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Resilient Data-Centric Storage replicates 
data at strategic locations in wireless ad 
hoc sensor networks, leading to 
significant energy savings, as well as 
enhanced scalability as node density and 
query rates increase. R-DCS’s 
performance also gracefully degrades 
when faced with isolated and clustered 
node failures, increasing data robustness. 
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Wireless sensor networks make possible a range of applications that link numerous nodes to monitor 
and report dis tributed event occurrences. Examples include fields as diverse as climatic monitoring, 
tactical surveillance, and earthquake detection. When built with state-of-the-art technology, wireless 
sensors offer processing and storage capabilities that are significantly higher than the available 
bandwidth.1 The reason is limited battery life, which generally motivates developers to conserve energy 
by using low-power—and, consequently, low-bandwidth—wireless communication techniques. 
Comparing these high processing capabilities with high communication costs encourages system 
designers to leverage computational techniques that reduce the network’s total communication 
overhead.  
 
Recently, researchers have suggested data-centric models as a viable approach to reduce 
communication traffic in sensornets. For example, in data centric-storage (DCS)2 data is stored 
according to its event type at designated sensornet nodes. As a direct consequence, users can send 
queries for a particular data type directly to the node that stores that data type rather than flooding the 
network with queries. Our scheme, Resilient Data-Centric Storage (R-DCS), extends this idea by 
replicating data and control information within the sensornet. By increasing the number of nodes that 
can store data for each event type, as well as maintaining summary and control information at several 
nodes, we further decrease the average cost of both storing and querying data. Our scheme also 
provides significantly higher data availability for unreliable or randomly failing networks.  



Data-access and attribute-based naming: Existing 
approaches 

In most communication networks, naming of nodes enables low-level communication and leverages 
topological information. With the Internet’s point-to-point communication, for example, IP addresses 
assigned to each node serve as unique node identifiers in IP routing. In a sensor network scenario, 
such naming is ineffective because an individual sensor node’s identity is less important than its 
associated data. Using an attribute-based naming system more efficiently satisfies wireless sensor 
networks’ tight energy constraints.1,3  

How these methods work 
At the lowest level, when an event occurs, sensors record and store the event data locally and name 
this data based on its attributes—such as event type or geographic location. In an environmental 
sensing network, for example, we might classify all sensor data as being of type "temperature," 
"pressure," or "humidity" and name all such data by including in them one of these event attributes. 
The owner of a sensornet can either predefine these attributes to save overhead or update them if a new 
set of tasks or data become central to observation.  
 
Data-access methods handle named data in different ways, with substantially different assumptions and 
cost-benefit trade-offs. In the three canonical approaches,2 for example, 
 
External storage stores event data at an external storage point. 
Local storage stores event data locally, at the detecting node. 
DCS stores event data at designated nodes, according to event type.  
 
To retrieve the sensornet’s event information, all methods except external storage use queries. It’s thus 
important to consider the ratio of query traffic to event detection traffic when designing a sensor 
network. R-DCS and each of the canonical approaches have different relative costs for query and event 
traffic. Hence, a sensor network’s function typically determines which data-access method offers the 
most advantageous energy management combined with adequate data availability.  

Data-centric storage 
We built our R-DCS schema on the DCS data-dissemination paradigm and its supporting mechanisms.2 
DCS provides access to data using an attribute-based naming scheme that builds a distributed hash 
table (DHT)4-7 on top of a variation of the Greedy perimeter stateless routing (GPSR) algorithm8 for 
low-level geographic routing.  
 
Geographic routing—unlike the commonly used shortest path technique—uses the relationship 
between location and connectivity in a wireless network. GPSR uses greedy forwarding to forward 
packets to nodes that are progressively closer to the destination. In regions where such a greedy path 
does not exist—that is, where the only viable path requires a move away from the destination—GPSR 
recovers by forwarding in perimeter mode, wherein a packet traverses successively closer planar 
subgraph faces within the network connectivity graph until it reaches a new node closer to the 
destination, and greedy forwarding resumes. 
 
