Interactive Methods in
Scientific Visualization

Terrain Rendering

Christian Dick

dick@in.tum.de

Computer Graphics & Visualization Group, Technische Universitat Minchen, Germany

SOy «= tUN3p

computer graphics & v

|IEEE Pacific Visualization Symposium 2009
Beijing, China-



Outline

e Terrain Data and typical Storage Requirements
« Application Areas and their Requirements

e Overview of Continuous Level of Detail
Terrain Rendering Techniques

e Texture and Geometry Compression
e Overlaying 2D Vector Data
« Demo

Updated slides will be availabe at http://wwwcg.in.tum.de/Tutorials/PacificVis09



http://wwwcg.in.tum.de/Tutorials/PacificVis09

Terrain Data

Geo Data © Landesamt fiir Vermessung und Geoinformation Bayern



Triangle Mesh







State of Utah, USA

Texture: 1m

Height Field: 5m
Extent: 460km x 600km
Raw Data: 790 GB




‘ U

Y pa B e Texture: 12.5cm
| ‘ % " Height Field: 1m
" ¢ Extent: 56km x 85km
S\ % Raw Data: 860 GB
2\ & (China or USA: 1690 TB)

L \
e |

Geo Data © Land Vors

5



AVAT/A)
AN




2\
A £t f/m 4’)‘
ALTS =
B2\ AT e %
e
- AEHIT 2
75 ‘w‘v‘-a
ea ',"' §?'
D l,;*-ﬂw
o M;‘ag;:
Y ‘! : AV?




T —

Terrain Rendering — Application Areas

CE[ES
— High, constant frame rates
— Quality advantageous but not prioritized

Simulators
— Constant frame rates (~30 fps)

— High degree of realism and detail, optionally stereo

Geographic Information Systems (GIS)
— Interactive frame rates advantageous (15+ fps)
— High resolution and precision

TR



Terrain Rendering Principles

e How to render TB-sized datasets on standard
PC hardware?

— Limited memory bandwidths and capacities
— Limited rendering throughput (~*350 MA/s)
— Brute force not possible ...



Terrain Rendering Principles
« Only a small amount of data is visible per view

Perspective Projection

Level of Detail

Limited Field of View

View Frustum Culling

e v |»‘. ,' v,
® : 3
. 4} : /
| SR N 74
. e A 5
< VA & -
<



Terrain Rendering Principles

o Out-of-core data streaming

Memory Hierarchy

Several TBs 8 GB 1 GB
i ~ 100 MB/s ~2 GB/s
Entire Data Set Data within a certain Data within the
Prefetching Region View Frustum

Hide Disk Access Latencies

... DataPprefetching

Resource Allocation/Deallocation Reduce Memory Capacity
Caching Strategies and Bandwidth Requirements
i S | N

: ﬁ/. J
4 3



CLOD Terrain Rendering

Dynamic remeshing

— ROAMing Terrain: Real-time Optimally Adapting Meshes
[Duchaineau et al., 1997]

Tile-based multiresolution mesh representation

— Rendering Massive Terrains using Chunked Level of Detail Control
[Ulrich, 2002]

Nested regular grids

— Geometry Clipmaps: Terrain Rendering Using Nested Regular Grids
[Losasso and Hoppe, 2004]

Ray-casting of the height field

— GPU Ray-Casting for Scalable Terrain Rendering
[Dick et al., 2009]

See www.vterrain.org for a list of publications ...



http://www.vterrain.org/

Dynamic Remeshing

View-dependent, adaptive remeshing in every
frame

LOD computation and view frustum culling per
triangle

Remeshing is done on the CPU, mesh has to be
transferred to the GPU in every frame

ROAM: Real-time Optimally Adapting Meshes



Dynamic Remeshing — ROAM

« ROAM uses a Triangle Bintree Mesh for
view-dependent, adaptive meshing
— Mesh consists of isosceles right triangles

— Starting from a single triangle, triangles are
successively split from the apex to the midpoint of
the hypotenuse (longest edge bisection)




Dynamic Remeshing — ROAM

Level O Level 1 \

Level 2 Level 3 /

Level 4 Levm

Pl




Dynamic Remeshing — ROAM

« Remeshing is done by exploiting frame-to-
frame coherence

— Mesh refinement: Split triangles using A\

diamond splits to avoid T-vertices ></
— Mesh coarsening: Merge diamonds T-vertex

N = N\
N S N\




Dynamic Remeshing — ROAM

« Diamond splitting rule leads to forced splits




Dynamic Remeshing — ROAM

« Remeshing is driven by two priority queues

— Priority = Screen space error

— Split Queue: Force-split triangles with highest
priority

— Merge Queue: Merge diamonds with lowest
priority

— Uses view-independent, precomputed world-space
error bounds for the triangles in the bintree

— View-dependent priorities are obtained from these

error bounds by projection into screen-space
(Priorities have to be updated when view position changes)



Avoiding Popping Artifacts

« Geomorphs (vertex morphing)
— Linear interpolation of the height of the center vertex

z A
Ve

2v) e ARC z(t)=(1-t)z, (v, )+tz(v,),
2 (v + L> t e[O, 1]

