
This is the part „Large Data“ of the tutorial „Interactive Methods in Scientific 
Visualization“ held at the IEEE Pacific Visualization Symposium 2009 by Jens 
Schneider.
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When talking about the visualization of large data, many associate this topic with
parallel rendering and visualization. While they are certainly right to do so, we will 
not cover this topic in this part of the tutorial.

However, we will address the management of large data including data compression. 
We will also address various paging strategies and will mention multicore-
optimizations. Our target system for all the presented examples and data types is a 
„standard“ desktop machine, equipped with a multi-core processor, a decent amount
of RAM (4-8 GB), as many harddrives as you can grab (not a severe restriction
anymore at 10ct / GB) and a fair GPU (typically DirectX 10 compliant, choose your
favourite vendor).
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First, we will quickly show you what „large“ data means by today, and keep in mind to
think big enough for the future.

4



Let‘s have a look what we mean by large data by today.

Firstly, Terrain data is known to be quite large. Typical sizes range from a few dozens
of MB to hundreds of TB. For instance, China resolved at 0.25m per sample amounts
to roughly 700 TB for both DEM and texture.

Secondly, geological sciences tend to generate fairly large data. For instance, the
Terashake simulation conducted be the San Diego Supercomputing Centre amounts
to about 20GB per time step and consists of several hundred time steps.

Another example for large data are point scans and meshes. The Stanford Computer 
Graphics group acquired point scans of various statues by Michelangelo that range
from about 7 million points to up to 350 million points. This amounts to several GB of
data.

Current state-of-the art medical scanners generate scalar volumes that range from a 
few megabytes to some terabytes. Especially the medical data in everyday-use is
expected to grow at significant rates in the near future.

Last but not least, there has been a certain trend to Gigapixel images recently. 
Naturally these images consume some GB in raw format and are expected to grow
into the mid TB region soon, since acquisition methods scale very well.
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Terrain Data will be our first example, here you see the Kennecott Copper Mine in 
Utah. The picture above is a very small piece of a data set comprising the entire State 
of Utah, USA. While my collegue Christian Dick will explain in detail how to render 
this data, I will focus on the data management and paging strategies required during
pre-processing and run time.
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This is a video of our visualization of the SDSC Terashake 2.1 Simulation. We choose
to somewhat counter-intuitively visualize the deformation in the upper layers of the
surface by particles. By doing so, you can observe many structures that are really hard
to grasp with other visualization methods. We attribute this to the fact that particles
in a sense „accumulate“ deformations, thereby forming structures that are
symptomatic for the underlying wave types.
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This small video demonstrates the smallest of the meshes from the Digital
Michelangelo Project, David, wich with its ~28M points is already considered large by
many. However, there are much larger data sets in the repository, for instance the
unfinished Atlas statue comprising about 255M points.
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Here we show you the fullcolor version of the visible human. The data set was 
rendered using S3TC encoded textures in a bricked renderer. Note that the tattoos
have not been seen for over a decade, since they were to our knowledge not 
visualized before. This image was rendered using the Image 3D package from SCI, 
Utah.
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As a last data type we will show some Gigapixel images. Here we just demonstrate
the range of zoom-in possible on this 4.5 Gigapixel image kindly provided by J. Kopf 
and O. Deussen.
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In order to generate all these pretty pictures, we first have to deal with the average
desktop system‘s ugly depths. Knowing your system is the key to design efficient pre-
processing methods. Most people regard pre-processing time as expendable (and we
did, too, before encountering the data sets presented in the following). But a clever 
pre-processing strategy can easily mean the difference between waiting days or
waiting weeks. If you‘re under pressure, because data is coming in at a high rate (as
terrain data was in our lab some months ago), you will want to see your data
immediately. Thus, pre-processing can also mean the difference between buying a 
moderately equipped desktop machine at 4KU$ or a highend workstation at 50KU$.
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In order to successfully deal with data larger than your main memory, you will have to
know your hardware well. Especially the knowledge about the bandwidths, latencies, 
and capacities of the various components in your system are inexpendable.