On top of GPSR, DCS uses a DHT to hash an event name’s key (dataName) to geographic coordinates 
located within the sensornet’s boundaries. DCS offers two interface primitives:  

• put(dataName, dataValue) stores dataValue (the observations of a sensor node with a 
particular attribute) under the key dataName.  

• get(dataName) retrieves all data stored in the sensornet that is associated with the key 
dataName.  

 



Using GPSR, DCS routes a put or get message to the node closest to the key dataName’s hashed 
location. This node is expected to act as the storage node for data associated with the key. Although 
this node need not be at the exact coordinates that the hash function determines, it is important that the 
node’s identity is chosen in a consistent manner. 
 
Thus, to make DCS capable of handling limited mobility and isolated node failures, the DCS developers 
have proposed certain extensions to its basic scheme.2,9 In DCS, an event type’s storage node 
periodically initiates a GPSR-routed refresh message to the hashed location of its own key dataName 
that contains all associated data at this node. If the refresh message detects a new or displaced node 
closer to the key dataName’s associated location than the current storage node, this new node becomes 
the new storage node. Also, timer-based algorithms ensure that if an active storage node dies 
unexpectedly, another node automatically starts generating refresh messages. Thus, to protect against 
isolated node failures, the nodes that receive a local refresh message also must replicate the contained 
(dataName, dataValue) pairs to protect against data loss. This process is called the perimeter refresh 
protocol (PRP).9 

Resilient data-centric storage 

R-DCS is an extension to DCS’s basic functionality that further minimizes query retrieval traffic and thus 
conserves energy and increases data availability. R-DCS ensures that event information is not lost, 
even if multiple nodes or whole regions fail during operation. For example, because the original version 
of DCS stores all events of the same event type in one sensornet node, too many events of a particular 
type can create a network bottleneck, or hotspot. Also, clustered node failures can lead to a complete 
data loss for a certain event type. Our R-DCS data-dissemination scheme contends with this using a 
two-level replication strategy for control information and data. R-DCS facilitates data storage at one of 
several replica nodes in the network assigned to an event type. It also facilitates storage of this event 
type’s control and summary information at geographically distributed monitor nodes in the network. 

R-DCS architecture 
In R-DCS, we partition the sensornet field’s coordinate space into Z zones, denoting the set of available 
zones as zj: j = 1, … , Z. Figure 1a shows an example of zoning based on geographical boundaries. These 
zones can contain sensor nodes operating in three possible modes: monitor, replica, and normal. 
 
Figure 1. The R-DCS architecture. The sensornet field is partitioned into zones (z) that include monitor 
(m) and replica (r) nodes, and might also contain an access point (AP). (a) R-DCS event storage, (b) 
querying in list mode, (c) querying in summary mode, and (d) a logical ring. 
 
Each zone has one monitor node for each event type. The monitor node uses a monitoring map to store 
and exchange information for each event type. This map includes control and summary information in 
several fields: 
A list of zones containing replica nodes (to forward event data and queries). 
A list of zones containing monitor nodes (to facilitate map exchange). 
Event summaries (to facilitate summary-mode queries). The exact nature of event summaries depends on 
the event type. For example, in a temperature-monitoring sensornet, the summary information might 
contain the number of events detected and the average temperature reading for each zone. 
Bloom filters (to enable attribute-based queries; this field is optional). R-DCS uses Bloom filters10,11 to 
organize event data as a set of attributes and their values. In the temperature monitoring case, for 
example, these attributes might be Event time and Temperature. Bloom filters offer an efficient way 
to support attribute-based queries. For example, they let users access all temperature measurements 
conducted between 3 p.m. and 4 p.m., or all temperature readings between 30 and 40 degrees.  
 
Each zone also has at most one replica node for each event type. If present, this replica node is always 
the same as the monitor node, performing its functions but also storing event data for the given event 
type. All nodes that are not either a monitor or replica node operate in normal mode. Such a node might 



originate or route event data, but doesn’t store any event data or control information (except as a part 
of PRP). 
 
