
Resilient Data-Centric Storage in Wireless Ad-Hoc

Sensor Networks

Abhishek Ghose, Jens Grossklags, and John Chuang

University of California at Berkeley
aghose@eecs.berkeley.edu, {jensg,chuang}@sims.berkeley.edu

Abstract. Wireless sensor networks will be used in a wide range of challenging ap-
plications where numerous sensor nodes are linked to monitor and report distributed
event occurrences. In contrast to traditional communication networks, the single ma-
jor resource constraint in sensor networks is power, due to the limited battery life of
sensor devices. It has been shown that data-centric methodologies can be used to solve
this problem efficiently. In data-centric storage, a recently proposed data dissemina-
tion framework, all event data is stored by type at designated nodes in the network
and can later be retrieved by distributed mobile access points in the network. In this
paper we propose Resilient Data-Centric Storage (R-DCS) as a method to achieve
scalability and resilience by replicating data at strategic locations in the sensor net-
work. Through analytical results and simulations, we show that this scheme leads
to significant energy savings in reasonably large-sized networks and scales well with
increasing node-density and query rate. We also show that R-DCS realizes graceful
performance degradation in the presence of clustered as well as isolated node failures,
hence making the sensornet data robust.

1 Introduction

Wireless sensor networks have emerged as a promising solution for a large number of mon-
itoring applications, in fields as diverse as climatic monitoring, tactical surveillance, and
earthquake detection. With improvements in sensor technology, it has become possible to
build small sensor devices with relatively high computational power at low costs [9, 15].

In most communication networks, naming of nodes for low-level communication leverages
topological information. An example of this is the Internet (point-to-point communication
model) where IP addresses are assigned to each node, and these serve as unique node identi-
fiers in IP routing. Such a naming scheme is not very efficient in a sensor network scenario,
since the identity of individual sensor nodes is not as important as the data associated with
them. Data-centric models have been proposed for sensor networks, in which the sensor data
itself (as contrasted to sensor nodes) is named, based on attributes such as event-type or
geographic location. In particular, data-centric routing [6] and data-centric storage [13] have
been shown to be energy-efficient in a sensor network scenario.

Ratnasamy et al. have proposed data-centric storage (DCS) [10, 13] as a data-dissemination
paradigm for sensor networks. In DCS, data is stored, according to event type, at correspond-
ing sensornet nodes. All data of a certain event type (e.g., Temperature measurements) is
stored at the same node. A significant benefit of DCS is that queries for data of a certain
type can be sent directly to the node storing data of that type, rather than flooding the
queries throughout the network (unlike data-centric routing proposals [4, 6]). DCS is based
on the low-level routing functionality provided by the GPSR geographic routing algorithm
[7], and on distributed hash-table functionality provided by peer-to-peer lookup algorithms
such as CAN [11], Chord [14], Pastry [12] and Tapestry [16]. It is shown in [10] and [13] that
DCS offers reduced total network load and peak (hotspot) network usage.

In this paper, we propose replication of control and data information in a DCS framework
as the primary mechanism for reducing the data retrieval traffic and increasing resilience to
node failures. We propose the storage of data of a particular type at one of several replica
nodes in the network assigned to this type, and storage of control and summary informa-
tion pertaining to this type at geographically distributed monitor nodes in the network. By

increasing the number of nodes where data can be stored for each event-type, as well as
maintaining summary and control information at several nodes, we decrease both (1) the av-
erage cost of storing data and (2) the average cost of querying data. Our preliminary results
suggest that this scheme, which we call Resilient Data-Centric Storage (R-DCS), outperforms
existing schemes in terms of scaling to a large number of nodes and a large number of queries.
We also show that, in the case where nodes in the sensor network are unreliable and expe-
rience random failures, our scheme does not experience a dramatic increase in the number
of messages sent as the node failure rate is increased. R-DCS also maintains a high query
success rate in this scenario. Hence our scheme realizes graceful performance degradation in
the presence of node failures.

The rest of the paper is organized as follows. In Section 2, we describe some basic con-
cepts of sensor networks and give a brief overview of DCS. In Section 3, we propose intelligent
replication in sensor networks for resilience and scalability, building upon the DCS frame-
work. We analyze the cost structure of R-DCS analytically in Section 4. Section 5 presents
simulation results showing that R-DCS can lead to significant performance improvements in
certain scenarios. Finally, we present our conclusions in Section 6.

2 Background and Related Work

In this section we describe basic concepts in the domain of sensor networks, describe data
organization in a typical sensor network, and give a brief overview of DCS [13].

2.1 Overview

Wireless sensor networks have certain unique features which must be accounted for in any
data dissemination methodology designed for such networks. Sensor devices built using state-
of-the-art technology have significantly higher processing capabilities and storage capabilities
than available bandwidth [4] (this is in contrast to wired networks, where an explosion of
available bandwidth has led to a drastic reduction in its relative cost). The reason for this
difference is that sensors typically have limited battery-life. Hence they must use low-power
(and consequently, low-bandwidth) wireless communication techniques to conserve battery
power. In a typical scenario, it has been estimated that 3000 instructions could be executed
for the same energy cost of sending a bit 100 meters by radio [9]. This framework encourages
the use of computational techniques to reduce the total communication overhead in the
network.

The gateway through which sensor networks communicate with the external world (e.g., a
monitoring terminal or the Internet) is called an access point. We use the term access path to
refer to the set of data paths from the sensor nodes to the access point. In a typical scenario,
we can expect these access points to have higher communication load than other sensornet
nodes. In a high-traffic scenario, such access points can become a bottleneck point in the
sensornet (hotspot). An essential design requirement, then, is to minimize the peak amount
of traffic flowing through these access points. This issue is addressed in Section 3.4.