While most people know these properties, the good news is that it typically needs
computer scientists or engineers to understand and react to the implications of these
numbers. That basically means that we all are inexpendable, too, and that we are
hopefully facing well-paid jobs.

The basic von Neumann architecture connects the various system components by
busses, some of which have remained not quite fast enough through the last four or
so decades. Therefore, memory hierarchies have been introduced, consisting of
external storage, main memory, and caches. Throwing in a GPU and talking about
interactive visualization, we have another layer on top, namely the GPU memory.

12



Furthermore, specific knowledge about the OS is fairly useful. Here we will discuss
numbers based on MS Windows, but other systems such as Linux or MacOS are fairly
similar. Since we will have to process most data out-of-core, we need to know the OS 
disk page size. We will also discuss memory mapped files as a convenient and quick 
way to load and stream data. Last but not least, we need to know the available
amount of physical memory. While modern OSes do everything to hide that number
from the casual user, you definitely do not want to over-allocate, since the OS paging
data other than your own will vastly diminish performance. As a side note, you should
be using a 64Bit OS if possible in any way, since it exposes all your memory to your
app instead of 2-3GB.

If you can partition your data, do so! Partitioned data is „embarrassingly parallel“ and
can benefit of multi-core technology without much ado.  Often it‘s a matter of using
some library implementing a parallel-do and your application runs 3.5 times faster! 
This might well cut your data processing times from weeks to a few days.

Now we always argumented that these times are a pre-process and hence time did
not matter. However, if you are given large data on a weekly basis, you will want to
see it as quickly as possible. Often, weeks of processing on a single machine are not 
acceptable, so you argue that in theory you could throw in more machines. However, 
rumor has it that there are still some customers out there who do not have access to
the same amount of hardware you have. On the other hand most of them will have
multi-core / hyperthreaded machines (or they already have), so  why not use it?
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Here‘s an example of how to reliably determine the page size under windows – for
completeness sake.
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Here‘s a code snippet for determining the amount of available physical memory. Be
sure to check out the MEMORYSTATUS struct, if you haven‘t already – there are lots 
of useful things in there.
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In this diagram we list typical peak bandwidths and „peak“ latencies – „peak“ of
course meaning „best-possible“. Note that the cache is typically two orders of
magnitude faster than „normal“ memory access, and that average cached RAM 
access is again several orders of magnitude faster than HDD access. This is somewhat
alleviated by the recent improvement of SSDs – but they will cost you! Still, RAM is
more than 300x faster in terms of latency than is SSD access!
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This said, cache coherent traversal is mandatory. Do everything possible to ensure
that as much data as possible resides in cache.

- Use compression to squeeze more data into the caches

- Use space-filling curves to make pseudo-random accesses more coherent

While the Peano-Hilbert curve is proovably optimal for truly random access patterns, 
it is a pain to implement in any dimension greater than 2. Instead, use the Z-order 
curve. This can be conveniently implemented using a bit-shuffle in logarithmic time:

Let your „real-world“ index be X:=(X1,X2…Xn). First pad the components of X by
leading 0s such that all indices required in your operation are of the same bit length. 
Then simply „shuffle“ them as follows. Let B1(Xi) be the first (left-most) bit of index
Xi, Bj(Xi) the jth bit of Xi (again from left). Then the Z-order index is

Z=B1(X1).B1(X2)…B1(Xn).B2(X1).B2(X2)…B2(Xn)…Bm(Xn), where m is the number of
bits used for each index. „.“ denotes concatenation, here. To obtain the index vector X 
of any Z-order index Z, simply „unshuffle“ the bits.
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The first real example is terrain data.
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When I showed the Kennecott Copper Mine I mentioned that this is part of a larger 
data set. The State of Utah makes ist geospatial data publicly available, including an 
ortho-rectified texture. This texture is the major difference to what the USGS offers
for the entire USA – and the resolution. If you get all the data available, it will be
about 800GB of texture and geometry, with texture dominating the total size – as of
now. In my personal oppinion we will soon see geometry as fine-grained as 1m in 
large areas and textures with about 0.25cm spacing. The amount of data will then be
gigantic – think of several TBs of data, not to mention additional geospatial
information.