« Subpixel geometric screen-space error

— Use screen space error tolerance < 1 pixel

Z A
Ve

2V)) 1 ARE
} < 1 pixel
zAve) T -




Dynamic Remeshing

o Advantages:
— Continuous triangulation (no T-vertices, no cracks)

— Represents terrain using a minimum number of
triangles

e Disadvantages:
— High CPU load
— High load on the CPU-GPU bus



Tile-based Terrain Rendering

e Terrain is represented at multiple levels of
details

e Each level is divided into tiles, which are
organized as a quadtree

e Each tile is meshed separately in an offline
preprocess (with respect to a prescribed
world-space error tolerance per LOD)



Tile-based Terrain Rendering

e In each frame, the set of tiles is determined
which represents the terrain at a prescribed
screen-space error, using LOD computation
and view frustum culling (per tile)

e Only new tiles are uploaded to the GPU
(exploiting frame-to-frame coherence)

e Chunked LOD: Rendering Massive Terrains
using Chunked Level of Detail Control
[Ulrich, 2002]

— Demo with source code available at
http://tulrich.com/geekstuff/chunklod.html



http://tulrich.com/geekstuff/chunklod.html

Tile-based Terrain Rendering

« Multi-resolution, tile-based terrain representation

Level 3 1x1 Tile
Level 2 2x2 Tiles
Level 1 4x4 Tiles
Level O 8x8 Tiles

Geo Data © Landesamt fiir Vermessung und Geoinformation Bayern

e

5122 Samples

10242 Samples

20482 Samples

40962 Samples



Tile-based Terrain Rendering

e Facts about the Tile Quadtree

Level 3
1x1 Tile — 5122 samples per tile
Level 2
2x2 Tiles
— World-space sample
Level 1 spacing €, and world-
x4 Tiles space tile extent 512 ¢,
are doubled with each
level ¢ (bottom-up)
Level O .
8x8 Tiles — The tiles are meshed

with a world-space
error tolerance of g,

Geo Data © Landesamt fiir Vermessung und Geoinformation Bayern



Tile-based Terrain Rendering

e View frustum culling and LOD computation per tile

N £



Tile-based Terrain Rendering

« LOD computation is based on the theorem on
intersecting lines

ZA
e(P
Pl p €(P)
<Near View Plane
=
Camera Space X
)v(

¢(P)_ 7
Pz _zNear

¢(P): World-space error tolerance at point P

h: View port height in pixels

0.  fovy

T Screen-space error tolerance in pixels
P: Camera-space depth of point P

Use a tile at level ¢ for rendering, iff

g,<e(P')<g,,

where P' denotes the point of the tile's bbox
with the least depth to the camera



Tile Selection Algorithm

e To determine the set of tiles
to be rendered, traverse the
tile quadtree in preorder

— If a tile is culled, skip all
descendants

— If a tile is not culled and its LOD
is sufficient with respect to the
prescribed screen-space error
tolerance, add this tile to the
set and skip all descendants




Fixing Cracks between Tiles

e Tiles are meshed independently, thus cracks

(due to T-vertices and quantization errors) can
occur at the tile boundaries

e« Render skirts around each tile to hide cracks

» Alternatives: Flanges, Zero-Area-Triangles
(see [Ulrich, 2002])



Texturing

« Anisotropic texture filtering is mandatory for
terrain rendering

Mipmapping Anisotropic Filtering

: %,’ V.' : !,'
7 i)

Geo Data © Landesamt fiir Vermes%‘uhguh‘d Geoinformation Bayern >=



Tile-based Terrain Rendering

o Advantages:

— Low CPU load (computations are done per tile)

— Moderate load on the CPU-GPU bus due to frame-
to-frame coherence

e Disadvantages:
— Cracks between tiles
— Higher number of triangles than necessary



Nested Regular Grids

« Geometry Clipmaps: Terrain Rendering Using
Nested Regular Grids
[Losasso and Hoppe, 2004]

— Demo available at
http://research.microsoft.com/en-us/um/people/hoppe/

e Use a set of nested regular grids centered
about the viewer



http://research.microsoft.com/en-us/um/people/hoppe/
http://research.microsoft.com/en-us/um/people/hoppe/
http://research.microsoft.com/en-us/um/people/hoppe/

Nested Regular Grids

e Height values are
fetched on-the-fly
from a height field

pyramid (the clipmap)

e« LOD is controlled by

the spatial extent of

each grid

e View frustum culling is

realized by dividing

each grid into blocks




Nested Regular Grids

e Update of the clipmap based on toroidal access

Update region

/
sls
= I
/' i Viewer Po\s«ition L
° I [ .\.