2.2 Data Organization in Sensor Networks

Prior research [1, 4] has shown that the tight energy constraints of wireless sensor networks
can be more efficiently achieved by using an attribute-based naming system than by commonly
used topological naming schemes (e.g., IP). Such attributes could be pre-defined to reduce the
overhead during actual communication. For example, we could classify all sensor data in an
environmental sensing network as being of types “temperature”, “pressure” and “humidity”
and name all such data by including these pre-defined event attributes in the data itself.

At the lowest level, when an event occurs the sensors record and store the event data
locally, and name this data based on its attributes. The low-level output from sensors (ob-
servations) is named based on the attributes of the associated data. This data can be handled

in a number of different ways. Three canonical approaches [13] are considered: External Stor-
age (ES) in which all event data is stored at an external storage point for processing, Local
Storage (LS) in which all event information is stored locally (at the detecting node) and
Data-Centric Storage (DCS) in which all event data is stored by event-type within the sen-
sornet at designated nodes. These three methods involve substantially different assumptions
and cost-benefit tradeoffs, which we shall analyze in Section 4.

Queries are used to retrieve event information from the sensornet. It is important to
consider the ratio of query traffic to event-detection traffic while designing a sensor network.
Each of the canonical approaches described above (as well as our approach: R-DCS) has
different relative costs for query and event traffic. Hence, depending on the function of a
sensor network, one of the above canonical approaches might be more useful than the others.

2.3 Data-Centric Storage

In this section we describe the concept of DCS [13] and the mechanisms required to sup-
port it. DCS uses a distributed hash-table (DHT) and offers the following interface: (1) the
Put(dataName, dataValue) primitive to store the value of the data corresponding to a
certain event at the sensornet node corresponding to the dataName (which serves as the key
in the DHT and is typically based on the event-type). The name of the data is typically
based on the relevant event-type. (2) the Get(dataName) primitive to retrieve the value of
the data stored at the node corresponding to the given dataName. DCS uses the GPSR [7]
geographic routing algorithm for low-level routing. It then builds a DHT [11, 12, 14, 16] on
top of GPSR. We first describe GPSR and then the construction of a lookup algorithm over
GPSR.

Greedy Perimeter Stateless Routing In the context of ad-hoc wireless networks, there
have been a number of proposals [8] for geographic routing algorithms. Unlike the commonly-
used shortest path technique, geographic routing uses the relationship between geographic
position and connectivity in a wireless network. A popular and efficient geographic routing
algorithm is greedy perimeter stateless routing (GPSR) [7]. Since GPSR needs knowledge
about the geographic coordinates of sensornet nodes to route messages, it is assumed that
these nodes know their location through the use of localization methodologies like GPS [5].

GPSR uses greedy forwarding to forward packets to nodes that are always progressively
closer to the destination. The sender includes the approximate coordinates of the final des-
tination while sending the packet. In regions where such a greedy path does not exist (i.e.,
the only viable path requires one to move away from the destination), GPSR recovers by
forwarding in perimeter mode, wherein a packet traverses successively closer faces of a planar
subgraph of the network connectivity graph, until reaching a node closer to the destination,
where greedy forwarding resumes. If N is the number of nodes in the network, to go from
one random location to another requires O(

√
N) packet transmissions. In contrast, flooding

sends a packet to the entire sensornet and requires O(N) packet transmissions.

DHT over GPSR The central idea in using a DHT is to hash the name of a certain event
to a key (dataName) which is a location somewhere within the boundaries of the sensornet.
The put(dataName, dataValue) primitive sends a packet with the given payload into the
sensornet which is routed towards the location dataName. The get(dataName) primitive is
routed to the node closest to the dataName location, which then transmits a packet to the
node originating the query with the corresponding data. In a sensornet with completely
stationary and reliable nodes, this approach is sufficient.

DCS Extensions In order to make DCS resilient to node failures and mobility, the authors
[10, 13] have proposed certain extensions to their basic scheme. The storage node for an event
type periodically routes a refresh message to all nodes which had transmitted event-data to

this node. Regular GPSR routing returns these refresh messages to the storage node along
the network perimeter. In the intermittent time interval, the nodes in the sensor network
could be displaced from their original locations. If a new node is closer to the location of the
original storage node than the original storage node itself, this new node will become the
storage node. Timer based algorithms ensure that in case a storage node dies in this fashion,
the new storage node automatically starts generating refresh messages. This process is called
the Perimeter Refresh Protocol [10] and is used to accomplish replication of (key,value) pairs
and their consistent placement at the appropriate home nodes when the network topology
changes. To protect against node failure, all nodes that receive a refresh cache the data
contained in it (local replication).

In [10] Ratnasamy et al. have proposed a scheme called Structured Replication in DCS
(SR-DCS) to achieve load-balancing in the network. SR-DCS uses a hierarchical decompo-
sition of the key space and associates each event-type e with a hierarchy depth d. It hashes
each event-type to a root location. For a hierarchy depth d, it then computes 4d−1 images of
root. When an event occurs, it is stored at the closest image node. Queries are routed to all
image nodes, starting at the root and continuing through the hierarchy. It has been shown
through simulations that SR-DCS significantly improves the scalability of DCS, and is useful
for frequently detected events. It must be noted, however, that SR-DCS does not involve ac-
tual replication of data. It only stores one copy of any event-data at the closest image node.
If all nodes in a certain location fail simultaneously (clustered failures), SR-DCS might not
be able to recover the data stored at these nodes. The root node is a single point-of-failure
in the sense that if the root for event-type e fails, one might not be able to issue any queries
for event-data corresponding to this type. These extensions are described in detail in [10].

