurance-only equilibria) and when both e1 and e2 are greater
than max{(p1L1 − c1)/(p1L1 − b1), (p2L2 − c2)/(p2L2 − b2)}.

Result 3: Generalizing to N players, we obtain the following dis-
tinction for the weakest link security game:

1−b /p L
1

e2

r  (   )1

e1r  (   )2

1p  L
1

b 1
e2e  =1

e  =2

1

10

1−

2 2 2 e

Figure 3: Reaction functions for a two-player best shot game.
Bold dots indicate potential Nash equilibria. Protection costs
are assumed here to be smaller than insurance costs for both
players.

• Full protection eq.: If, for all i, piLi > bi, and either 1)
piLi < ci, or 2) piLi ≥ ci and ê(0), the minimum of the
security levels initially chosen by all players, satisfies

ê(0) > max
1≤i≤N

{(piLi − ci)/(piLi − bi)} ,

then we have a Nash equilibrium where everyone picks (ê(0), 0).

• Multiple eq. without protection: All players select ei = 0
if the conditions above do not hold. The value of insurance
they select depends on their respective valuations. Players
for whom insurance is too expensive (piLi < ci) do not
insure, with si = 0, while others choose full insurance, that
is si = 1.

The likelihood of reaching a full protection equilibrium is condi-
tioned by the player which has the largest difference between pro-
tection and insurance costs relative to its expected losses. In par-
ticular, it only takes one player with an insurance premium smaller
than its protection cost (bi > ci) to make the full protection equi-
librium unreachable. Hence, when N grows large, we expect pro-
tection equilibria to become more and more infrequently observed.

4.3 Best shot
Looking at the variations of the payload function Ui given in

Eqn. (4) as a function of ei and si tells us there are three possibil-
ities for maximizing Ui: a passivity strategy (0, 0), a secure-only
strategy (1, 0) and an insure-only strategy (0, 1).

We get Ui(0, 0) = Mi − piLi(1 − max{e−i}), Ui(1, 0) =
Mi − bi, and Ui(0, 1) = Mi − ci. We immediately notice that
bi > ci leads Player i to never invest in protection: either the player
is passive, or she insures. If, on the other hand bi ≤ ci, then player i
chooses a protection strategy over a passivity strategy if and only
if (bi assumed greater than 0) we have max{e−i} < 1− bi/piLi.
We plot the reaction functions, in a two-player case, in Figure 3.

Result 4: For the two-player best shot security game we can iden-
tify the following equilibria:

• Protection eq.: In contrast to the homogeneous case a pro-
tection equilibrium does exist. The Nash equilibrium is a
free-riding equilibrium where one player protects, and the
other does not.

• Multiple eq. without protection: If bi > ci for all player i
individuals will choose to self-insure or remain passive.



In the homogeneous version of the game, we had noted that
these Nash equilibria were not reached in a synchronized game
with N players, as players would constantly oscillate between free-
riding and protecting [19]. With heterogeneous players, however,
it is possible to reach a Nash equilibrium. Indeed, if the initial
protection levels chosen satisfy max{e−i(0)} > 1 − bi/piLi for
all players but one, this last player will be the only one to secure,
while everybody else will defect. Note that there should be only
one player choosing to secure for a Nash equilibrium to be reached
– as soon as at least two players decide to protect, each will defect
in the next round hoping to free-ride on the other protecting play-
ers. In other words, if there exists a unique i for which the initial
constellation of protection levels satisfies

max{e−i(0)} < 1− bi/piLi , (14)

then a Nash equilibrium where all players free-ride on player i is
reached as long as bi < ci. This situation could happen when only
one player faces disproportionate losses compared to other players,
or her security costs are very small.

Result 5: When protection levels are initially randomly set, pro-
tection equilibria in the best shot game are increasingly unlikely to
happen as the number of players N grows.

Assume that the initial protection levels, ei(0) for 1 ≤ i ≤ N are
set independently and at random, that is, that they can be expressed
as a random variable with cumulative distribution function F . Then
for any Player k, the probability that ek(0) < 1−bi/piLi is simply
F (1 − bi/piLi). It follows that Eqn. (14) is satisfied for Player i
with probability F (1− bi/piLi)

N−1.
Next, we want Eqn. (14) to be violated for all players other than i.

Eqn. (14) is defeated for a given Player k with probability 1−F (1−
bk/pkLk)N−1. Consequently, it is defeated for all Players j 6= i
with probability

∏
j 6=i(1− F (1− bj/pjLj)

N−1).
It follows that the probability ρi that Eqn. (14) is satisfied only

for Player i is given by

ρi = F
(
1− bi

piLi

)N−1 ∏
j 6=i

(
1− F

(
1− bj

pjLj

)N−1
)

.