Let E denote the number of event types in the sensornet. Let Mi be the total number of monitor nodes 
for each event type ei. Let Ri be the number of replica nodes for each event type ei. For each i = 1, … , E, 
we must satisfy the following system constraints: 
 
Ri ≤ Mi ≤ Z. This holds because each zone has at most one replica node and one monitor node, and all 
replica nodes are monitor nodes as well. Under normal operations without clustered node failures (when 
a majority of nodes fail in one zone), there will be one monitor node per zone: Mi = Z. 
Ri ≥ 1. The network must have at least one replica node, because a replica node stores each event 
type’s event data. 
 
Due to the higher complexity of R-DCS, for our DHT we use a hash function H that is a function of the 
event type ei and also the zone zj. If event type ei in zone zj hashes to a location (xij, yij) ≡ H(ei, zj), then 
the sensor node mij geographically closest to (xij, yij) is the monitor node for event type i within zone j. 
Depending on local decision rules, this monitor node might also serve as a replica node rij. For load 
balancing, the function H(ei, zj) should be chosen such that for each zone zj, different event types ei 

hash to distinct nodes. 

Event Storage and Query and Monitoring Map Update  
 
To store events, a sensing node (situated in zone j) sends an event of type ei to the monitor node in the 
same zone mij. If this monitor node is also the replica node rij, then the event data is stored at rij. If not, 
the data is forwarded to the event type’s closest replica node, which is determined based on the 
information in the local monitoring map’s list of replica nodes. The target replica node stores the event 
data and updates its local copy of the monitoring map (Figure 1a). 
 
R-DCS makes possible three types of event queries: summary, list, or attribute-based. A list query 
requests all stored data for an event type. A querying node in zone zj sends the query for event type ei 

to the local monitor node mij (which might be identical to a local replica node). The monitor node then 
duplicates the query and forwards it to all other active replica nodes rix : x = 1, … , Z in the sensornet. 
All active replica nodes reply directly to the querying node with event data (see Figure 1b). 
 
A summary query requests a summary of event information for an event type. A querying node in zone 
zj sends the query for event type ei to the local monitor node mij. The monitor node responds with the 
event summary information from the local monitoring map (see Figure 1c). 
 
An attribute-based query requests data for all events that match certain attribute-value constraints. A 
querying node in zone zj sends the query for event type ei to the local monitor (and possibly replica) 
node mij. The monitor node then duplicates the query and forwards it to all other active replica nodes in 
the sensornet with Bloom filter matches. All active replica nodes reply directly to the querying node 
with event data. 
 
When an event of type ei occurs in zone j, it updates the local monitoring map in mij. For global 
information consistency, all active monitor nodes for a type ei form a logical ring to periodically 
exchange monitoring maps (see Figure 1d). When a monitor node receives a new map, it adds its own 
local updates (based on events received since the last map update) and forwards it to the next monitor 
node using knowledge about its two adjacent zones. 

Switching between modes 
A node in zone j switches from normal mode to monitor or replica mode (for event type i) when it 
becomes the node closest to the location (xij, yij) ≡ H(ei , zj). During this switch, the retiring monitor node 
hands over the monitoring map, and, in the case of a replica node, any relevant stored data.  
 



A node’s switch from monitor mode to replica mode and vice-versa are based on certain local criteria, 
such as event storage and query traffic loads. The switch is also related to the node’s residual energy: 
sensornet nodes have limited energy, so when a replica node’s energy is running low, it will try to 
conserve energy by becoming a monitor node. 

Handling node failure 
The above discussion assumes that all nodes are stable and able to continuously route, monitor, or 
store data. However, it’s more realistic to consider node failure, with a certain failure probability f.  
 
When a monitor node in a certain zone fails, we can use PRP to find and elect an alternate monitor node 
for this zone. PRP also ensures that the new monitor node has a copy of the monitoring map through 
local refresh mechanisms. If this failed node is a replica node, PRP can recover at least part of the 
node’s stored event data through local refreshes.  
 
