
Interactive Methods in
Scientific Visualization

Terrain Rendering

Christian Dick

dick@in.tum.de

Computer Graphics & Visualization Group, Technische Universität München, Germany

IEEE Pacific Visualization Symposium 2009
Beijing, China

Outline

• Terrain Data and typical Storage Requirements

• Application Areas and their Requirements

• Overview of Continuous Level of Detail
Terrain Rendering Techniques

• Texture and Geometry Compression

• Overlaying 2D Vector Data

• Demo

Updated slides will be availabe at http://wwwcg.in.tum.de/Tutorials/PacificVis09

http://wwwcg.in.tum.de/Tutorials/PacificVis09

Terrain Data
Orthophoto Height Field (DEM)

Geo Data © Landesamt für Vermessung und Geoinformation Bayern

Geo Data © Landesamt für Vermessung und Geoinformation Bayern

Triangle Mesh

Textured Triangle Mesh

Geo Data © Landesamt für Vermessung und Geoinformation Bayern

Texture: 1m
Height Field: 5m
Extent: 460km x 600km
Raw Data: 790 GB
(China or USA: 27 TB)

State of Utah, USA

Geo Data © Land Vorarlberg

Texture: 12.5cm
Height Field: 1m
Extent: 56km x 85km
Raw Data: 860 GB
(China or USA: 1690 TB)

Vorarlberg, Austria

Geo Data © Land Vorarlberg

Geo Data © Land Vorarlberg

Terrain Rendering – Application Areas

• Games

– High, constant frame rates

– Quality advantageous but not prioritized

• Simulators

– Constant frame rates (~30 fps)

– High degree of realism and detail, optionally stereo

• Geographic Information Systems (GIS)

– Interactive frame rates advantageous (15+ fps)

– High resolution and precision

Games

Simulators

Geographic Information Systems (GIS)

Terrain Rendering Principles

• How to render TB-sized datasets on standard
PC hardware?

– Limited memory bandwidths and capacities

– Limited rendering throughput (~350 M/s)

– Brute force not possible …

Terrain Rendering Principles

• Only a small amount of data is visible per view

Limited Field of View

View Frustum Culling

Perspective Projection

Level of Detail

Terrain Rendering Principles

• Out-of-core data streaming

HDs

Several TBs

Main
Memory

8 GB

Graphics
Memory

1 GB

Memory Hierarchy

~ 100 MB/s ~ 2 GB/s

Entire Data Set Data within the
View Frustum

Hide Disk Access Latencies

Data Prefetching

Data within a certain
Prefetching Region

Resource Allocation/Deallocation
Caching Strategies

CPU & GPU Memory Management

Reduce Memory Capacity
and Bandwidth Requirements

Data Compression

CLOD Terrain Rendering

• Dynamic remeshing
– ROAMing Terrain: Real-time Optimally Adapting Meshes

[Duchaineau et al., 1997]

• Tile-based multiresolution mesh representation
– Rendering Massive Terrains using Chunked Level of Detail Control

[Ulrich, 2002]

• Nested regular grids
– Geometry Clipmaps: Terrain Rendering Using Nested Regular Grids

[Losasso and Hoppe, 2004]

• Ray-casting of the height field (no mesh)
– GPU Ray-Casting for Scalable Terrain Rendering

[Dick et al., 2009]

Dynamic remeshing

Tile-based multiresolution mesh representation

Nested regular grids

Ray-casting of the height field

See www.vterrain.org for a list of publications …

http://www.vterrain.org/

Dynamic Remeshing

• View-dependent, adaptive remeshing in every
frame

• LOD computation and view frustum culling per
triangle

• Remeshing is done on the CPU, mesh has to be
transferred to the GPU in every frame

• ROAM: Real-time Optimally Adapting Meshes

Dynamic Remeshing – ROAM

• ROAM uses a Triangle Bintree Mesh for
view-dependent, adaptive meshing

– Mesh consists of isosceles right triangles

– Starting from a single triangle, triangles are
successively split from the apex to the midpoint of
the hypotenuse (longest edge bisection)

Dynamic Remeshing – ROAM

Level 0 Level 1

Level 2 Level 3

Level 4 Level 5

Dynamic Remeshing – ROAM

• Remeshing is done by exploiting frame-to-
frame coherence

– Mesh refinement: Split triangles using
diamond splits to avoid T-vertices

– Mesh coarsening: Merge diamonds

Split

Merge

T-vertex

Dynamic Remeshing – ROAM

• Diamond splitting rule leads to forced splits

Dynamic Remeshing – ROAM

• Remeshing is driven by two priority queues

– Priority = Screen space error

– Split Queue: Force-split triangles with highest
priority

– Merge Queue: Merge diamonds with lowest
priority

– Uses view-independent, precomputed world-space
error bounds for the triangles in the bintree

