

Interactive Methods in Scientific Visualization

GPU Volume Raycasting

Christof Rezk-Salama University of Siegen, Germany

Volume Rendering

Object Order Approach

Proxy geometry (Polygonal Slices)

Volume Rendering

GPU Volume Raycasting

- Easy to implement
- Everybody knows how to draw a box:

glBegin(GL_QUADS); { glVertex3d(0.0,0.0,0.0); glVertex3d(0.0,0.0,1.0); glVertex3d(0.0,1.0,1.0); glVertex3d(0.0,1.0,0.0);

glEnd();

GPU Volume Raycasting

Simple Shader for Texture Mapping

```
Original Vertex
float3 main(
                 float3 worldPos : TEXCOORD0,
                 float3 viewVec
                                    : TEXCOORD1
                                                              Position in World
                                                              Space
                 uniform sampler3D volumeTex
           ) : COLOR
                                                              Viewing Vector in
    float4 color = feedb4v010me@ex, wobldPo8);
                                                              World Space
    for( int i = 0; i < NUM STEPS; i++) {</pre>
       float4 sample = tex3D(volumeTex, worldPos);
                                                              3D Texture
       color += (1 - color.a) * sample;
       if (color.a > 0.99) break;
       worldPos += STEPSIZE * viewVec;
    return color;
```

GPU Raycasting vs. Texture Slicing

GPU Raycasting is easier to impoment and also more efficient, because:

- No Alpha Blending! avoid successive read/write operations to the frame buffer
- Early Ray Termination

... provided you have an up-to-date GPU

Local Illumination

- Surface lighting: Light is reflected at surfaces
- Volume lighting: Light is scattered at isosurfaces

$$I(\mathbf{p}) = \{ \mathbf{x} \mid f(\mathbf{x}) = f(\mathbf{p}) \}$$

- Isosurface extraction not required!
- We only need the normal vector
- Normal vector of isosurface is equal to (normalized) gradient vector

Gradient Estimation

• The gradient vector is the first-order derivative of the scalar field

 We can estimate the gradient vector using finite differencing schemes

Finite Differences

• Taylor expansion: Forward Difference:

Backward Difference:

$$f'(x_0) = \frac{f(x_0) - f(x_0 - h)}{h}$$

 x_{i-1} x_i x_{i+1}

Finite Differences

Central Difference:

$\begin{array}{l} \begin{array}{l} \mbox{Gifallient Approximation (using Central Differences:} \\ \hline f(x_0+h) & f(x_0-h) \\ \hline 2h \\ \end{array} \\ \nabla f(x,y,z) \approx \frac{1}{2h} \left(\begin{array}{c} f(x+h,y,z) - f(x-h,y,z) \\ f(x,y+h,z) - f(x,y-h,z) \\ f(x,y,z+h) - f(x,y,z-h) \end{array} \right) \end{array}$

On-the-fly Gradient Estimation

$$\nabla f(x,y,z) \approx \frac{1}{2h} \left(\begin{array}{c} f(x+h,y,z) - f(x-h,y,z) \\ f(x,y+h,z) - f(x,y-h,z) \\ f(x,y,z+h) - f(x,y,z-h) \end{array} \right)$$

float3 sample1, sample2; // six texture samples for the gradient sample1.x = tex3D(texture,uvw-half3(DELTA,0.0,0.0)).x; sample2.x = tex3D(texture,uvw+half3(DELTA,0.0,0.0)).x; sample1.y = tex3D(texture,uvw-half3(0.0,DELTA,0.0)).x; sample2.y = tex3D(texture,uvw+half3(0.0,DELTA,0.0)).x; sample1.z = tex3D(texture,uvw-half3(0.0,0.0,DELTA)).x; sample2.z = tex3D(texture,uvw+half3(0.0,0.0,DELTA)).x; // central difference and normalization float3 N = normalize(sample2-sample1);

Examples Local Illumination

On-the-fly Gradient Estimation

Drawbacks:

- Each additional texture sample is expensive!
 - Central Differences: 7 Texture Samples
 - Forward/Backward Differences: 4 Texture Samples

Advantages:

- Low memory requirements
- Gradient estimation at floating point precision!
- Gradient estimation can be omitted in FP (using a conditional branch)

Advanced Illumination

the second secon

Data sets available at the UTCT data archive, DIGIMORPH http://utct.tacc.utexas.edu

Translucency

Scattering Effects

When a photon hits a surface, it changes both direction and energy

- Single Scattering:
 - Light is scattered **once** before it reaches the eye
 - Local illumination model
- Multiple Scattering
 - Soft shadows
 - Translucency
 - Color bleeding

Surface-Like Reflection: The BRDF

The **BSDF**

Scattering with orientation (surface-like)
 Phase function notation:

$$h_{\text{BSDF}}(\mathbf{x}, \omega_i \to \omega_o) = f(\mathbf{x}, \omega_i \to \omega_o) |\cos \theta_i|$$

A Practical Model

Surface-like scattering (BSDF) at high gradients

$$h(\mathbf{x}, \omega_i, \omega_o) = \begin{cases} h_{\text{BSDF}}(\mathbf{x}, \omega_i, \omega_o) & \text{with } \mathbf{n} = \frac{\nabla s(\mathbf{x})}{|\nabla s(\mathbf{x})|}, & \text{if } |\nabla s(\mathbf{x})| > \psi \\ h_{\text{HG}}(\mathbf{x}, \omega_i, \omega_o), & \text{otherwise} \end{cases}$$

A Practical Model

no scattering

scattering at isosurfaces only scattering inbetween isosurfaces only scattering everywhere

Math Notation

 $L(\mathbf{x}, \omega_o) = \int_{\Omega} h(\mathbf{x}, \omega_o \to \omega_i) L(\mathbf{x}, \omega_i) \, d\omega_i \, \left(\mathbf{x}, \omega_i \right) \, d\omega_i \, d\omega_$

integrates over the entire sphere/hemisphere

- Integral must be solved for every intersection point
- Fredholm Equation (cannot be solved analytically)

Numerical Integration

f(x)

Equidistant Sampling

Approximation integral by a Riemann sum

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{N} f(x_i) \frac{b-a}{N}$$

Stochastic Sampling

- Uniformly distributed samples
- Approximation by sum

 $\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{N} f(x_i) \frac{b-a}{N}$

Stochastic Sampling

Cons:

 Slower convergence than Riemann sum

Pros:

- Better Scalability for multidimensional functions: increase number of samples in arbitrary steps
- Noise instead of Aliasing
- Independent of sampling grid:
 Clever placement of
 samples will improve the
 convergence!

Blind Monte-Carlo Sampling

• Example: Filtering an Environment Map

Given an Environment Map (i.e. photograph: fisheye or mirror ball)

Calculate an Irradiance Map

For each pixel of the irradiance map:

- Determine n random directions on the hemisphere
- Sample the Environment Map and
- Average the results (incl. cos-term)

Rendering

• Calculate the radiance of a point

- depending on the incoming light on the sphere/hemisphere
- depending on the phase function/BRDF

Deterministic Uniform sampling of the sphere/hemisphere. High computational load good approximation

Blind Monte-Carlo Randomized sampling of the sphere/hemisphere. Visually better images for fewer samples, slow convergence

Importance Sampling Place samples where contribution is high Faster!

Importance Sampling

Stochastic Sampling

Non-uniformly distributed samples

 $\int_{a}^{b} f(x) dx \approx \frac{1}{N} \sum_{i=0}^{N} \frac{f(x_i)}{p(x_i)}$

Approximation by sum

Clever placement of samples

- Many samples where function is high
- Few samples where function is low

Probability Distribution Function (PDF)

Sampling a Specular Lobe

D

• Simple Approad (φ) = $\cos^s(\varphi) = (\mathbf{r} \cdot \mathbf{v})^s$ Specular term

Non-optimal, but easy to implement
 Precompute random unit vectors
 Idea: Inform Fdistribution of directions rest