Under normal operating conditions, there is one monitor node per zone—that is, Mi = Z for each event 
type ei. These nodes form a logical ring for map updating. However, if a clustered node failure occurs 
(all or most nodes in a particular zone fail or are disabled), the logical ring of monitor nodes breaks. In 
each map-update cycle, the monitor nodes mark their presence by updating the monitoring map’s field 
listing monitoring nodes. By checking this field, it is possible to discover which zones have clustered 
node failures and route around them to reconstruct a logical ring of Mi < Z monitor nodes. To recover 
from such failures, we can use different techniques, such as beaconing mechanisms. 

Performance measures 

To quantify R-DCS’s benefits, we must specify relevant performance measures. Data dissemination 
algorithms ideally seek to minimize communication and thus extend the overall system lifetime. For the 
sake of consistency and easy comparison, we quantify communication overhead using the same metrics 
as Sylvia Ratnasamy and her colleagues.2,9 Assuming same-sized packets, these metrics are 
 
Total usage: the total number of packets sent in the sensornet 
Hotspot usage: the maximal number of packets sent by any particular sensornet node 
 
As we mentioned earlier, when a sensornet experiences a particular event type, it transmits the event 
data to the closest monitor node, which then forwards the data to the closest replica node for storage. If 
the data storage operation fails —if, for example, the destination node is unreachable or 
malfunctioning—the monitor node retransmits the data to another Ri replica node. This process iterates 
until the data is successfully stored. If all the Ri replica nodes for event type i fail simultaneously, then 
the attempt to store or retrieve data of this type will fail. 
 
To measure the success rate of event data queries, we use two metrics: 
 
Query success rate measures the mean percentage of queries (averaged over all event types) that return 
a successful response.  
Total usage (as a function of node failure rate f) serves as a resilience metric.  
 
Although we expect total usage to increase as the node failure rate increases (due to more 
retransmissions), a drastic increase in total usage at higher node failure rates would imply that our 
scheme is not robust in the presence of node failures. Thus, our aim is to achieve a graceful degradation 
in system performance as f increases.  

Analytical results 

We can now derive analytical expressions for the energy costs and savings obtainable with R-DCS. For 
this analysis, we consider a sensornet with N nodes equipped to detect E event types. Let Dtotal denote 



the total number of events detected, Q the number of queries issued, Dq the number of events detected 
for these queries, R the number of replica nodes, M the number of monitor nodes, and ?  the frequency 
of monitoring map updates. 

Energy savings  
We can estimate R-DCS’s communication costs in relation to the three canonical methods10 using the 
asymptotic cost of a flood, O(N), and that of direct GPSR routing from one random node to another: 
 
O( N ) . 
 
For R-DCS, we estimate the total message count (total usage T) and the number of messages at the 
busiest point (hotspot usage H). For completeness, we reproduce the corresponding expressions—and 
their expected values—for each of the aforementioned canonical methods from existing work.10 In our 
scenario, there is one access point, but results can be easily generalized for multiple access points. We 
assume that the access point’s message count is a good estimate of hotspot usage, since it’s likely to 
be the network’s busiest area. 

External storage 
The cost of sending each event to external storage is  O( N ) . There is no cost for queries, because 
event information is already external.

 
T = D to ta l N H = D tota l

 

Local storage 
Storing event information locally incurs no cost. Queries are flooded to all nodes at a cost of O(N). 
Responses are routed back to the query source at a cost of O( N ) .

 
T = QN + Dq N H = Q + Dq ( 2)

  

Data-centric storage 
Depending on the event type, storing event information at a sensornet node incurs a cost of O( N ) . 
The access point sends queries for a particular event type to the storage node, which returns a 
response; the cost of both is  O( N ) . Total usage depends on whether a full event listing is required 
(using one packet for each instance of each event type) or whether a summary is sufficient (using only 
one packet for each event type). For list and summary, respectively 
 

T = Dtotal N +Q N + Dq N H = Q + Dq

T = Dtotal N +Q N + Q N H = 2Q
(3)

 
 