Nested Regular Grids

o Advantages:

— Height field can be compressed using image
compression methods

— Simple memory management
e Disadvantages:

— No exact screen space error control
— Extremely high number of triangles



GPU-based Terrain Ray-Casting

« Ray-casting of the terrain height field

« GPU Ray-Casting for Scalable Terrain
Rendering [Dick et al., 2009]

BoxExit

Dir = BoxExit - Eye



GPU-based Terrain Ray-Casting

o Advantages:

— Performance fully independent of the complexity
of terrain

— Higher performance and lower GPU memory
consumption than triangle-based rendering for
high-resolution height fields

e Disadvantages:

— For coarse-resolution height fields, triangle-based
rendering is faster and requires less GPU memory



Data Compression

» Benefits:
— Reduces memory capacity requirements
— Reduces bandwidth requirements
« Favor schemes that can be decoded on the GPU
— Reduces CPU load
— Reduces CPU-GPU traffic
« Encoding generally not time-critical

— Performed in a (time-consuming) preprocess



Texture Compression —S3TC

e S3 Texture Compression, here: DXT1, no alpha
[US Patent 6658146]
— Asymmetric, lossy block truncation code
— Standard compression scheme (DirectX, OpenGL)
— GPU renders directly from compressed data
— Divides textures into 4x4 blocks
— Assigns a fixed rate of 64 bits per block (4 bpp)
— Compression ratio 6:1 (R8G8B8)

— Use the Squish library by Simon Brown for
compression; Available with source code at
http://codeigoogle.com/p/libsquish/



http://code.google.com/p/libsquish/

Geometry Compression

« Compression scheme for bintree meshes
supporting GPU-based decoding

— Efficient Geometry Compression for GPU-based
Decoding in Realtime Terrain Rendering
[Dick et al., 2009]

— Underlying 2D Mesh: Lossless compression based
on a generalized triangle strip representation

— Height values: Lossy compression based on
uniform quantization

— Compression rate 8-9
(wrt triangle list representation, 32 bits per vertex)



Geometry Compression

e Generalized Triangle Strip
— Store only one vertex per triangle

1 3 ) 1 3 4
¥ @7
2
0 4 0 2 5
Regular Triangle Strip Generalized Triangle Strip
(0-1-2, 2-1-3, 2-3-4, 4-3-5, ...)

e Construct a directed path that
— Enters each triangle exactly once
— Leaves and enters triangles across edges
— Hamiltonian path of dual graph



Geometry Compression

/71

Start ~_




Geometry Compression

o Classify triangles by
— Type of the entering/leaving edge (A, B, C)
— Winding of the path (L, R)

Type A: Type B: Type C:
Cathetus to cathetus Cathetus to hypotenuse Hypotenuse to cathetus

L

P

}v




Geometry Compression

e Construct path during diamond splitting
— Initial Mesh




Geometry Compression

e Construct path during diamond splitting
— Replacement System




Geometry Compression

~
RN
AL AL AL Ar
BL BL
AL AL — AL -A-4 —» AL — AL I
P CL ’ R
L CL|BL CL|BL CLic L
AL
e AL AL
Br|CL | B |Br AL B | BRYAL
Br \"\ Cr < B
— AL i — AL — AL
R Hr
CLic L CL|c L CL|c L
AL AL Ay




Geometry Compression — Encoding

e For each triangle
— Store type (A,B,C) New vertex
— Winding (L,R) can be inferred
— Store height value of new vertex

e Bitrate R

— 2 bits for triangle type

— Variable (per tile) #bits Already known vertices
for height value




Geometry Compression — Decoding

e Encoded mesh:
C,C:; AL A, .. B B, A + height values

A - - A A4

Br B,

e Can be decoded directly on the GPU



Overlaying 2D Vector Data

e 2D Vector Data

— Polyline and polygonal vector data
— Roads, trails, villages, land use, ...

e Overlaying onto the 3D terrain

— For the visualization, the 2D vector data have to be
mapped onto the 3D terrain surface ...



R

~ ( T $I|I_HII HUJ
[ -/
H/M]Hu_ _MM.TTL\\M\I_
T s
e
L0
A
|




<

3D Terra




=

id onto the terra

Vector data overla




Overlaying 2D Vector Data

Geometry-based

— Render vector data as 3D geometry (lines, triangles)
— Problems: Z-fighting, terrain LOD adaptation

Texture-based

— Rasterize vector data into texture, overlay texture
— Problems: Resolution, GPU memory consumption

“Shadow Volume” Approach

— Efficient and Accurate Rendering of Vector Data on
Virtual Landscapes [Schneider and Klein, 2007]



Thanks for your attention!

Online Demo: Tile-based Terrain Rendering

o Data Set: State of Utah, USA
— Texture / Geometry Resolution: 1m / 5m
— Spatial Extent: 460km x 600km
— Raw Data Volume: 790GB (Compressed 175GB)

« System: Notebook equipped with
— Intel Mobile Core 2 Duo T7500, 2.2GHz
— NVIDIA GeForce 8600M GS, 256MB video memory
— 2GB of RAM
— External Hard'disk, connected via USB

Updated slides will be availabe at http://wwweg.in.tum.de/Tutorials/Pacific\VVis09



http://wwwcg.in.tum.de/Tutorials/PacificVis09