3 Resilient Data-Centric Storage

In this section we describe our extensions to DCS which achieve the following: (a) Minimize
query-retrieval traffic (hence saving energy consumption) (b) Increase data availability, en-
suring that event information is not lost even with multiple node failures. The original version
of DCS [13] has all events of the same type stored in one sensornet node. It is evident that if
there are too many events of a particular type, then this storage node will become a bottle-
neck point (hotspot) in the network. Our data-dissemination scheme, Resilient Data-Centric
Storage (R-DCS), overcomes these issues by a two-level replication strategy (control and
data). We first describe the architecture of R-DCS and then outline its operational details.

3.1 Architecture

In R-DCS, we partition the coordinate space of the sensornet field into Z zones. We denote
the set of available zones as zj : j = 1, · · · , Z. This zoning could be done on the basis of geo-
graphical boundaries, as shown in Figure 1. These zones can contain sensor nodes operating
in three possible modes:

– Monitor Mode: Each zone has one monitor node for each event-type. The monitor node
stores and exchanges information in the form of a monitoring map for each event-type.
The monitoring map includes control and summary information in the following fields:
• List of zones containing replica nodes (for forwarding event data and queries).
• List of zones containing monitor nodes (for facilitating map exchange).
• Event summaries (for facilitating summary-mode queries). The exact nature of event

summaries depends on the event-type. For example, in a sensornet designed for tem-
perature monitoring, the summary information could contain the number of events
detected and the average temperature reading for each zone.

• Bloom filters (for enabling attribute-based queries). Event-data is organized in the
form of a set of attributes and their values. In the temperature monitoring case,
for example, these attributes could be Event-time and Temperature. A user might

n1

z1

mi3

mi4 | ri4

mi1 | ri1

1
2

z2

z3 z4

mi2

Fig. 1. Event Storage in RDCS

z1

mi2

mi3

mi4 | ri4

mi1 | ri1

z2

z3 z4

1

2
3

5
4 AP

Fig. 2. Querying in R-DCS (list mode)

want to access all temperature measurements conducted between 3pm and 4pm, or
all temperature readings between 30 and 40. Bloom filters [2, 3] offer an efficient way
to support attribute-based queries. These are described in detail in Section 3.6. Note
that this field is optional - it is required only if we want to support attribute-based
queries.

– Replica Mode: Each zone has at most one replica node for each event-type. The replica
node, if present, is always the same as the monitor node. In addition to performing the
functions of a monitor node, the replica node actually stores event-data for the given
event-type.

– Normal Mode: All nodes which are not monitor or replica operate in this mode. A
normal node may originate or forward (i.e. route) event-data, but is not involved in
storing any event data or control information.

Let E denote the number of event-types in the sensornet. Let Mi be the total number
of monitor nodes for each event type ei. Let Ri be the number of replica nodes for each
event-type ei. The following system constraints must be satisfied for each i = 1, · · · , E.

1. Ri ≤ Mi ≤ Z - This holds because each zone may have at most one replica node and one
monitor node, and all replica nodes are monitor nodes as well. Under normal operations
without clustered node failures (a majority of nodes failing in one zone), there will be
one monitor node per zone: Mi = Z.

2. Ri ≥ 1 - There must be at least one replica node in the network, since all event-data for
each event-type is stored at the respective replica nodes.

For our distributed hash-table, we use a hash function H which is a function of the event-
type ei and the zone zj . If event-type ei in zone zj hashes to a location (xij , yij) ≡ H(ei, zj),
then a sensor node mij geographically closest to (xij , yij) is the monitor node for event-type
i within zone j. Depending on local decision rules (described in Section 3.2), this monitor
node may also serve as a replica node rij . For the purpose of load balancing, it is desirable
that the function H(ei, zj) be chosen such that for each zone zj , different event-types ei hash
to distinct nodes.

3.2 Operational Procedures

In this section, we describe the methodology for performing common sensornet operations
such as data storage and queries.

Event Storage A sensing node (situated in zone j) sends an event of type ei to the monitor
node in the same zone mij . If this monitor node is also the replica node rij , then the event-
data is stored at rij . If not, the data is forwarded to the closest replica node for this event-
type. The closest replica node can be determined from the information in the list of replica
nodes field of the local monitoring map. The target replica node stores the event-data and
updates its local copy of the monitoring map. This operation is illustrated in Figure 1.

Event Query We envision three types of queries in an R-DCS system - summary, list or
attribute-based. These are now described in detail, along with mechanisms to support these
in R-DCS.

– List: A list query for an event-type is a request for all stored data for events of this type.
A querying node in zone zj sends the query for event-type ei to the local monitor (and
possibly replica) node mij . The monitor node then duplicates the query and forwards
it to all other active replica nodes rix : x = 1, · · · , Z in the sensornet. All active replica
nodes reply directly to the querying node with event-data. This operation is illustrated
in Figure 2.

– Summary: As the name suggests, the querying node requests a summary of event in-
formation for an event-type. A querying node in zone zj sends the query for event-type
ei to the local monitor node mij . The monitor node responds with the event summary
information from the local monitoring map. This is illustrated in Figure 3.

– Attribute-based: An attribute-based query requests data for all events which match
certain constraints on their attribute values. A querying node in zone zj sends the query
for event-type ei to the local monitor (and possibly replica) node mij . The monitor node
then duplicates the query and forwards it to all other active replica nodes in the sensornet
with Bloom filter matches. Bloom filters are explained in some detail in Section 3.6. All
active replica nodes reply directly to the querying node with event-data.