Then, the probability that a protection equilibrium can be reached
is given by

∑
i ρi, since the ρi’s characterize mutually exclusive

events. To simplify notations, let xi = F
(
1− bi

piLi

)
. Rearrang-

ing terms gives∑
i

ρi =
∑

i

∏
j 6=i

(
1− xN−1

j

)
−N

∏
j

(
1− xN−1

j

)
.

Let k = arg maxi

{∏
j 6=i

(
1− xN−1

j

)}
. Then we have

∑
i

ρi ≤ N
∏
j 6=k

(
1− xN−1

j

)
−N

∏
j

(
1− xN−1

j

)
,

which gives us, after rearranging∑
i

ρi ≤ NxN−1
k

∏
j 6=k

(
1− xN−1

j

)
,

which tends to zero as N increases, as soon as xk = F (1 −
bk/pkLk) < 1.

This is notably the case if we assume a function F strictly monotonous
increasing on [0, 1], and positive security costs (bi > 0) for all play-
ers.

4.4 Weakest target
As in the homogeneous case [19], Nash equilibria for the weak-

est target game are quite different depending on whether or not we
are considering that mitigation is possible.

Without mitigation. In the weakest target game without mitiga-
tion, we have reported [19] that, in the homogeneous case where
bi = b, ci = c, pi = p and Li = L, there are no pure strategy
Nash equilibrium. The proof can be extended to the heterogeneous
case, as we discuss next.

Let us assume that the minimum protection level over all players
is set to ê < 1. Then, we can group players in two categories: those
who play ei = ê, and those who set ei > ê. By straightforward
dominance arguments coming from the description of the payoffs
in Eqn. (6), players who select ei > ê select ei = ê + ε, where
ε > 0 is infinitesimally small, and si = 0 . Let

ε < min
i

{
piLi

2bi
(1− si) +

cisi

2bi

}
.

Players who play ei = ê would actually prefer to switch to ê + 2ε.
Indeed, the switch in strategies allows a payoff gain of

Ui(ê + 2ε, 0)− Ui(ê, si) = −2biε + piLi(1− si) + cisi > 0 .

Hence, this strategy point is not a Nash equilibrium. It follows that
the only possible equilibrium point would have to satisfy ei = 1 for
all ei. However, in that case, all players are attacked, which ruins
their security investments. All players therefore have an incentive
to instead select ei = ê = 0, which, per the above discussion,
cannot characterize a Nash equilibrium.

Result 6: In the weakest-target game without mitigation we find
that pure Nash equilibria for non trivial values of bi, pi, Li and ci

do not exist.

With mitigation. In the weakest target game with mitigation,
we showed that, with homogeneous agents, a full protection Nash
equilibrium exists as long as protection costs are smaller than in-
surance costs [19]. An exactly identical proof can be conducted in
the heterogeneous case to show that a full protection equilibrium is
reached if bi < ci for all i.

On the other hand, it only takes one of the players to face high
security costs to make this equilibrium collapse. Indeed, if there
exists k such that bk > ck, then Player k will always prefer a full-
insurance strategy ((ek, sk) = (0, 1)) over a full-protection strat-
egy ((ek, sk) = (1, 0)). This will immediately lead other players
to try to save on security costs by picking ei = ε > 0 as small as
possible. We then observe an escalation as in the unmitigated ver-
sion discussed above. Hence, heterogeneity actually threatens the
(precarious) stability of the only possible Nash equilibrium.

Result 7: In contrast to the weakest-target game without mitigation
we find that a pure Nash equilibrium may exist.

• Full protection eq.: If bi ≤ ci for all agents we find that the
full protection equilibrium (∀i, (ei, si) = (1, 0)) is the only
possible pure Nash equilibrium.

• If bi > ci for any agent we can show that no pure Nash
equilibrium exists.

• There are no pure self-insurance equilibria.

5. INTERVENTION MECHANISMS
In practice system designers may not be satisfied with the out-

comes predicted by non-cooperative game theory. First, equilibria



may not be achievable due the complexity of the games, which lim-
its the understanding and accurate execution of strategies by agents.
Second, planners may wish to improve upon the Nash equilibrium
security practices. Below we discuss selected intervention strate-
gies in the context of the security games to improve convergence
and to achieve certain contribution targets.

