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Slide Updates

• Remember:
The most recent version of the slides can be 
downloaded at:
h=p://wwwcg.in.tum.de/Tutorialsl
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Agenda

• Dye AdvecEon (Lagrangian)

• ParEcle‐Based Methods (Eulerian)
– Points, Sprites, Lines, Ribbons, ...

• Dense Methods (Line Integral ConvoluEon) on 
surfaces

• Topological Methods

This talk will cover a set of approaches to interactively explore flow fields (given 
on regular grids, while the methods themselves also work for unstructured grids 
but for the sake of simplicity most of the implementations are given for regular 
grids)



Dye AdvecEon
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NVIDIA SDK http://developer.nvidia.com/page/home.html 

The first method in this talk is the dye advection, that simulates continuous smoke or dye in a flow field.



Dye AdvecEon – basic idea

Foreach cell in gridT do
density = cell.density

targetPos = cell.posiEon + cell.vector

cells[4] = getTargetCells(targetPos, gridT+1);

updateTargetValues(cells, density, targetPos);

For this method we discretize the domain (for the sake of explanation we use a 
2D grid but the method extends trivial to higher dimensions). In this grid we visit 
every cell in ever iteration ad move (advect) itʻs contentes along the flow. Note 
that the updateTargetValues call requires some interpolation or splating as we 
will in general not hit a single taget cell right in the center.
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Semi Lagrangian ‐ Dye AdvecEon

Foreach cell in gridT do
sourcePos = cell.posiEon ‐ cell.vector

density = getSourceValue(sourcePos)

updateTargetValue(cell.posiEon, density, gridT+1);

To make this method more cache efficient (and also easier to implement on a 
GPU) we use the sem-lagrangian approach. In this approach instead of 
splatting or pushing the dye from the current cell to its target cells we look 
backwards in time and pull dye to the current cell.
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Graphics API implementaEon
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Dye Eme‐step tFlow field

Dye Eme‐step t+1Full screen quad

Pixel ShaderVertex Shader

In particluar the semi-lagrangian approach is very easy to implement on the GPU in 2D. In every time step a quad is rendered that covers the 
entire domain, in the pixel shader for ever fragment (=texel) the flow field is fetched, the flow vector is added to the current texture coordinate and 
with this the last time-stepʻs dye is fetched and stored at the current position.
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Dye AdvecEon

• GPU friendly for 2D

• 3D Requires either
– flat textures

– render to 3D texture
• OpenGL extension
DX10

– GPGPU API
• CUDA, OpenCL, 
DX11 compute

NVIDIA SDK h=p://developer.nvidia.com/page/home.html

For a 2D grid the implementation of dye advection on the GPU is really straight 
forward, on a 3D lattice, however, the update of the volume becomes less easy 
to implement. To handle 3D grids three approaches can be used:
- use a stack or an atlas of 2D grids (this limits the size of the volume to 
whatever fits into a 2D texture, and makes interpolation more complex)
- use render to 3D texture if available on the target platform
- use arrays in a GPGPU API such as CUDA, OpenCL, or DirectX11 compute 
shader API



Dye AdvecEon – Summary

space
performance

interpolaEon arEfacts

simple,
flexible for effect 

integraEon (e.g. shadows)

In a nutshell dye advection (at least for 2D) is the most simple approach (try it 
yourself, this method can be coded in minutes) and it allows for the integration 
of some „standart“ effects, such as volumetric shadows, thus it works best in 
scenarios where eye candy is needed, e.g. games. On the downside this 
method requires a lot of space (i.e. a high resolution dye volume) and since in 
every frame this entire volume must be updated, the performance may be slow. 
To tackle this aften low resolution grids are used but in that case interpolation 
artefacts become visible during rendering.



See it yourself ...

• GPGPU Flow Demo
h=p://wwwcg.in.tum.de/Download/LinAlg

• NVIDIA SDK 10
h=p://developer.nvidia.com/object/sdk_home.html

• NVIDIA „Box of Smoke“ Demo
h=p://www.nzone.com/object/nzone_boxofsmoke_downloads.html

• ATI/AMD Fluid Screensaver
h=p://aE.amd.com/developer/demos/rx850.html 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To see the dye advection technique in action, visit these sides, and download and try these demo programs.