For completeness, we also report the analytical results for structured replication with DCS (SR-DCS), 
which is another DCS extension that achieves load balancing in the network by creating a hierarchical 
decomposition of the key space and associates each event type with a hierarchy depth. Storage is done 
at the hierarchy’s closest node, whereas queries still have to be routed through the hierarchy’s entire 



node set. Thus, it is obvious that SR-DCS decreases storage costs and increases query costs. Also, SR-
DCS does not involve actual data replication, but it increases DCS’s scalability. For a hierarchy depth d, 
the storage cost for a single event decreases from O( N )  to O( N ) /2d. The cost of routing a 

single query through the complete image-node hierarchy increases from O( N ) for the original DCS 
to O( 2d N )  for SR-DCS. The following equations give total usage for list and summary, 
respectively:

T = Dtotal N /2d + Q2d N + Dq2d N H = Q + Dq

T = Dtotal N /2d + Q2d N + Dq2d N H = 2Q
( 4)

  

 
Resilient data-centric storage 
Because R-DCS stores event information at the node closest to the event location, storage costs are 
reduced from O( N ) to O( N/R ) . The access point sends queries of a particular event type to 

the closest monitor node at a cost of O( N/M ) . In the summary case above, this monitor node can 

directly return a response (based on monitor maps that other nodes send it) at a cost of O( N/M ) . 

In the list case, the monitor node must forward the query to all R replica nodes, at a cost of O( R N ) , 

and all replica nodes must return responses, at a cost of O( N ) . Let the frequency of monitoring 
map updates be ? .  
 
The cost of exchanging monitor maps is  O( 2ω NM )  for each event type. 

T = Dtota l N /R + Q( N /M + R N ) + Dq N + 2ωE NM H = Q + Dq

T = Dtotal N /R + Q N/M + Q N /M + 2ωE NM H = 2Q
( 5)

 

From these formulas, we can draw several conclusions. If N is increased and other parameters are 
constant, the local storage method incurs the highest total message count. If Dq » Q and events are 
summarized, DCS and R-DCS have the lowest hotspot usage. If Dtotal» Dq, external storage has 
significantly higher hotspot usage than the other schemes. In general, DCS and R-DCS are preferable 
when N is large or Dtotal » Dq » Q (that is, there are many detected events and not all event types are 
queried). However, local storage might be preferable if there are many events relative to system size, 

( )totalD Q N> , and event lists are used. 

 
Comparing the total message counts for R-DCS, DCS, and SR-DCS (the R in R-DCS is equivalent to 4d in 
SR-DCS; that is, we compare the number of R-DCS replicas with the total number of nodes in an SR-
DCS scenario’s hierarchy) we see that R-DCS could provide significant energy savings over DCS for 
both the summarized and list cases. R-DCS presents an intermediate solution between local storage 
(free storage, expensive queries) and DCS (both at moderate cost). When Dq » Q, we expect R-DCS to 
offer good performance. 



Increased resilience 
An obvious benefit of R-DCS over DCS is its increased resilience to node failures. Having M monitor 
nodes and R replica nodes for each event type ensures that R-DCS will not lose information 
corresponding to a part icular event-type instance when one node fails. Further, because these nodes 
exchange and replicate monitoring maps, R-DCS is extremely unlikely to lose control and event summary 
information. 
 
Let’s consider a situation in which sensor network nodes are unreliable; they are on (functioning 
correctly) with probability 1 − f, and off (malfunctioning) with probability f. Here, 0 ≤ f ≤ 1, and f = 0 
indicates perfectly reliable nodes. As in the previous section, we approximate R-DCS’s total 
communication costs (T ). We use local refresh mechanisms such as PRP to ensure that each zone has 
one monitor node, except in zones with clustered node failures. Normal nodes in any zone j 
communicate with the local monitor nodes mij (or local replica nodes, rij, if they exis t) for data of event 
type ei. In any message, this node includes a list of viable destinations in the header.  
 
For example, when a source monitor node mij needs to store its event data at one of the Ri replica nodes 
for type i event data, it constructs the destination list by computing its distances to all the type i replica 
nodes that the local monitoring map lists; it then orders the Ri replica nodes according to their distances 
from the source. Hence, it first chooses the closest replica node as the destination, followed by the 
second-closest replica node, and so on. mij then routes the message to each of the possible Ri 
destinations in its list, in order of preference. If all Ri destinations are exhausted without success, the 
message is dropped. 
 