3.3 Periodic Update and Exchange of Monitoring Map

When an event of type ei occurs in zone j, it updates the local monitoring map in mij .
However for global consistency of information such as the number of replica nodes for type
ei and event-summary information, these monitoring maps must be exchanged between the
respective monitor nodes at periodic intervals. For this purpose, all active monitor nodes for
a type ei form a logical ring as shown in Figure 4. Each zone has two adjacent zones. When
a monitor node receives a new map, it adds its own local updates (based on events received
since the last map update) and forwards it to the next monitor node.

3.4 Switching between Modes

A node in zone j switches from normal mode to monitor mode (for event-type i) when it
becomes the node closest to the location (xij , yij) ≡ H(ei, zj). If due to node mobility, a new
node mij ′ becomes closer to this location, then the monitoring map is handed over from mij

to mij ′, and mij ′ becomes the new monitoring node in zone j. mij ′ also becomes a replica
node rij ′ if mij ≡ rij was a replica node, and the relevant stored data is handed over from
rij to rij ′.

AP

z1

mi2

mi3

mi4 |ri4

mi1|ri1

z2

z3 z41

2

Fig. 3. Querying in R-DCS (summary mode)

z1 z2

z3 z4

mi1| ri1 mi2

mi4 | ri4
mi3

Map Exchange

Fig. 4. Logical Ring in R-DCS

A node switches from monitor mode to replica mode and vice-versa based on certain local
criteria such as event storage and query traffic loads, as well as residual energy in the node.
In R-DCS, every monitor/replica node logs all its storage and query traffic loads for a certain
window of time (t− τ, t), as well as its residual energy at time t, and uses a composite of this
information to determine the current activity coefficient Aij(t) of a monitor/replica node for
event-type ei in zone j. The residual energy term accounts for the fact that sensornet nodes
have limited energy, and hence replica nodes try to conserve energy (by becoming a monitor
node) when their residual energy is running low.

We define two threshold values for the activity coefficient for event-type ei: a lower thresh-
old λi(r→m) and an upper threshold λi(m→r) (with a buffer zone in between to account for
hysteresis effects). A monitor-node mij switches to replica mode when it’s current activity
coefficient exceeds the upper threshold, i.e., Aij(t) > λi(m→r). Conversely, a replica-node rij

switches to monitor-mode when it’s current activity coefficient goes below the lower thresh-
old. The only constraint is that there must be at least one replica node in the network.
Further, any replica node switching to monitor mode must handoff its stored data to one
of the other replica nodes. The values of λi(r→m) and λi(m→r) are determined based on the
relative costs of storage, queries and of conserving residual energy.

3.5 Handling Node Failure

In the above discussion we assumed that all nodes are stable and able to continuously route,
monitor or store data. Consider the more realistic case, when nodes fail with a certain failure
probability f . We will discuss the effect of node failure and mechanisms to solve this problem
in the following sections.

Failure of Monitor and Replica Nodes When a monitor node in a certain zone fails, we
can use PRP described in [10] and in Section 2.3 to find/elect an alternate monitor node for
this zone. PRP also ensures that the new monitor node has a copy of the monitoring map
through local refresh mechanisms. If this failed node is also a replica node, the event data
stored in it might be lost. However using PRP, it is possible to recover at least part of this
data through local refreshes.

Clustered Node Failures Under normal operating conditions, there is one monitor node
per zone i.e., Mi = Z for each event-type ei. These nodes form a logical ring for the purpose
of updating their maps. However, if all nodes in a particular zone fail, it results in a break of
the logical ring of monitor nodes. Note that in every map-update cycle, the monitor nodes
mark their presence by updating the List of monitoring nodes field of the monitoring map.
By checking this field, it is possible to discover which zone(s) have experienced clustered node
failures, and to route around these zones to reconstruct a logical ring of Mi < Z monitor
nodes. We can employ different techniques (e.g., beaconing mechanisms) to recover from such
failures.

3.6 Bloom Filter-based Attribute Matching

Bloom filters [2, 3] can be used to support attribute-based queries of the event-list stored at
each of the replica nodes for an event type. It is a method to represent a set of elements
as a compact summary supporting membership queries. Consider a set of v elements to
be represented using an u-bit long vector with all entries initially set to zero. A set of k
independent hash functions h1, · · · , hk is chosen where each function has a range of 1 to u.
For each element x to be represented, the bits at positions h1(x), · · · , hk(x) in the bit vector
are set to 1. A bit may be set to 1 multiple times. This bit vector serves as a summary. To
find out if an element y is in the event-list, we check the positions h1(y), · · · , hk(y) in the bit
vector. If they are all set to 1, then we can infer that y is in the event-list, though there is
a (small) probability of being wrong (false positive). The critical feature of a Bloom filter is

that the probability of false positives decreases exponentially with u, if the number of hash
functions k is chosen optimally. It is shown in [3] that the probability of a false positive is
given by (1 − (1 − 1

u
)kv)k, which gives the optimal value of k as u

v
ln 2.

We now explain how this concept can be applied to the problem of attribute-based queries
in a sensor network. Consider the temperature monitoring example. The Bloom filter can be
used to represent compactly which replica nodes contain temperature readings in certain tem-
perature ranges. Suppose a query node sends the query “Get all event data for temperature
readings between 30 and 40” to the local monitor node. By Bloom filter-based matching, we
can obtain a list of replica nodes containing relevant temperature readings. The local monitor
node can then forward the query to this restricted set of replica nodes. Note that the usage
of Bloom filters is optional. It is appropriate only when there are a large number of replica
nodes, making flooding of all replica nodes expensive.

3.7 Performance Measures

We need to specify relevant performance measures to quantify the benefits of our DCS
mechanisms. As mentioned before, data dissemination algorithms should seek to minimize
communication in order to extend overall system lifetime. For consistency and for the sake of
easy comparison, we use the same metrics to quantify communication overhead as Ratnasamy
et al. [10, 13]. These metrics (assuming that all packets have the same size) are:

– Total Usage: Total Number of Packets sent in the sensornet.
– Hotspot Usage: Maximal Number of Packets sent by any particular sensornet node.