ParEcle‐Based Methods

12

Surface flow dataset courtesy of Peter Schröder et.al. 

The next family of methods is based on an Eulerian approach, that takes discrete particle quantities in a continuos domain into account.



ParEcle Tracing – Basic Idea

This animation demonstrates the basic idea of particle tracing and shows that 
to advect a particle in the flow a simple ODE needs to be solved, it also shows 
that for this method to be useful as a visualization technique, many particles 
are required.
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ParEcle Tracing
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This slide and the next slide demonstrate how particle tracing is achieved on a graphics card. In essence the pixel shader is used to access the 
vector-field and  update the position texture. Note that on newer DirectX 10 class GPUs this process can be done in the geometry shader to 
update the vertex positions directly, instead of first updating a position texture and then displacing vertices with this texture.
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ParEcle Tracing
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Tracing
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MulEthreaded Architecture
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This is just the general theme for large out of core rendering/processing for 
much more details on this see the large-data talk of this tutorial later today. 



Rendering

• ParEcles
– simply displace a vertex buffer
(vertex shader, geometry shader)

17

...

StaEc Vertex Buffer

PosiEon Displacement Texture

Most simple method, Idea: 
Send a static vertex buffer into the pipeline / every element in the vertex shader fetches itʻs current position from the displacement texture / render 
displaced vertices as point sprites
If the graphics hardware is DirectX 10 class:
Instead of using the 2D textures in the previous step a vertex buffer can be used in the geometry shader directly in this case no explicit 
displacement is necessary
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Lines

ParEcle trajectory at 
fixed Eme step

ParEcle trajectory in 
unsteady flow

Trace of parEcles 
released into flow at 

fixed posiEon
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In an unsteady flow field there are three different possibilities to trace lines: 
Streamlines, where the entire line is recomputed for every time-step (a 
somehwat artificial method) 
Pathlines, that use the time t during the advection to access the corresponding 
time-step in the flow field (correspond to the path taken by massless particles in 
the flow)
Streaklines, release a new particle every time-step in the flow and always advect 
all particles (corresponds to ink, advected in the flow) 

Note that in a steady flow field these three approaches are the same.



Line types (cont.)

19

t0 t1 t2 t3

path line streak line stream line for t3 

This slide shows the difference of the three methods for a sequence of four time steps in a time dependent flow.



Streamlines
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Streamlines
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Pathlines
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Pathlines
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Pathlines
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Pathlines
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Streaklines
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Streaklines
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Streaklines
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Streaklines
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ParEcle Tracing – Summary

more complex
global effects harder to 
integrate (e.g. shadows)

sparse
memory & space efficient
flexible vis modes exist

23



See it yourself ...

• tum.3D ParEcle Engine
h=p://wwwcg.in.tum.de/Download/PE

• DirectX SDK
h=p://msdn.microsou.com/en‐us/directx/default.aspx 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„Dense Methods“: 
Line Integral ConvoluEon

(on surfaces)
Slides courtesy of

Daniel Weiskopf & Tom Ertl

25



Goals
• On curved surfaces

– Triangle meshes (triangle soup)

– TangenEal vector fields

• Dense representaEon

• GPU support for interacEve 
visualizaEon

26



Basic Algorithm
• Noise‐based dense 

visualizaEon
– LIC integral

• ParEcle integraEon
– Compute r(s)

• StarEng point: First hit with object

• Accumulate noise contribuEon
N(r) along traces

First hit

Eye

Trace

Convolution

27



Texture‐Based Flow Vis on Surfaces

flow texture 

Generate 

Project

Eye

Image
plane

3D object
space 
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Texture‐Based Flow Vis on Surfaces

flow texture 

Generate 

Project

Eye

Image
plane

3D object
space 

Eye

Image
plane

flow texture 

Generate 

Project
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AdvecEon in Image‐Space