We compressed this data down to 180GB (will be explained in detail later on and by
Christian), and the processing took roughly 2 days. Again, this time was mainly spent
on texture compression (meshing and geometry encoding is actually a matter of a 
few minutes). If we had not used Quad-core parallelization, this would have cost us 8 
days! Speeding up this process is especially critical during development – you simply
cannot afford to wait days before you see that something went terribly wrong.
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Here‘s a quick overview of the methods employed. First, we merge different 
geometric resolutions using a scattered data interpolation scheme – if such 
resolutions were provided. After that, we generate a single, huge clipmap of both the
geometry and the texture. This has to be done out-of-core (as well as the merging
step), and wether or not implementing this is painful depends on your ability to
abstract from the actual amount of data by automatically paging data structures. 
Rather invest a few hours or days more into your data structures and make it scale
instead of keeping re-writing it whenever the next larger chunk of data arrives.

Data tiling is not much to talk about, tiling is done implicitly. These (in our case
512x512) data chunks are then S3TC encoded – use the Squish Library of Simon 
Brown or NVIDIAs CUDA Library to do so. Parallelize this with the amount of cores in 
your system. This is really easy. Geometry compression is very cheap in comparison, 
because it does not involve any optimization processed.

As a side note, use 64 Bit addressing, it really makes life easier. Also note that the
size_t data type gets promoted automatically to 64bit for many different compilers. 
Use this data type to make your code a bit more scalable wrt. 32/64bit Oses – but be
careful, it‘s still an unsigned ;)
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The abstraction layer we implemented to handle large 2D data pages automatically
and uses multiple threads to perform pre-fetching (which, honestly, did not provide
the expected speed-up, but improved performance just a little bit.) These arrays use
Z-order data layout on disk and may behave just like 2D C-Arrays. But even if they do, 
process your data page-wise! After experimenting a bit, we found that using a logical
page size of 4MB offers a good trade-off between disk latency to position the next
page and the disk bandwidth to retrieve the next page. Code is available on the
tutorial home page.
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These large data arrays are implemented as templates, so you can store inside
whatever you want. For instance a std::pair of floats during the merging step of the
pre-processing.

Clipmap generation is implemented simply as successive box filtering, but you may
choose your downsampling algorithm of choice, here.
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Geometry compression will be discussed by my collegue Christian Dick. As already
mentioned, S3TC is the real bottleneck during compression. We implemented a 
threaded encoder the „hard way“, using only WIN32 calls. From this experience we
really recommend using some library that conveniently encapsulates the
parallelisation – and prevents you from experiencing the abysmal „fun“ of thread
debugging . Intel just recently presented their „Threading Bulding Blocks“, which
comes in a neat, STL-like design, scales well with the amounts of cores, and costs
absolutely nothing. How great is that?
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Data is naturally stored in a quadtree, where nodes correspond to 512x512 samples
of our multi-res hierarchy. To avoid latencies arising from disk seek times, we further
group 4x4 nodes into a page. These pages are approximately 4MB each, and pages
are always loaded contiguously. They are stored in Z-order in a single file on the disk
(geometry and texture). Thereby we avoid managing multiple handles and ensure
that seek times are minimal.
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To avoid frequent re-allocation – a process that is quite expensive on most Desktop 
OSes, we allocate a single, big chunk of main memory and manage this chunk
ourselves. This requires to hold an index structure. To avoid internal fragmentation, 
we utilize a buddy system. If a new page is to be loaded, we first check if a chunk is
available into which the page tightly fits (i.e. chunksize > pagesize but 2*pagesize < 
chunksize). Then, of all these pages, we choose the least recently used to be purged.

Circular prefetching is used to hide seek latencies from the user and to allow for rapid 
shoulder views. Note that the amount of data to be streamed is only slightly higher
than with the more commonly employed fan-regions, albeit at the cost of an 
increased total memory usage (about a factor 2-3).

The GPU memory system works in the exact same manner for geometry buffers. The 
texture tiles used in our system are all of the same size, making managing them a 
rather trivial task. Here, a LRU strategy is also employed.