As previously mentioned, when an event of a particular type occurs at any sensornet node,
it transmits this event data to the closest monitor node, which then forwards it to the closest
replica node for storage of events of that type. If the data storage operation fails (this could
occur if the destination node is unreachable or malfunctioning), this data is retransmitted
to one of the other Ri replica nodes. This process is iterated until the data is successfully
stored. If all the Ri replica nodes for event type i fail simultaneously, then an attempt to
store or retrieve data of this type will fail. To measure the success rate of queries for event
data, we use the following metric:

– Query Success Rate: Mean Percentage of queries (averaged over all Event Types)
which return a successful response.

Total Usage, as a function of node failure rate f , can also be used as a resilience metric. Total
Usage is expected to increase as the node failure rate increases (due to more retransmissions).
However, a drastic increase in Total Usage at higher node failure rates would imply that our
scheme is not robust in the presence of node failures. Hence R-DCS aims to achieve graceful
degradation (with respect to Total Usage) in system performance, as f is increased.

4 Analytical Results

We now derive analytical expressions for energy costs and savings obtainable with R-DCS.
We consider a sensornet with N nodes equipped to detect E event types. Let Dtotal denote
the total number of events detected, Q the number of queries issued, Dq the number of events
detected for these queries, R be the number of replica nodes, M the number of monitor nodes
and ω the frequency of monitoring map updates.

4.1 Energy Savings

The communication costs of the three canonical methods [13] and of R-DCS can be estimated
using the fact that the asymptotic cost of a flood is O(N) and that of direct routing from
one random node to another (using GPSR) is O(

√
N). For R-DCS, we estimate the total

message count (total usage T) and the number of messages at the busiest point (hotspot usage

H). We reproduce from [13] the corresponding expressions for each of the aforementioned
canonical methods [13] for completeness. The formulae presented give the expected values of
these quantities. We consider a scenario in which we have one access point. The results can
be easily generalized for multiple access points. We assume that the message counts at the
access point is a good estimate of hotspot usage, since it is likely to be the busiest area of
the network.

1. External Storage:
The cost of storing each event (sending to external store) is O(

√
N). There is no cost for

queries since event information is already external.

T = Dtotal

√
N H = Dtotal (1)

2. Local Storage:
Storing event information locally incurs no cost. Queries are flooded to all nodes at a
cost of O(N). Responses are routed back to the query-source at a cost of O(

√
N).

T = QN + Dq

√
N H = Q + Dq (2)

3. Data-Centric Storage:
Storing event information at a sensornet node depending on the event-type incurs a cost of
O(

√
N). Queries for a particular event-type are routed to the storage node, which returns

a response, both at a cost of O(
√

N). Total usage depends on whether a full-list ing of
events is required (uses one packet for every instance of an event for each event-type) or
whether a summary is sufficient (uses only one packet for each event-type).

T = Dtotal

√
N + Q

√
N + Dq

√
N H = Q + Dq (list)

T = Dtotal

√
N + Q

√
N + Q

√
N H = 2Q (summary)

(3)

In the case of Structured Replication with DCS (SR-DCS), the costs of storage is de-
creased whereas the cost of queries is increased (compared to plain DCS). For a hierarchy-
depth d, the storage cost for a single event decreases from O(

√
N) to O(

√
N)/2d. The

cost of routing a single query through the complete image-node hierarchy increases from
O(

√
N) (for DCS) to O(2d

√
N). Total usage is given by:

T = Dtotal

√
N/2d + Q2d

√
N + Dq2

d
√

N H = Q + Dq (list)

T = Dtotal

√
N/2d + Q2d

√
N + Dq2

d
√

N H = 2Q (summary)
(4)

4. Resilient Data-Centric Storage:
Since event information is stored at the node closest to the event-location, storage costs
are reduced from O(

√
N) to O(

√

N/R). Queries of a particular event-type are routed

to the closest monitor node at a cost of O(
√

N/M). In the summary case described
above, this monitor node can directly return a response (based on the monitor-maps
it receives from the other nodes) at a cost of O(

√

N/M). In the list case, the query

must be forwarded to all R replica nodes (at a cost of O(R
√

N)), and all of them return
responses, at a cost of O(

√
N). Let the frequency of monitoring map updates be ω. The

cost of exchanging monitor maps is O(2ω
√

NM) for each event-type.

T = Dtotal

√

N/R + Q(
√

N/M + R
√

N) + Dq

√
N + 2ωE

√
NM H = Q + Dq (list)

T = Dtotal

√

N/R + Q
√

N/M + Q
√

N/M + 2ωE
√

NM H = 2Q (summary)
(5)

From the above formulae, we can draw a number of conclusions. If N is increased,
other parameters constant, the local storage method incurs the highest total message count.
If Dq � Q and events are summarized, DCS/R-DCS have the lowest hotspot usage. If
Dtotal � Dq, ES has significantly higher hotspot usage than the other schemes. In general,

DCS/R-DCS are preferable in cases where (1) N is large. (2) Dtotal � Dq � Q (Many de-
tected events and not all event types queried). However, LS may be preferable if the number
of events is large compared to system size (Dtotal > Q

√
N) and event lists are used.