• Advantages
+ No mesh connecEvity or parameterizaEon required

+ Uniform noise density in image space

+ Simple mapping to GPU

+ Performance determined by viewport size, not 
mesh complexity

30



AdvecEon in Image‐Space

• Disadvantages

–  No or only limited frame‐to‐frame coherence

–  Blurring (numerical diffusion)

–  Only exponenEal filter

–  Silhoue=e lines are problemaEc inflow regions

–  Special detecEon of boundary lines needed
to avoid cross‐
boundary flow

Courtesy of
Bob Laramee
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Lagrangian ParEcle Tracing

• Velocity vector v
• Trace massless parEcles

• EquaEon of moEon:

• First order integraEon: 

32



Image‐Space and Object‐Space Aspects
• Reduce informaEon to image space

– Project vector field onto image plane
• Render object geometry

• Vector field in 3D texture or 
a=ached to verEces of the mesh

– StarEng posiEon

• Keep some 3D object‐space 
informaEon
– Current posiEon along parEcle trace

– Noise (solid texture)

• Coupling:
– Simultaneous computaEon of posiEons in object and image spaces

Eye

Particle
trace

Object
space

Image
space

Project
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x
D

z
D

D‐Space vs. P‐Space for Coordinates

xD

zD

view frustum

xP

zP

•  Device (D) space
•  On image plane

•  Physical (P) space
•  Object space

34



VisualizaEon Process
Initialization
  Init 2D texture for projected velociEes v

 Render mesh & make vectors tangenEal

  Init 2D texture for P‐space posiEons r
 Render mesh

  Init 2D accumulaEon texture I

Loop along particle trace
  Transform current P‐posiEon r into D‐space rD
  Get velocity from texture: v(rD)

  Euler integraEon r := r + Δt v 
  Accumulate noise in I

Endloop

35



Flow Across Silhoue=e Lines

36



Noise

• 3D solid texture
– Frame‐to‐frame coherence
– Large amount of texture space?

– Aliasing?

• 3D texture repeat
– Typically 643 or 1283 

– No arEfacts if surface is (slightly) curved

• Distance‐based scaling of noise
– Powers of two

– Interpolate between
two closest levels 
(similarly to mipmapping)

• Time dependency: van Wijk [2002]

...

37



ImplementaEon

• Mapping to GPUs
– DirectX 9.0

– HLSL and fx files

• Textures
– 32 bit floaEng‐point for coordinates (2D tex)

– 16 bit fixed‐point for accumulated gray values (2D tex)
– 16 bit fixed or floaEng point for vector field (3D tex)

– 8 bit fixed point for noise field (3D tex)

• Early z‐test to process only visible surface elements

38

http://www.vis.uni-stuttgart.de/texflowvis



Noise Scaling
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Noise Scaling

39



Rendering
No surface shading
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Gray surface

Cool/warm shading
for surface



Rendering
No surface shading
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Gray surface

Cool/warm shading
for surface

Gray surface 
Yellow/blue flow



Synthesis
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Surface dataset courtesy of Peter Schröder e.al. 



Synthesis
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Surface dataset courtesy of Peter Schröder e.al. 



LIC
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NPR technique
more complex
non trivial in 3D

Excellent for first 
impression

Simple to implement if 
parEcle tracing exits



See it yourself ...

• Texture‐Based Flow VisualizaEon Pages
h=p://wwwvis.informaEk.uni‐stu=gart.de/texflowvis/

• tum.3D ParEcle Engine
h=p://wwwcg.in.tum.de/Download/PE
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Topological Methods

Slides courtesy of

Gerik Scheuermann

44



Key Idea

• Do not draw “all” lines, but only the “important” ones

• Extract feature points and lines
– CriEcal points 
(Points where the vector field vanishes)

– Separatrices
(Lines separaEng regions with similar properEes)

• Ouen combined with other methods
– LIC

– ParEcle, Line Tracing

45



 Flow around a cube
 Surface LIC
 Flow topology on surface

 a=racEve
 repelling
 saddle
 separatrices

Topological Methods
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Topological Methods
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complex preprocessing
harder to interpret

fast rendering
can be combined with other 

techniques
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The end!

Any quesEons?
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