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Slide

* Remember:
The most recent version of the slides can be
downloaded at:
http://wwwcg.in.tum.de/Tutorialsl




Dye Advection (Lagrangian)
Particle-Based Methods (Eulerian)

— Points, Sprites, Lines, Ribbons, ...

Dense Methods (Line Integral Convolution) on
surfaces

Topological Methods

This talk will cover a set of approaches to interactively explore flow fields (given
on regular grids, while the methods themselves also work for unstructured grids
but for the sake of simplicity most of the implementations are given for regular
grids)



Dye Advection

NVIDIA SDK http://developer.nvidia.com/page/home.html

The first method in this talk is the dye advection, that simulates continuous smoke or dye in a flow field.



Dye Advection — basic idea

Foreach cell in gridT do
density = cell.density

targetPos = cell.position + cell.vector
cells[4] = getTargetCells(targetPos, gridT+1);
updateTargetValues(cells, density, targetPos);

For this method we discretize the domain (for the sake of explanation we use a
2D grid but the method extends trivial to higher dimensions). In this grid we visit
every cell in ever iteration ad move (advect) it's contentes along the flow. Note
that the update TargetValues call requires some interpolation or splating as we

will in general not hit a single taget cell right in the center.
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Semi Lagrangian - Dye Advection

Foreach cell in gridT do

sourcePos = cell.position - cell.vector

density = getSourceValue(sourcePos)
updateTargetValue(cell.position, density, gridT+1);

To make this method more cache efficient (and also easier to implement on a
GPU) we use the sem-lagrangian approach. In this approach instead of

splatting or pushing the dye from the current cell to its target cells we look
backwards in time and pull dye to the current cell.
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implementation

Full screen quad Dye time-step t+1

=—>»| Vertex Shader | = | Pixel Shader

Flow field Dye time-step t

In particluar the semi-lagrangian approach is very easy to implement on the GPU in 2D. In every time step a quad is rendered that covers the
entire domain, in the pixel shader for ever fragment (=texel) the flow field is fetched, the flow vector is added to the current texture coordinate and
with this the last time-step‘s dye is fetched and stored at the current position.
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Dye Advection

GPU friendly for 2D
3D Requires either

— render to 3D texture

® OpenGL extension
DX10

— GPGPU API

e CUDA, OpencCL,
DX11 compute

For a 2D grid the implementation of dye advection on the GPU is really straight
forward, on a 3D lattice, however, the update of the volume becomes less easy
to implement. To handle 3D grids three approaches can be used:

- use a stack or an atlas of 2D grids (this limits the size of the volume to
whatever fits into a 2D texture, and makes interpolation more complex)

- use render to 3D texture if available on the target platform

- use arrays in a GPGPU API such as CUDA, OpenCL, or DirectX11 compute
shader API
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Dye Advection — Summary

space
performance
interpolation artifacts

simple,
flexible for effect
integration (e.g. shadows)

In a nutshell dye advection (at least for 2D) is the most simple approach (try it
yourself, this method can be coded in minutes) and it allows for the integration
of some ,standart” effects, such as volumetric shadows, thus it works best in
scenarios where eye candy is needed, e.g. games. On the downside this
method requires a lot of space (i.e. a high resolution dye volume) and since in
every frame this entire volume must be updated, the performance may be slow.
To tackle this aften low resolution grids are used but in that case interpolation
artefacts become visible during rendering.



* GPGPU Flow Demo

http://wwwcg.in.tum.de/Download/LinAlg

* NVIDIA SDK 10

http://developer.nvidia.com/object/sdk_home.html

* NVIDIA , Box of Smoke” Demo

http://www.nzone.com/object/nzone_boxofsmoke downloads.html

e ATI/AMD Fluid Screensaver

http://ati.amd.com/developer/demos/rx850.html

To see the dye advection technique in action, visit these sides, and download and try these demo programs.
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Particle-Based Methods

Surface flow dataset courtesy of Peter Schroder et.al.