Objective 1 - Help agents to identify individually rational strat-
egy: In the five games we consider, agents will incur a loss when
adequate protection or self-insurance is amiss. However, the rea-
sons for vulnerability to a loss and eventual compromise are differ-
ent. For example, in the weakest target game without mitigation, a
security breach is not solely the result of an agent’s protection level,
but is dependent on the ordering of contribution levels. Individual
rationality presumes that agents follow a sophisticated mixed strat-
egy [19]. However, non-automated agents will only be able to fol-
low such a strategy with difficulty [37]. Even pure strategies might
require several periods of convergence [9].

One possible method of intervention to overcome complexity or
coordination problems is to offer (non-binding) advice to agents
in a security game. For example, Brandts and MacLeod [6] show
that players might choose, in a self-enforcing manner, a strategy
recommended by an external arbiter. The assignment strongly in-
fluences behavior if it does not conflict with another focal principle.
In practice, individuals care about who is giving the advice. For ex-
ample, the suggestion by a computer security company to protect
against security breaches with a product of the same brand might
be regarded as advertisement and be less influential [27]. Instru-
ments for coordination may also take the form of financial incen-
tives. For example, a third party or intermediary such as an Internet
Service Provider (ISP) can offer a rebate or service discount to its
subscribers who demonstrably invest in an adequate level of pro-
tection.

System designers have also started to exploit individuals’ pref-
erences for status quo settings [23]. If users rarely alter default
settings, the importance of choosing secure defaults on the two di-
mensions of self-insurance and protection is immensely high. For
example, the Windows XP firewall, when first introduced to the
Microsoft Windows operating system in 2001, was disabled by de-
fault. Subsequent to the Blaster worm attack, the default setting
was changed to “fully enabled” with Windows Server 2003. As an-
other example, OpenBSD’s “secure by default” philosophy means
that all non-essential services are disabled by default. This pro-
motes general network security and also encourages users to learn
more about potential consequences of making changes to security
settings.

Objective 2 - Achieve social optimality: In the weakest link se-
curity game, deviation of a single agent i from a full protection
strategy can render all other agents’ efforts meaningless or force
them to self-insure or be passive. However, this decision by agent i
can be individually rational if bi ≥ ci or bi > piLi. The traditional
solution to this situation has been to involve a social planner who
can mandate certain protection and self-insurance settings that op-
timize overall system utility. In [19], we discussed social optimum
outcomes for the homogeneous agents scenario.

A different approach is to allow agents to conduct binding pregame
communication. For example, consider a scenario in which an
agent can propose to another agent that she will only protect if
the other agent agrees to reciprocate. Such two-sided commu-
nication can increase the protection contribution in the total ef-
fort game since the responding agent can internalize the potential
contribution of the proposing agent (rather than merely evaluat-
ing bi < piLi/N ). In a different scenario, an agent may com-

mit to a high or low protection level and not require reciprocation.
Given this one-way pregame communication, the protection con-
tributions by other agents will be unaffected in a total effort game,
but impacted in the best shot and weakest target games. In the best
shot game, a one-way message indicating that the sender will shirk
can encourage another agent i to take action (if bi < piLi). In
the weakest target game, the same message would signal to other
agents that the sender will bear the burden of the attack. This act of
altruism is particularly likely if the agent can self-insure at low cost.
Finally, binding pregame communication is largely ineffective for
the weakest link game. However, it can help to coordinate on the
protection Nash equilibrium that Pareto-dominates other equilibria
with a lower ê.

Objective 3 - Overcome free-riding and lack of protection in
networks: Free-riding occurs in our games at several points. For
example, in the best shot game, agents coordinate so that only one
agent exercises maximum protection effort in a protection Nash
equilibrium. In the social optimum for the weakest target games
with homogeneous agents, one node (that may invest in self-insurance)
will bear the brunt of an attack while others shirk [19]. Both out-
comes, while maximizing utility, might result in loss of camaraderie
and willingness to contribute in the future.

One strategy to probabilistically increase contributions by agents
is to leverage the strategic uncertainty when agents act indepen-
dently. The coordination problems inherent in the best shot game
with heterogeneous agents and in the weakest target games may
lead agents to contribute to protection levels above the social op-
timum. In practice such an approach might have the merit of in-
creasing general preparedness against different types of attacks.
Strategic uncertainty is often a function of network size. For ex-
ample, in the weakest target game, agents in small groups will
notice the increased interdependency and risk of being the weak-
est target. These agents will decide to self-insure their resources
more often ((ei, si) = (0, 1)). That means with increasing net-
work size, we would observe that more individuals contributing
to protection. This result stands in contrast to the weakest link
game analysis. In the heterogeneous as well as in the homogeneous
game, it becomes increasingly unlikely that contributions to protec-
tion are made. Heterogeneity can also moderate protection contri-
butions in a different way. In the homogeneous best shot game,
we do not observe individually rational protection contributions at
all since agents cannot overcome the associated coordination prob-
lems. However, they can achieve higher protection levels when
agents have heterogeneous tastes.

