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About this Seminar TLUT

 Research topics in deep learning for physics
 Learning algorithms
« Architectures
« Applications
 Familiarize yourself with the underlying physics & ML applicability
« Students conduct independent analyses of the topic and related work

 Develop writing & presentation skills

« Submission: Presentation slides, Report
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TUTl

Physics is the use of Mathematics to
describe the World
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TUTI

In this seminar, we mainly discuss
PDEs.

In mathematics, a partial differential equation (PDE) is an equation which involves a

multivariable function and one or more of its partial derivatives.

ou ou 0*u

Partial differential equations are ubiquitous in mathematically oriented scientific I f(u L )

fields, such as physics and engineering. For instance, they are foundational in the at ’ 6x ) axz Y

modern scientific understanding of sound, heat, diffusion, electrostatics,

electrodynamics, thermodynamics, fluid dynamics, elasticity, general relativity, and . .
How a physical system evolves over time.

guantum mechanics (Schrodinger equation, Pauli equation etc.). They also arise
from many purely mathematical considerations, such as differential geometry and
the calculus of variations; among other notable applications, they are the
fundamental tool in the proof of the Poincare conjecture from geometric topology.

https://en.wikipedia.org/wiki/Partial_differential equation
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In this seminar, we mainly discuss
PDEs.
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Initial value problem TUTH

Given a state of a physical system, and its governing PDEs (dynamics), how do we obtain
any future state of this physical system?
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Time integration Spatial derivatives

Euler Finite differences
Runge—Kutta methods Finite element
Finite volume

Spectral method

w1 = u + f(ug)dt



Neural Operators T

Given a state of a physical system, and its governing PDEs (dynamics), how do we obtain
any future state of this physical system?
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L = HNﬁ(Ut) — ut+1H

« DeepONet: Learning nonlinear operators for identifying differential equations based on the
universal approximation theorem of operators

 Fourier Neural Operator for Parametric Partial Differential Equations




Neural Operators

TUTI

« DeepONet: Learning nonlinear operators for identifying differential equations based on the

universal approximation theorem of operators

« Fourier Neural Operator for Parametric Partial Differential Equations

Neural Operator: Learning Maps Between Function Spaces
With Applications to PDEs

Nikola Kovachki*f NKOVACHKI@NVIDIA.COM Nvidia

Zongyi Li* ZONGYILI@ CALTECH.EDU Caltech
gy

Burigede Liu BL377 @CAM.AC.UK Cambridge University

Kamyar Azizzadenesheli KAMYARA @NVIDIA.COM Nvidia
Kaushik Bhattacharya BHATTA @ CALTECH.EDU Caltech
Andrew Stuart ASTUART @ CALTECH.EDU Caltech

Anima Anandkumar ANIMA @CALTECH.EDU Caltech

What are the differences between
neural operators and other regression
networks?

What is the function space? Why it is
important to learn in function space?



Unrolling T
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« Unrolling describes the process of auto-regressively
L = HNﬁ(ut) — Ui ‘ ‘ evolving the learned system in a training iteration

l What are the challenges of unrolling?

L = HNQ(M(NG(Ut))) — 'ut+2||2 How to solve these challenges?

« Low-Variance Gradient Estimation in Unrolled Computation Graphs with ES-Single J

« The curse of unrolling




Differentiable simulations TUTI

ou ( ou 0O%u ) Integrate simulators into deep learning pipelines
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L ' J What does “differentiable” mean ?

Time integration Spatial derivatives

Why the simulator needs to be

Euler Finite differences differentiable for deep learning tasks?
Runge—Kutta methods Finite element
Finite volume How does a differentiable solver work
Spectral method with the neural networks?

 Learning to control PDEs with differentiable physics
« Do Differentiable Simulators Give Better Policy Gradients?
 Accelerated Policy Learning With Parallel Differentiable Simulation
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PINNSs TUTI

Simulation: W11 = Wy + f(ut)ét How does PINNs calculate the derivatives?
Regression: U1 = NS(Uﬁ) What are the difficulties training PINNs
and how to solve them?
PINNSs: u1(x) = My(t+1,x)
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PINNS TUTI

Simulation: Wg+1 = Wy + f(ut)é‘t How does PINNs calculate the derivatives?
Regression: U1 = Ng(ut) What are the difficulties training PINNs
and
?
PINNs: 1) P (x) — Nf?(t—l—la x) how to solve them-
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o )

ONy(x,t) ONy(x,t) O*Np(x,1)
ot - f(NQ(xat)a Ox ’ Ox2 J”.)