With R-DCS, a single message has a cost O( N )  when the destination is on (with probability 1 − f ). 
The probability of the destination being off is f, in which case it sends the message to the first alternate 
destination. In the second transmission, with probability 1 − f , it successfully sends the message at a 

total cost of 2O( N ) —that is, a cost O( N ) for the first failed message and a cost O( N )  for 
the second successful message—or it fails again with probability f, and so on. Equation 6 represents 
this iterative process.  
 
GET EQUATION 6 
 
where CRf is given by 
 
GET EQUATION 7 
 
We can now give the expressions for T in this case. 
 
GET EQUATION 8 
 
Ps denotes the probability of successfully storing a part icular event instance’s data (here, we omit the 
subscript i, but we’re considering a particular event type ei ). We denote the probability of clustered 
node failure as fc. As we described earlier, this operation succeeds if all the event type’s R replica nodes 
do not fail simultaneously. The probability of simultaneous failure of R replica nodes (assuming these 
failures are independent) is fR. Clearly, Ps = 1 − fR.  
 
For a summary query to be successful, two conditions must be satisfied:  
 
(1) The queried event data must have been successfully stored earlier (which occurs with probability 
Ps).  
(2) The local monitor node must be alive (storing this summary data in real time).  
 
Because we assume that local refresh mechanisms like PRP ensure monitor node exis tence (except in 
clustered node failures), this monitor node is alive with probability 1 − fc. So, the mean success rate Qs 
for summary queries is given by  
 



Qs = (1 − fR)(1 − fc) .  (9) 
 
For a list query to be successful, the second condition is modified to specify that all monitor nodes 
must be alive. This occurs with probability (1 − fc)

M. So, the mean success rate for list queries is given 
by 
 
Qs = (1 − fR)(1 − fc)

M .  (9) 
 
From Equations 7 and 8, we can see that if f increases with other parameters constant, then T increases. 
This should be obvious intuitively, because a greater number of unreliable nodes imply more 
retransmissions. Also, Equations 9 and 10 imply that if R increases (keeping f constant), Qs increases. 
Similarly, as we discuss in more detail in the next section, if f increases, Qs decreases (for the same value 
of R). Comparing the total message counts and query success rates for R-DCS for different values of R 
and f, we see that R-DCS offers significant resilience to node failures with R ≥ 4 for different values of f. 
 

Performance evaluation 

DCS proved to be a viable and robust data dissemination scheme on detailed simulations in the ns − 2 
network simulator extended with a GPSR-based DHT,2,9 which included a full 802.11 medium access 
control layer and physical radio layer. These simulations verified that DCS’s low-level aspects 
functioned correctly. Because R-DCS builds on DCS mechanisms, it should be viable in a bandwidth-
limited, contention-prone medium as well. However, these ns − 2 simulations don’t scale to more than 
200 nodes,2 and we envision R-DCS as most useful in large-scale sensor networks. We thus built a 
lightweight simulator (without radio details) in C to compare R-DCS’s performance with that of DCS, 
local storage, and external storage. This simulator assumes that the sensor network has stationary 
nodes and instantaneous, error-free packet transmission. To compare the algorithms’ performance, we 
used the total usage and hotspot usage metrics. Table 1 summarizes the system parameters for most of 
the simulations. 

 

Table 1. System parameters for simulations. 

Parameter Value 
N (number of nodes) 100–100,000  
R (number of replicas)  2–16 
Z (number of zones) 16 
E (number of event types) 100 
Q (number of event types queried) 50 
Di (instances of each event type i) 100 
fc (probability of clustered node failure) 0.02 
? (frequency of monitor map updates) 0.1 
 
 
We individually varied the parameters R, N, Q, and the node failure rate and investigated the effect on 
system performance. Our simulations had one randomly chosen access point that represented the node 
where queries entered the network. At the simulation’s start, randomly chosen sensors inserted all 
events into the DHT once; these sensors measured the inserted events. We averaged our results over 
multiple simulations (10 iterations, with different random seeds for each simulation run). Unless we note 
otherwise, the node density remained constant (we scaled the region size as the number of nodes 
increased).  