The next family of methods is based on an Eulerian approach, that takes discrete particle quantities in a continuos domain into account.
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Particle Traé‘iné — Basic Idea

This animation demonstrates the basic idea of particle tracing and shows that
to advect a particle in the flow a simple ODE needs to be solved, it also shows
that for this method to be useful as a visualization technique, many particles
are required.
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This slide and the next slide demonstrate how particle tracing is achieved on a graphics card. In essence the pixel shader is used to access the
vector-field and update the position texture. Note that on newer DirectX 10 class GPUs this process can be done in the geometry shader to
update the vertex positions directly, instead of first updating a position texture and then displacing vertices with this texture.
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This slide and the next slide demonstrate how particle tracing is achieved on a graphics card. In essence the pixel shader is used to access the
vector-field and update the position texture. Note that on newer DirectX 10 class GPUs this process can be done in the geometry shader to
update the vertex positions directly, instead of first updating a position texture and then displacing vertices with this texture.
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This slide and the next slide demonstrate how particle tracing is achieved on a graphics card. In essence the pixel shader is used to access the
vector-field and update the position texture. Note that on newer DirectX 10 class GPUs this process can be done in the geometry shader to
update the vertex positions directly, instead of first updating a position texture and then displacing vertices with this texture.



Particle Tracing
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Multithreaded Architecture
Hard Drive Main Memory GPU Memory
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hard drive update thread

This is just the general theme for large out of core rendering/processing for
much more details on this see the large-data talk of this tutorial later today.
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* Particles

— simply displace a vertex buffer
(vertex shader, geometry shader)

Static Vertex Buffer
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Position Displacement Texture

Most simple method, Idea:

Send a static vertex buffer into the pipeline / every element in the vertex shader fetches it‘s current position from the displacement texture / render
displaced vertices as point sprites

If the graphics hardware is DirectX 10 class:

Instead of using the 2D textures in the previous step a vertex buffer can be used in the geometry shader directly in this case no explicit
displacement is necessary



‘Reﬁdeﬁng

* Particles

— simply displace a vertex buffer
(vertex shader, geometry shader)

Static Vertex Buffer

EEEII{]

- ——
- ————

-
- —
—

Position Displacement Texture

Most simple method, Idea:

Send a static vertex buffer into the pipeline / every element in the vertex shader fetches it‘s current position from the displacement texture / render
displaced vertices as point sprites
If the graphics hardware is DirectX 10 class:

Instead of using the 2D textures in the previous step a vertex buffer can be used in the geometry shader directly in this case no explicit
displacement is necessary



i ol

Reﬁdéﬁng

* Particles

— simply displace a vertex buffer
(vertex shader, geometry shader)

Static Vertex Buffer

—
— —

Position Displacement Texture

Most simple method, Idea:

Send a static vertex buffer into the pipeline / every element in the vertex shader fetches it‘s current position from the displacement texture / render
displaced vertices as point sprites
If the graphics hardware is DirectX 10 class:

Instead of using the 2D textures in the previous step a vertex buffer can be used in the geometry shader directly in this case no explicit
displacement is necessary



Streamlines Streaklines

Particle trajectory at Particle trajectory in Trace of particles
fixed time step unsteady flow released into flow at
fixed position

In an unsteady flow field there are three different possibilities to trace lines:
Streamlines, where the entire line is recomputed for every time-step (a
somehwat artificial method)

Pathlines, that use the time t during the advection to access the corresponding
time-step in the flow field (correspond to the path taken by massless particles in
the flow)

Streaklines, release a new particle every time-step in the flow and always advect
all particles (corresponds to ink, advected in the flow)

Note that in a steady flow field these three approaches are the same.
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This slide shows the difference of the three methods for a sequence of four time steps in a time dependent flow.
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Particle Tracing — Summary

more complex
global effects harder to
integrate (e.g. shadows)

sparse
memory & space efficient
flexible vis modes exist




See it yourself ...

* tum.3D Particle Engine
http://wwwcg.in.tum.de/Download/PE

e DirectX SDK

http://msdn.microsoft.com/en-us/directx/default.aspx
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,Dense Methods”:
Line Integral Convolution
(on surfaces)

Slides courtesy of
Daniel Weiskopf & Tom Ertl
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On curved surfaces
— Triangle meshes (triangle soup)

— Tangential vector fields

* Dense representation

e GPU support for interactive
visualization |
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Noise-based dense
visualization
— LIC integral

So+L
[ = j k(s —s,)>xN(r(s))ds
So—L
Particle integration
— Compute r(S)

Starting point: First hit with object

Accumulate noise contribution
N(r) along traces

Basic Algothm :