– View-dependent priorities are obtained from these
error bounds by projection into screen-space
(Priorities have to be updated when view position changes)

Avoiding Popping Artifacts

• Geomorphs (vertex morphing)

– Linear interpolation of the height of the center vertex

• Subpixel geometric screen-space error

– Use screen space error tolerance < 1 pixel

T

LC RC

vC
z

z(vC)

zT(vC)

T

LC RC

vC
z

z(vC)

zT(vC)

< 1 pixel

       

 

1 ,

0, 1

T C Cz t t z v t z v

t

  



Dynamic Remeshing

• Advantages:

– Continuous triangulation (no T-vertices, no cracks)

– Represents terrain using a minimum number of
triangles

• Disadvantages:

– High CPU load

– High load on the CPU-GPU bus

Tile-based Terrain Rendering

• Terrain is represented at multiple levels of
details

• Each level is divided into tiles, which are
organized as a quadtree

• Each tile is meshed separately in an offline
preprocess (with respect to a prescribed
world-space error tolerance per LOD)

Tile-based Terrain Rendering

• In each frame, the set of tiles is determined
which represents the terrain at a prescribed
screen-space error, using LOD computation
and view frustum culling (per tile)

• Only new tiles are uploaded to the GPU
(exploiting frame-to-frame coherence)

• Chunked LOD: Rendering Massive Terrains
using Chunked Level of Detail Control
[Ulrich, 2002]

– Demo with source code available at
http://tulrich.com/geekstuff/chunklod.html

http://tulrich.com/geekstuff/chunklod.html

Tile-based Terrain Rendering

• Multi-resolution, tile-based terrain representation

8x8 Tiles

4x4 Tiles

2x2 TilesLevel 2

Level 1

Level 0 40962 Samples

20482 Samples

10242 Samples

Geo Data © Landesamt für Vermessung und Geoinformation Bayern

1x1 TileLevel 3 5122 Samples

Tile-based Terrain Rendering

• Facts about the Tile Quadtree

Level 2
2x2 Tiles

Level 1
4x4 Tiles

Level 0
8x8 Tiles

– 5122 samples per tile

– World-space sample
spacing  and world-
space tile extent 512 
are doubled with each
level  (bottom-up)

– The tiles are meshed
with a world-space
error tolerance of 

Level 3
1x1 Tile

Geo Data © Landesamt für Vermessung und Geoinformation Bayern

Tile-based Terrain Rendering

• View frustum culling and LOD computation per tile

Tile-based Terrain Rendering

• LOD computation is based on the theorem on
intersecting lines  

Near

'

z

P

P z

 


 

 

2
tan

2

: World-space error tolerance at point P

: View port height in pixels

: fovy

: Screen-space error tolerance in pixels

P : Camera-space depth of point P

z

z

P P
h

P

h


 







 
    

 

  1

Use a tile at level for rendering, iff

'

where ' denotes the point of the tile's bbox

with the least depth to the camera

P

P

     



Tile Selection Algorithm

• To determine the set of tiles
to be rendered, traverse the
tile quadtree in preorder

– If a tile is culled, skip all
descendants

– If a tile is not culled and its LOD
is sufficient with respect to the
prescribed screen-space error
tolerance, add this tile to the
set and skip all descendants

Fixing Cracks between Tiles

• Tiles are meshed independently, thus cracks
(due to T-vertices and quantization errors) can
occur at the tile boundaries

• Render skirts around each tile to hide cracks

• Alternatives: Flanges, Zero-Area-Triangles
(see [Ulrich, 2002])

Texturing

• Anisotropic texture filtering is mandatory for
terrain rendering

Mipmapping Anisotropic Filtering

Geo Data © Landesamt für Vermessung und Geoinformation Bayern

Tile-based Terrain Rendering

• Advantages:

– Low CPU load (computations are done per tile)

– Moderate load on the CPU-GPU bus due to frame-
to-frame coherence

• Disadvantages:

– Cracks between tiles

– Higher number of triangles than necessary

Nested Regular Grids

• Geometry Clipmaps: Terrain Rendering Using
Nested Regular Grids
[Losasso and Hoppe, 2004]

– Demo available at
http://research.microsoft.com/en-us/um/people/hoppe/

• Use a set of nested regular grids centered
about the viewer

http://research.microsoft.com/en-us/um/people/hoppe/
http://research.microsoft.com/en-us/um/people/hoppe/
http://research.microsoft.com/en-us/um/people/hoppe/

Nested Regular Grids

• Height values are
fetched on-the-fly
from a height field
pyramid (the clipmap)

• LOD is controlled by
the spatial extent of
each grid

• View frustum culling is
realized by dividing
each grid into blocks

Nested Regular Grids

• Update of the clipmap based on toroidal access

Update region

Viewer Position

Nested Regular Grids

• Advantages:

– Height field can be compressed using image
compression methods

– Simple memory management

• Disadvantages:

– No exact screen space error control

– Extremely high number of triangles

GPU-based Terrain Ray-Casting

• Ray-casting of the terrain height field

• GPU Ray-Casting for Scalable Terrain
Rendering [Dick et al., 2009]

Eye

BoxEntry
BoxExit

Dir = BoxExit - Eye

View Plane

GPU-based Terrain Ray-Casting

• Advantages:

– Performance fully independent of the complexity
of terrain

– Higher performance and lower GPU memory
consumption than triangle-based rendering for
high-resolution height fields

• Disadvantages:

– For coarse-resolution height fields, triangle-based
rendering is faster and requires less GPU memory

Data Compression

• Benefits:

– Reduces memory capacity requirements

– Reduces bandwidth requirements

• Favor schemes that can be decoded on the GPU

– Reduces CPU load

– Reduces CPU-GPU traffic

• Encoding generally not time-critical

– Performed in a (time-consuming) preprocess

Texture Compression – S3TC

• S3 Texture Compression, here: DXT1, no alpha
[US Patent 6658146]

– Asymmetric, lossy block truncation code

– Standard compression scheme (DirectX, OpenGL)

– GPU renders directly from compressed data

– Divides textures into 4x4 blocks

– Assigns a fixed rate of 64 bits per block (4 bpp)

– Compression ratio 6:1 (R8G8B8)

– Use the Squish library by Simon Brown for
compression; Available with source code at
http://code.google.com/p/libsquish/

http://code.google.com/p/libsquish/

Geometry Compression

• Compression scheme for bintree meshes
supporting GPU-based decoding

– Efficient Geometry Compression for GPU-based
Decoding in Realtime Terrain Rendering
[Dick et al., 2009]

– Underlying 2D Mesh: Lossless compression based
on a generalized triangle strip representation

– Height values: Lossy compression based on
uniform quantization

– Compression rate 8-9
(wrt triangle list representation, 32 bits per vertex)

Geometry Compression

• Generalized Triangle Strip

– Store only one vertex per triangle

• Construct a directed path that

– Enters each triangle exactly once

– Leaves and enters triangles across edges

– Hamiltonian path of dual graph

2

3

4

5

2

3 4 5

6

7

0

1

0

1

Regular Triangle Strip
(0-1-2, 2-1-3, 2-3-4, 4-3-5, …)

Generalized Triangle Strip

Geometry Compression

0

1 2

3

4

5

6

Start

Geometry Compression

• Classify triangles by

– Type of the entering/leaving edge (A, B, C)

– Winding of the path (L, R)

Type A:
Cathetus to cathetus

Type B:
Cathetus to hypotenuse

Type C:
Hypotenuse to cathetus

Geometry Compression

• Construct path during diamond splitting

– Initial Mesh

Geometry Compression

• Construct path during diamond splitting

– Replacement System

Geometry Compression

Geometry Compression – Encoding

• For each triangle

– Store type (A,B,C)

– Winding (L,R) can be inferred

– Store height value of new vertex

• Bitrate

– 2 bits for triangle type

– Variable (per tile) #bits
for height value

Already known vertices

New vertex

Geometry Compression – Decoding

• Encoded mesh:
CL, CR, AL, AL, …, BR, BL, AL + height values

• Can be decoded directly on the GPU

Overlaying 2D Vector Data

• 2D Vector Data

– Polyline and polygonal vector data

– Roads, trails, villages, land use, …

• Overlaying onto the 3D terrain

– For the visualization, the 2D vector data have to be
mapped onto the 3D terrain surface …

2D Vector Data

3D Terrain

Vector data overlaid onto the terrain

Overlaying 2D Vector Data

• Geometry-based

– Render vector data as 3D geometry (lines, triangles)

– Problems: Z-fighting, terrain LOD adaptation

• Texture-based

– Rasterize vector data into texture, overlay texture

– Problems: Resolution, GPU memory consumption

• Shadow volume approach

– Efficient and Accurate Rendering of Vector Data on
Virtual Landscapes [Schneider and Klein, 2007]

Geometry-based

Texture-based

“Shadow Volume” Approach

Thanks for your attention!

• Data Set: State of Utah, USA

– Texture / Geometry Resolution: 1m / 5m

– Spatial Extent: 460km x 600km

– Raw Data Volume: 790GB (Compressed 175GB)

• System: Notebook equipped with

– Intel Mobile Core 2 Duo T7500, 2.2GHz

– NVIDIA GeForce 8600M GS, 256MB video memory

– 2GB of RAM

– External Harddisk, connected via USB

Online Demo: Tile-based Terrain Rendering

Updated slides will be availabe at http://wwwcg.in.tum.de/Tutorials/PacificVis09

http://wwwcg.in.tum.de/Tutorials/PacificVis09