Variation in replica numbers 
In one experiment, we varied the number of replicas R while keeping the other parameters constant (as 
in Table 1). We set the value of N at 10,000. Figure 2a shows the variation of total messages with R for 
the list and summarized cases. As the figure shows, external and local storage had higher total usages 
than our data-centric schemes. At low values of R, R-DCS and its extensions performed similar to DCS. 
However, as R increased, R-DCS-based schemes performed significantly better than DCS. Our analytical 
results support these conclusions. As expected, the total usage for R-DCS-based schemes is 
significantly lower in the summarized case than in the list case. 
 
Figure 2. Variations in total messages. When we (a) varied the number of replicas, external storage had a 
total usage of 740,206, local storage’s total usage was 684,409, and DCS’s total usage was 488,917. 
Results are also shown for a varying number of (b) nodes, (c) queried event types, and (d) node failure 
rates.  
 
In our simulations, we first considered a normal scenario in which events occurred uniformly across the 
sensornet field. In later simulations where we modified event density, 80 percent of the events occurred 
in one field quadrant, while the remaining 20 percent occurred across the remaining three quadrants. 
This will likely create congestion in the crowded network quadrant. The load-balancing mechanisms in 
R-DCS helped it outperform the other schemes in this case. In Figure 2a, we present the results for T 
averaged across scenarios with and without varying density.  

Scaling to many nodes 
In another experiment, we varied the number of nodes N, while keeping the other parameters constant. 
We set the value of R at 4. Figure 2b shows the variation of total messages with N. All methods had 
reasonably similar behavior for total usage, but local storage had the lowest total usage at low N (N = 
100) and ended up (at high N) with the highest value. Among the other schemes for all values of N, R-
DCS schemes performed best, followed by DCS, and then external storage. Again, our analytical results 
support these conclusions. 

Scaling to many queries 
In another experiment, we varied the number of queried event types Q while keeping the other 
parameters constant. We set the value of R at 4 and N at 10,000, and varied Q from 50 to 500. Each event 
type had 100 instances, which corresponded to a variation in the total number of queries from 5,000 to 
50,000. Figure 2c shows the variation of total messages with Q (we omit the graph for hotspot usage, 
but summarize the results). Local storage offered good performance at low values of Q, but both total 
usage and hotspot usage increased linearly with increasing Q—so local storage doesn’t scale well as 
queries increase. External storage had a medium total and hotspot usage, independent of Q. In both the 
list and summarized case, R-DCS clearly offered significant performance improvements over DCS, which 
in turn did better than external and local storage as Q increased. Our analytical expressions support 
these experimental results, confirming the validity of our simulations. 

Resilience to node failure 
Thus far, our results assumed that nodes were stable. We also ran a simulation in which the nodes were 
off with probability f and on with probability 1 − f. We varied the value of f from 0 to 0.5 and observed 
T’s variation in a scenario without PRP. We set the value of N at 10,000, keeping the other parameters 
constant. Figure 2d shows the variation of total messages with f for the summary case in R-DCS. 
 
For R = 16, T is almost constant for values of f ranging from 0 to 0.5. As the node failure rate f increases, 
we expect the query success rate Qs to decrease significantly, as Equation 9 shows. For example, with f 
= 0.4 and R = 2, Qs = 70 percent; when f = 0, Qs = 100 percent. These experimental results are similar to 
our analytical results, which show that in scenarios with a significantly high probability of node failure, 
R-DCS improves scalability by avoiding a dramatic increase in messages sent. In other words, R-DCS 
makes sensor data resilient to node failure. 



Conclusion  
As our results show, R-DCS reduces energy consumption and increases node-failure resilience in 
wireless ad hoc sensor networks, and should perform well in a broad range of network scenarios. Such 
robust and resilient data storage in sensor networks could be useful in numerous applications, such as 
monitoring meteorological data in turbulent conditions. R-DCS could also act as a tool to guarantee 
service for applications running over sensor networks, just as Web caching helps provide service 
guarantees and improve data availability over the Internet. 
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