- $igodoldsymbol{\ominus}$ $igodoldsymbol{\Theta}$ $igodoldsymbol{\Theta}$ $igodoldsymbol{eta}$ $igodoldsymbol{eta}$ igodo
- igle Negate vector, if $\left({f r} \cdot {f p}
 ight) < 0$

igleon Blend with vector ${f r}$ and normalize

 $\mathbf{s} = \alpha \, \mathbf{r} + (1 - \alpha) \mathbf{p}$

 Blend weight α controls the size of the specular highlight and can be calculated from shininess s

Importance Sampling

Literature:

- M. Pharr, G. Humphries: **Physically Based Rendering**, Morgan Kauffman (Elsevier), 2004
- M. Colbert, J. Křivánek, GPU-Based Importance Sampling in H.Nguyen (edt.): GPU Gems 3, Addison-Wesley, 2008

GPU Ray-Casting

Calculate First Intersection with Isosurface

- Rasterize the front faces of the bounding box
- For each fragment, cast a ray
- Find first intersaction point with isosurface by sampling along the ray
 interval bisection
- Store the intersection point in render target 0
- Estimate the gradient vector using central differences
- Store the gradient vector in render target 1

First Render Pass

MRTO: xyz-coordinates of first intersection point with isosurface

MRT1: xyz-components of gradient vector (color coded)

High Quality Isosurface

Deferred Shading

Single Scattering (no shadows)

- Diffuse term:
 - Sample irradiance cube using gradient direction
- Specular term:
 - Calculate random directions on the specular lobe
 - Sample environment cube
 - Weight each sampling
 its BRDF/phase fun
 its probability distribute

High Quality Isosurface

Why not use a prefiltered environment map for the specular term as well?

You can, but

- it only works for *one* specular exponent per object
- Variable shininess may be used to visualize additional surface properties (e.g. gradient magnitude)

Ambient Occlusion

Approximate indirect light

Accessibility term:

- How easy can a surface point be reached?
- Ambient Occlusion:
 - Calculate random directions on the specular lobe
 - Cast a ray and sample only a few steps in each direction
 - Count the rays that do not intersect the isosurface again

High **Quality Isosurface**

Single Scattering Example

Single Scattering Example

Multiple Scattering

 $L(\mathbf{x}, \omega_o) = \int_{\Omega} p(\mathbf{x}, \omega_o \to \omega_i) L(\mathbf{x}, \omega_i) \, d\omega_i$

- Fredholm Equation (cannot be solved analytically)
 Numerical Solution:
- Number of rays grows exponentially
- Much workload spent for little contribution

Multiple Scattering

Mathematical Model

$$L(\mathbf{x}, \omega_o) = \int_{\Omega} p(\mathbf{x}, \omega_o \to \omega_i) L(\mathbf{x}, \omega_i) \, d\omega_i$$

integrates over the entire sphere/hemisphere

Quantum Optics

- Trace the path of single photons
- Photons are scattered randomly
- Probability of scattering direction given by BRDF/phase function
- Monte Carlo path tracing

Phase Function Model

- Scattering of light at every point inside the volume
 - Too expensive (extremely slow convergence)
 - Not practicable. Controlling the visual appearance is difficult
- Idea: Restrict scattering events to a fixed number of

GPU Ray-Casting

Scattering Pass

- Start at first isosurface and trace inwards
- Account for absorption along the rays
- Proceed until next isosurface
- Calculate scattering event
- Sample the environment on exit

GPU Ray-Casting

Scattering Pass

Simplifying Assumption:

- Absorption on the "way in" is same as on the "way out"
- Abort the ray inside the volume square the absorption and sample irradiance map
- Not very accurate but good visual results

Scattering Pass

final version in ½-1 seconds

preview in real-time

Final Composite

Path Tracing

Primary rays: 8 Secondary rays: 8

Primary rays: 1

Secondary rays: 64

Primary rays: 64 Secondary rays: 1

Examples

Different scattering cone angles for the "inward-looking" (transmissive) Phong-lobe