Contributions can be increased behaviorally by modifying the
framing of a security situation. Framing effects occur when two
logically equivalent (but not transparently equivalent) statements
describing a problem drive individuals to choose dissimilar options.
More specifically, such differences in the presentation may draw
a subject’s attention to alternative aspects of a decision situation,
leading an individual to make mistakes in pursuing her underly-
ing preferences [33]. For example, homogeneous agents can be
tempted to contribute in a best shot game if they receive feedback
that highlights the uniqueness of their contributions [25]. Simi-
larly, increased protection investments may arise if agents perceive
a security situation as more threatening. However, underinvestment
can result from resignation with respect to the complexity of the se-
curity problem.



6. CONCLUSIONS

6.1 Summary
We model security decision-making by heterogeneous agents in

a selection of five games. Some of these games have historical
foundations in public good theory (weakest-link, best-shot, and to-
tal effort) whereas others were proposed recently (weakest target,
with or without mitigation). Agents have two security actions at
their disposal. They can contribute to a network-side protection
pool or invest in a private good to limit losses.

In prior work we have studied homogeneous populations of users,
where all participants have the same utility function. In practice,
the homogeneity assumption is reasonable in a number of impor-
tant cases, particularly when dealing with very large systems where
a large majority of the population have the same aspirations. For
instance, most Internet home users are expected to have vastly sim-
ilar expectations and identical technological resources at their dis-
posal; likewise, modern distributed systems, e.g., peer-to-peer or
sensor networks generally treat their larger user base as equals.

However, the fact that the Internet is increasingly used as a com-
mon vector between different businesses, and even as a bridge be-
tween completely different user bases – for instance, acting as a
bridge between mobile phone networks, home users, and e-commerce
retailers, emphasizes the need for considering heterogeneous agents,
even though the games considered may become far less tractable.
In this paper we present an analysis that considers heterogeneous
agents. We find several key differences. For example, we found that
in the total effort game stability increases with more pronounced
heterogeneity in the agent population. The existence of a protec-
tion equilibrium in the weakest link game is threatened if only one
agent prefers to self-insure or to remain passive. In the best shot
game heterogeneous agents can overcome coordination problems
more easily, so that a protection equilibrium is now possible, even
though reaching this equilibrium grows increasingly unlikely with a
larger number of agents participating in the network. Surprisingly,
predictions for pure Nash equilibria of the weakest target games re-
main unchanged. However, mixed strategies do now have to take
consideration of the heterogeneity of agents, and are likely to be
intractable analytically.

We discuss several intervention strategies in the context of secu-
rity games. We note that in each game the challenge to increase
security contributions to achieve a particular objective requires a
largely different approach. This versatility is confirmed by practi-
cal observations which tell us that a “one size fits all strategy” for
computer security does not exist.

6.2 Future research directions

First, we wish to extend our analysis to more formally explain
the impact of limited information on agents strategies. In particu-
lar, in computer security and distributed networks the assumption
of full information is useful as a first approximation but requires
further validation. Similarly, we plan to analyze the robustness of
our model by studying the influence of other simplifying assump-
tion (e.g., linear cost parameters). Furthermore, we intend to eval-
uate strategy changes if moves are conducted sequentially rather
than simultaneously. In the context of decision making on the In-
ternet Friedman et al. also distinguish between synchronous and
asynchronous moves [16].

Second, we are currently developing a set of laboratory exper-
iments to conduct user studies and attempt to measure the dif-
ferences between perfectly rational behavior and actual strategies
played. Our preliminary investigations in the field notably evidence

that players often experiment with different strategies to try to gain
a better understanding of the game they are playing.

We are determined to incorporate our findings in updated models
of system security. In prior work we challenged the assumption
that all players are perfectly rational. In [11] we assumed agents to
also accept strategies that are near rational and studied how system
convergence prediction change.

Our research agenda of formal analysis combined with labora-
tory experiments is aimed to increase the understanding of indi-
vidual and organizational security decision making. However, we
are also interested in the design of meaningful security policies and
aim at developing actionable guidelines for IT managers and other
practitioners.
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