NS
NI
N =AY
DN
AATAN
71200
2 Zi
Convolution I
First hit
Trace
A
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Texture-Based Flow Vis on Surfaces

3D object
space [N ] Generate
MENNE
IO =
ANZLN
AN 0]
(37742071 flow texture
NS S

Project

Image
plane
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Texture-Based FI

3D object
space [N ] Generate
S FAEA
O | =
AINZEIN
SARNAAAY
(37112071 flow texture
NAAAS s
Project Project
Generate
Image Image
— N\ /N -
plane ::> plane

XY flow texture X/

Eye
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* Advection in Image Space

* Advantages
+ No mesh connectivity or parameterization required
+ Uniform noise density in image space

+ Simple mapping to GPU

+ Performance determined by viewport size, not
mesh complexity
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Advection in Image-Space

* Disadvantages
— No or only limited frame-to-frame coherence

Blurring (numerical diffusion)

Only exponential filter
Silhouette lines are problematic inflow regions

Special detection of boundary lines needed
to avoid cross-
boundary flow

Courtesy of
Bob Laramee
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" Lagrangian Particle Tracing

Velocity vector v

Trace massless particles

Equation of motion: % =v(r,t)

First order integration: Ar = At xv(r,t)
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Image—Space and bbject—Space AsBect

* Reduce information to image space
— Project vector field onto image plane Object
* Render object geometry

space
* Vector field in 3D texture or \/‘\/ .
attached to vertices of the mesh Particle

— Starting position Project 4 trace
* Keep some 3D object-space Image
information Space
— Current position along particle trace
— Noise (solid texture) vEye
* Coupling:

— Simultaneous computation of positions in object and image spaces
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D- Space vs. P- Space for Coordlnatesz‘

O
Zy A Zo A

view frustum /
b3

v

* Device (D) space * Physical (P) space
* Onimage plane * Object space
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Visualization Process

Initialization
Init 2D texture for projected velocities v
Render mesh & make vectors tangential
Init 2D texture for P-space positions r
Render mesh
Init 2D accumulation texture /
Loop along particle trace
Transform current P-position r into D-space Iy

Get velocity from texture: v(ry)

Euler integrationr:=r + Atv
Accumulate noise in /

ndloop
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3D solid texture

— Frame-to-frame coherence

— Large amount of texture space?

— Aliasing?
3D texture repeat

— Typically 643 or 1283

— No artifacts if surface is (slightly) curved
Distance-based scaling of noise

— Powers of two

— Interpolate between
two closest levels
(similarly to mipmapping)

Time dependency: van Wijk [2002]
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Implementatio

* Mapping to GPUs
— DirectX 9.0
— HLSL and fx files

* Textures
— 32 bit floating-point for coordinates (2D tex)
— 16 bit fixed-point for accumulated gray values (2D tex)
— 16 bit fixed or floating point for vector field (3D tex)
— 8 bit fixed point for noise field (3D tex)

 Early z-test to process only visible surface elements
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No surface shading




No surface shading

Gray surface




No surface shading
Gray surface

Cool/warm shading
for surface
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Rendering

No surface shading

Gray surface

Cool/warm shading
for surface

Gray surface
Yellow/blue flow
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Synthesis

Surface dataset courtesy of Peter Schroder e.al.
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Synthesis

Surface dataset courtesy of Peter Schroder e.al.
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NPR technique
more complex
non trivial in 3D

Excellent for first
impression
Simple to implement if
particle tracing exits
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See it yourself .

* Texture-Based Flow Visualization Pages
http://wwwuvis.informatik.uni-stuttgart.de/texflowvis/

* tum.3D Particle Engine

http://wwwcg.in.tum.de/Download/PE
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Topological Methods

Slides courtesy of

Gerik Scheuermann
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* Do not draw “all” lines, but only the “important” ones

* Extract feature points and lines
— Critical points
(Points where the vector field vanishes)

— Separatrices
(Lines separating regions with similar properties)

* Often combined with other methods
— LIC

— Particle, Line Tracing
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* Flow around a cube

e Surface LIC

* Flow topology on surface
* attractive
* repelling
* saddle
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Topologic

. &
al Methods

complex preprocessing
harder to interpret

fast rendering
can be combined with other
techniques
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The end!

Any questions?