Comparing the total message counts for R-DCS and DCS/SR-DCS (R in R-DCS is equiv-
alent to 4d in SR-DCS), we see that R-DCS will outperform DCS in the summarized case, for
typical values of the scenario parameters. Considering N = 10000, E = 100, Dtotal = 10000,
Q = 50, Dq = 5000, R = 4, M = 16 and ω = 0.1 we get T = 1020000 for DCS, T = 540000 for
SR-DCS and T = 513000 for R-DCS. In the list case, the T = 1505000 for DCS, T = 1510000
for SR-DCS and T = 1029250 for R-DCS. Hence we see that R-DCS could provide significant
energy savings for both the summarized and the list case. R-DCS presents an intermediate
solution between LS (free storage, expensive queries) and DCS (both at moderate cost). It
can be expected to give good performance when Dq � Q.

4.2 Increased Resilience

An obvious benefit of R-DCS over DCS is the increased resilience to node failures. Having
M monitor nodes and R replica nodes for each event-type ensures that all information cor-
responding to an instance of a particular event-type is not lost when one node fails. Further,
since these nodes exchange and replicate monitoring maps, it is extremely unlikely that the
control and event-summary information is lost.

Let us consider a situation in which nodes in the sensor network are unreliable, so that
they are on (i.e., functioning correctly) with probability 1−f , and off (i.e., malfunctioning)
with probability f . Here 0 ≤ f ≤ 1. f = 0 corresponds to the case of perfectly reliable nodes.
As in the previous section, we approximate the communication costs (T) for R-DCS. Local
refresh mechanisms like PRP [10] are used to ensure that there is one monitor node in every
zone, except in the case of clustered node failures. Normal nodes in any zone j communicate
with the local monitor (and replica if it exists) nodes mij (rij) for data of event-type ei. In any
message, the monitor (replica) node includes a list of viable destinations in the header. For
example, when a source monitor node mij needs to store its event data at one of the Ri replica
nodes for type i event data, it constructs the destination list by computing its distances to all
the type i replica nodes listed in the local monitoring map and then ordering the Ri replica
nodes according to their distances from the source. Hence the destination of first choice is
the closest replica node, the first alternate destination is the second-closest replica node, and
so on. mij then routes the message to each one of the Ri possible destinations in its list,
in order of preference. If all Ri destinations are exhausted without success, the message is
dropped.

– Resilient Data-Centric Storage:
A single message has a cost O(

√
N), when the destination is on (with probability 1− f).

The probability of the destination being off is f , in which case the message is sent to the
first alternate destination. In the second transmission, with probability 1−f the message
is successfully sent at a total cost of 2O(

√
N) [which consists of a cost O(

√
N) for the

first failed message and a cost O(
√

N) for the second successful message] or it fails again
with probability f and so on. This iterative process is represented by Equation 6.

C = (1 − f)
√

N + f((1 − f)2
√

N + f((1 − f)3
√

N + . . .)) R terms, R ≥ 2

=
√

NCRf

(6)

where CRf is given by

CRf =
1 − (R + 1)fR + RfR+1

1 − f
(7)

We can now give the expressions for T in this case.

T = Dtotal

√

N/RCRf + Q(
√

N/M + R
√

N)CRf + Dq

√
N + 2ωE

√
NM (list)

T = Dtotal

√

N/RCRf + Q
√

N/MCRf + Q
√

N/MCRf + 2ωE
√

NM (summary)
(8)

Let us denote the probability of successful storage of data corresponding to a particular
event instance as Ps (here the subscript i is omitted, but it must be noted that we are
considering a particular event-type ei). Further let us denote the probability of clustered
node failure as fc, in which a majority of the nodes in a particular zone malfunction. As
described earlier, this operation succeeds if all R replica nodes for the corresponding event
type do not fail simultaneously. The probability of simultaneous failure of R replica nodes
(assuming these failures are independent) is fR. Clearly, Ps = 1 − fR. For a summary
query to be successful, two conditions have to be satisfied: (1) The event data being
queried must have been successfully stored (which occurs with probability Ps). (2) The
local monitor node must be alive storing this summary data. Since we assume that local
refresh mechanisms like PRP [10] ensure the existence of a monitor node except in the
case of clustered node failures, this monitor nodes is alive with probability 1− fc. Hence
the mean query success rate Qs is given by

Qs = (1 − fR)(1 − fc) (summary) (9)

For a list query to be successful, the second condition is modified to all monitor nodes
being alive. This occurs with probability (1 − fc)

M . Hence the mean query success rate
is given by

Qs = (1 − fR)(1 − fc)
M (list) (10)

From equations 7 and 8, we can see that if f is increased, other parameters constant, then
T increases. This should be obvious intuitively, since a greater number of unreliable nodes
imply more retransmissions. Also from equations 9 and 10, it is clear that if R is increased
keeping f constant, Qs increases. Similarly if f is increased, Qs decreases (for the same value
of R). These variations are further investigated in Section 5.5.

Comparing the total message counts and query success rates for R-DCS for different
values of R and f , we see that R-DCS offers significant resilience to node failures with R ≥ 4
for different values of f . In list mode, considering N = 10000, E = 100, Dtotal = 10000,
Q = 50, Dq = 5000, M = 16, fc = 0.02, R = 4 and ω = 0.1, we get T = 1029250, Qs = 1
for f = 0 and T = 1355032, Qs = 0.92 for f = 0.5. With the other parameters constant
but R = 16, we get T = 839250, Qs = 1 for f = 0 and T = 1170410, Qs = 0.98 for
f = 0.5. Hence we see that as R is increased beyond 4, the query success rate Qs approaches
1 − fc as f is increased up to 0.5. The tradeoff here is the overhead of maintaining a large
number of monitor/replica nodes.

5 Performance Evaluation

In this section, we present our simulation results. We first describe our simulation method-
ology and then compare the performance of R-DCS against DCS, LS and ES.