« Physics-informed neural networks: A deep learning framework for solving forward and inverse

problems involving nonlinear partial differential equations
« PINNacle: A Comprehensive Benchmark of Physics-Informed Neural Networks for Solving PDEs

« ConFIG: Towards conflict-free training of physics informed neural networks




Fast forward topics

Transformer for Physics: efficient spatial transformers

—

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Transolver: A Fast Transformer Solver for PDEs on General Geometries
Unisolver: PDE-Conditional Transformers Towards Universal Neural PDE Solvers
PDE-Transformer: Efficient and Versatile Transformers for Physics Simulations
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A local window to
perform self-attention
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Fast forward topics

Reinforcement learning

EAIphaGo: Mastering the Game of Go with Deep Neural Networks and Tree Sear

Playing Atari with Deep Reinforcement Learning

a Value network

N

b Tree evaluation from value net

€ Tree evaluation from rollouts

ercentage of simulations
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Fast forward topics

Generative models

Generative Modeling by Estimating Gradients of the Data Distribution (blog paper)

A Physics-informed Diffusion Model for High-fidelity Flow Field Reconstruction
PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers

Flow Matching Meets PDEs: A Unified Framework for Physics-Constrained Generation

Simulation
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Seminar requlations

Course page:
https://www.cs.cit.tum.de/cg/teaching/winter-term-25-26/deep-learning-in-physics/



Report TUTI

« Maximum 4 pages

« ACM SIGGRAPH TOG format (acmtog) available online

 Guideline
- Start with a summary of the paper (required for semi-final version!)
« Own thoughts and reasoning should be the main focus
« Example: comparison to literature, pros & cons, future work...

 Feedback provided by advisor, final version due after talk


https://www.acm.org/publications/proceedings-template

Presentation TLTI

- Slides:
« Any style you like, submit as PDF.
- Follow guidelines (text-balance, visualizations, highlighting etc.)

« Feedback on semi-final slides provided by your advisor

 Presenting:
 Present in English
« Target 25 min for presentation, 10 min for questions

« Test your setup beforehand (laptop/projector)!
« Tips for a good presentation: DocTUM: How to give a great scientific talk



https://gc.gs.tum.de/wp-content/uploads/2019/12/Oral-Presentation-Guidelines.pdf
https://gc.gs.tum.de/wp-content/uploads/2019/12/Oral-Presentation-Guidelines.pdf

Your Timeline UM

finalize
presentation

prepare

submit
presentation

draft submit

presentation
slot

-1 week + 2 week

- 3 weeks

draft submit

prepare

report

l finalize
report submit




Additional Resources

All information is available on the website!

Background Reading:

« Book: Hastie et al., The Elements of Statistical Learning

« Book/Online: Goodfellow et al., Deep Learning

« Online: Nielsen, Neural Networks and Deep Learning

« Online: Thuerey et al.,, Physics-based Deep Learning



https://www.cs.cit.tum.de/cg/teaching/summer-term-24/deep-learning-in-physics/
https://www.cs.cit.tum.de/cg/teaching/summer-term-25/deep-learning-in-physics/
https://hastie.su.domains/ElemStatLearn/
https://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/chap1.html
https://physicsbaseddeeplearning.org/intro.html
https://physicsbaseddeeplearning.org/intro.html
https://physicsbaseddeeplearning.org/intro.html

Additional Information TLTI

« TUMonline registration is handled by us, you do not need to sign up

* Advisor:
 Assigned to you in advance (see website)
 Contact your advisor 1 week before your presentation at the latest

- Attendance:
« Missing one session is allowed, let us know in advance and write a short
summary of the papers (ca. 1 page)
« Missing another session means failing the seminar (special rules for
severe I1ssues as appropriate)



Grading Criteria
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Presentation

- Good explanations
- Knowledgeable
- Clarity

Stage performance
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Report

- Base summary
- Literature review
- Own judgement

AN

Slides

Design, text density
Citations
Highlighting
Visualizations
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Own experiments

- Participation in discussions
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Any questions?
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