Table 1. Simulation Parameters

Parameter Value

N , Number of Nodes 100 - 100000

R, Number of Replicas 2-16

Z, Number of Zones 16

E, Number of Event Types 100

Q, Number of Event Types Queried 50

Di, Instances of each Event-type i 100

fc, Probability of Clustered Node Failure 0.02

ω, Frequency of Monitor Map Updates 0.1

5.1 Simulation Methodology

DCS has been shown to be a viable and robust data dissemination scheme using detailed
simulations in ns−2 extended with a GPSR-based DHT [10, 13], which included a full 802.11
MAC and physical radio layer. These simulations verified the correct functioning of the low-
level aspects of DCS. Since R-DCS builds upon DCS mechanisms, we expect that R-DCS
will be viable in a bandwidth-limited, contention prone medium as well. However these ns−2
simulations do not scale to more than 200 nodes [13]. Since we envisage R-DCS to be most
useful in very large-scale sensor networks, we used a lightweight (i.e., without radio details)
simulator built in C to compare the performance of R-DCS with DCS, LS and ES. This
simulator assumes stationary nodes in the sensor network, as well as instantaneous error-
free packet transmission. We examine total usage and hotspot usage, as described before,
as metrics to compare the relative performance of these algorithms. The system parameters
used in most of the simulations are summarized in Table 1.

We individually vary the parameters R, N , Q, and the node failure rate and investigate the
effect on system performance. In our simulations, there is one randomly chosen access point,
which represents the node where queries enter the network. At the start of the simulation,
all events are inserted into the DHT once, by sensors chosen uniformly at random; these
are the sensors that measured the inserted events. We present results averaged over multiple
simulations (10 iterations with different random seeds for each simulation run). Unless we
explicitly mention otherwise, the node density remains constant in our simulation (the region
size is scaled as the number of nodes increases).

5.2 Variation of R, the number of Replicas

In this section, we show the results of varying the number of replicas R, while the other
parameters are kept constant as in Table 1. The value of N is chosen to be 10000. Figure 5
shows the variation of total messages with R for the list and summarized cases. From Figure
5, we observe that ES and LS have higher total usages than our data-centric schemes. At low
values of R, R-DCS and its extensions are found to have approximately similar performance
as DCS. However, as R is increased, the performance of R-DCS based schemes is significantly
better than DCS. These conclusions are also supported by our analytical results in Section 4.
Note also that the total usage for R-DCS based schemes is significantly lower in summarized
case than in the list case, as expected.

In our simulations, we first consider a normal scenario, where events occur uniformly
spread out over the sensornet field. We have also conducted simulations with a modified
event density, wherein 80% of the events occur in one quadrant of the field, and 20% of
events occur in the remaining three quadrants taken together. We expect that this will lead
to congestion in the “crowded” quadrant of the network. Load-balancing mechanisms built
into R-DCS should help it outperform the other schemes in this case. The results for T are
presented averaged over all scenarios.

200000

275000

350000

425000

500000

1 2 4 8 16

To
ta

l M
es

sa
ge

s

Number of Replicas

RDCS List
RDCS Summary

Fig. 5. Variation of Total Messages with R

(ES: T=740206, LS: T=684409, DCS: T=488917)

15000

80000

400000

2000000

10000000

100 1000 10000 100000

To
ta

l M
es

sa
ge

s
[lo

g2
-s

ca
le

]

Number of Nodes

LS
ES

DCS List
DCS Summary

RDCS List
RDCS Summary

Fig. 6. Variation of Total Messages with Number
of Nodes N

2000000

4000000

8000000

17000000

35000000

50 200 350 500

To
ta

l M
es

sa
ge

s
[lo

g2
-s

ca
le

]

Number of Queries

LS
ES

DCS List
DCS Summary

RDCS List
RDCS Summary

Fig. 7. Variation of Total Messages with Q

400

1200

3500

10000

30000

50 200 350 500

H
ot

sp
ot

 U
sa

ge
 [l

og
2-

sc
al

e]

Number of Queries

LS
ES

DCS List
DCS Summary

RDCS List
RDCS Summary

Fig. 8. Variation of Hotspot Messages with Q

5.3 Scaling to a large number of nodes

In this section, we show the results of varying the number of nodes N , while the other
parameters are kept constant as in Table 1. The value of R is chosen to be 4. Figure 6
shows the variation of total messages with n. From Figure 6, we see that all the methods
have reasonably similar behavior for total usage, but LS has the lowest total usage at low N
(N = 100) and ends up (at high N) with the highest value. Amongst the other schemes, our
R-DCS schemes have the best performance, followed by DCS and then ES, for all values of
N . These conclusions are supported by our analytical results in Section 4.

5.4 Scaling to a large number of queries

In this section, we show the results of varying the number of queried event-types Q, while
the other parameters are kept constant as in Table 1. The value of R is chosen to be 4 and
N = 10000. Q is varied from 50 to 500. Since the number of instances of each event type
is 100, this corresponds to a variation in the total number of queries from 5000 to 50000.
Figure 7 shows the variation of total messages with Q, while Figure 8 shows the corresponding
variation of hotspot usage. From Figures 7 and 8, we see that at low values of Q, LS offers
good performance, but both total usage and hotspot usage increase linearly with increasing
Q - hence LS does not scale well with more queries. ES has a medium total as well as hotspot
usage, which is independent of Q. In both the list and summarized case, the graphs clearly
show that R-DCS offers significant performance improvements over DCS which in turn does
better than ES/LS with increase in Q. These experimental results are supported by our
analytical expressions in Section 4, confirming the validity of our simulations.

5.5 Resilience to Node Failure

In the results presented so far, we assumed that nodes were stable. We now present simulation
results for the case when nodes are off with probability f and on with probability 1− f . We

400000

550000

700000

850000

1000000

0 0.05 0.1 0.2 0.3 0.4 0.5

To
ta

l M
es

sa
ge

s

Probability of Node Failure

R = 2
R = 4
R = 8
R = 16

Fig. 9. Variation of Total Messages with node failure rate f

vary the value of f from 0 to 0.5 and observe the variation of T . The value of N is chosen to
be 10000, and the other parameters are the same as in Table 1. Figure 9 shows the variation
of total messages with f for the summary case in R-DCS. In fact for R = 16, T is almost
constant for values of f ranging from 0 to 0.5. It must be noted that, as the node failure
rate f is increased, the Query Success Rate Qs is expected to decrease significantly as shown
by Equation 9. For example, with f = 0.4 and R = 2, Qs = 70% versus Qs = 100% for
f = 0. Our experimental results approximately agree with the analytical results derived in
Section 4.2. These results shows that in a scenario where the probability of node failure is
significantly high, R-DCS improves scalability by avoiding a dramatic increase in messages
sent. In other words, R-DCS makes sensor data resilient to node failure.

6 Conclusions

In this paper, we have presented Resilient Data-Centric Storage as a means of reducing energy
consumption and increasing resilience to node failures in a wireless ad-hoc sensor network.
We present a methodology which stores event data at the closest of R replica nodes allocated
(by the use of a DHT) for the event-type to which this data belongs. A set of monitor nodes
exchange monitor maps to form a global image of all events of that event type which have
occurred in the network. Since queries need to be routed to the closest monitor or replica
node for an event-type, overall query traffic is reduced.

We have evaluated the viability and relative performance of our scheme vis-a-vis the
original DCS scheme, Local storage and External storage. Through analytical results and
simulations, we show that in a reasonably large sensor network with many detected events,
R-DCS performs better than DCS, LS and ES. In particular R-DCS achieves significant
energy-savings in the summarized mode of query responses. In all scenarios, R-DCS provides
resilience to both clustered and isolated node failures.

We believe that R-DCS will work well over a broad range of network scenarios. Robust
and resilient storage of data within a sensor network could be useful for a large number of
applications, such as monitoring meteorological data in turbulent conditions. Resilient DCS
could also be used as a tool in providing service guarantees for applications running over
sensor networks, analogous to how web-caching helps in providing service guarantees and
improving data-availability over the Internet.

7 Acknowledgements

We would like to thank Sylvia Ratnasamy, Yin Li and Fang Yu for their help and guidance
in the initial phases of the project and for making the source code of their DCS simula-
tor available to us. We also thank the anonymous reviewers for their useful comments and
feedback. This work is supported by the US National Science Foundation under Cooperative
Agreement Number ITR-0085879.

References

1. W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The Design and Implementation
of an Intentional Naming System. In Proceedings of the 17th ACM Symposium on Operating
Systems Principles (SOSP’99), pages 186–201, Dec. 1999.

2. B. H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors. Communications
of the ACM, 13(7):422–426, July 1970.

3. L. Fan, P. Cao, J. Almeida, and A. Broder. Summary Cache: A Scalable Wide-area Web Cache
Sharing Protocol. In Proceedings of the ACM SIGCOMM’98, pages 254–265, Sept. 1998.

4. J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Ganesan. Building
Efficient Wireless Sensor Networks with Low-Level Naming. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP-01), 35(5):146–159, Oct. 2001.

5. T. A. Herring. The Global Positioning System. Scientific American, 274(2):44–50, Feb. 1996.

6. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A Scalable and Robust
Communication Paradigm for Sensor Networks. In Proceedings of the 6th Annual International
Conference on Mobile Computing and Networking (MOBICOM-00), pages 56–67, Aug. 2000.

7. B. Karp and H. T. Kung. GPSR: Greedy Perimeter Stateless Routing for Wireless Networks. In
Proceedings of the 6th Annual International Conference on Mobile Computing and Networking
(MOBICOM-00), pages 243–254, Aug. 2000.

8. M. Mauve, H. Hartenstein and J. Widmer. A Survey on Position-based Routing in Mobile
Ad-hoc Networks. IEEE Network, pages 30–39, Nov. 2001.

9. G. J. Pottie and W. J. Kaiser. Embedding the Internet: Wireless Integrated Network Sensors.
Communications of the ACM, 43(5):51–51, May 2000.

10. S. Ratnasamy, B. Karp, Y. Li, F. Yu, R. Govindan, S. Shenker and D. Estrin. GHT: A Geographic
Hash Table for Data-Centric Storage. In Proceedings of the First ACM International Workshop
on Wireless Sensor Networks and Applications (WSNA 2002), Oct. 2002.

11. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content-Addressable
Network. In Proceedings of the ACM SIGCOMM 2001 Conference, 31(4):161–172, Aug. 2001.

12. A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location, and Routing for
Large-scale Peer-to-peer systems. Lecture Notes in Computer Science, 2218:329–340, 2001.

13. S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin. Data-Centric Storage in
Sensornets. In Proceedings of the First ACM SIGCOMM Workshop on Hot Topics in Networks,
Oct. 2002.

14. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A Scalable Peer-
To-Peer Lookup Service for Internet Applications. In Proceedings of the ACM SIGCOMM 2001
Conference, 31(4):149–160, Aug. 2001.

15. B. Warneke, M. Last, B. Liebowitz, and K.S.J. Pister. Smart Dust: Communicating with a
Cubic-Millimeter Computer. In IEEE Computer Magazine, pp. 44–51, Jan. 2001.

16. B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An Infrastructure for Fault-tolerant Wide-
area Location and Routing U.C. Berkeley Technical Report UCB/CSD-01-1141, April 2001.