• C.-M. Ng, C.-T. Nguyen, D.-N. Tran, T.-S. Tan, S.-W. Yeow, „Analyzing pre-fetching in 
large-scale visual simulation“, Proc. Computer Graphics International, pp. 100—107, 
2005

• D. E. Knuth, „Fundamental Algorithms, The Art of Computer Programming“, 3rd
Edition, Addison-Wesley, 1997
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Now to something completely different – the visualization of the Terashake 2.1 
Simulation that was conducted at the San Diego Super Computing Centre.
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The Terashake 2.1 Simulation comprises data of a magnitude 7.7 earth quake 
simulation. Thr grid is finely resolved (200m spacing) and covers the area from Palm 
Springs to Los Angeles and beyond. This data is huge! The original resolution comes in 
20GB per time step chunks, and there are several hundreds of time steps. Participants
of the IEEE Visualization Contest 2007 were given a still remarkable amount of 70GB 
of data. The original data was reduced using frame skipping and resampling, but it
was still enough to pose serious trouble. In this data set, you can see the earth quake 
originating at Palm Springs, then following the St. Andreas fault to Los Angeles, where
it keeps rumbling for a significant period of time (and with still remarkable strength). 
Participants were given a set of questions from domain experts and an additional 
scalar data set that contains measured wave phase speeds for the ground. By
reconstructing an isosurface in this scalar data set (participants were told the proper 
iso-value) one can reconstruct so-called basins – geological structures at whose
boundaries the waves of the earthquake react in various manners. These basins are
the cause for the fact that an earth quake originating in Palm Springs is a serious
threat for Los Angeles‘ residents.
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The first insight is that you cannot possibly stream the original 20GB of data per time 
step during an interactive visualization. Albeit evil by itself, downsampling is a viable
method to reduce the data before the visualization. Once done, we used the
streaming approach described in Bürger et al 2007. This approach implements a ring 
buffer on the GPU to hide latencies from the user. It tries to prefetch as many time 
steps as possible, and purges each time step as soon as it is no longer needed for the
visualization. Furthermore, it also performs a prefetching to core memory in order to
smooth out occasional disk-“hiccups“. The picture in this slide shows the mechanism. 
While rendering from times t0,t1, additional steps are loaded to the GPU 
asynchronously.

• K. Bürger, J. Schneider, P. Kondratieva, J. Krüger, R. Westermann, „Interactive Visual 
Exploration of Unsteady 3D Flows“, EG/IEEE-VGTC Symposium on Visualization, 2007
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To visualize time-dependent data, a 4D-interpolation is required. In terms of
interactive visualization this boils down to quadri-linear tensor product interpolation. 
While tri-linear interpolation can be done in hardware, interpolation along the time-
axis can generally not be performed in hardware. We tried to estimate the time 
needed to load another time slice and use the time index relative to the point where
the last step became resident as an interpolation weight. Then, two tri-linearly
fetched vectors were interpolated in the Shader.

Although a particle-based visualization is physically not meaningful (since you simply
cannot advect through displacements) it prooved to be extremely insightful. This is
due to the fact that during the advection displacements are accumulated and very
characteristic wave patterns form in the particles. 
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These characteristic patterns are shown in the three figures. Features to look out for
are the general wave front propagation direction (orange) that can be tracked by local
particle density maxima. The secondary feature is the oscillation of particles (white) 
relative to these peeks. There are two kinds of oscillations, one with low amplitude
(middle) and one with high amplitude (right). The third type of wave present in earth
quakes can be diagnosed by particles moving from both sides to form a local density
maximum (left). Actually, there is a fourth wave type, which cannot easily determined
using particles, but three out of four can!

Among the lessons learned was that particles offer intuitive insights (to the surprise
of domain experts), even if the visualization is not physically permitted. Another thing
we learned was that fast, cheap hard disks are one of the major benefits of our time. 
Spend a few bucks more for speed, whenever you can, or use RAIDs – it is worth the
effort. As a side note, DirectX 10‘s asynchronous mechanisms are somewhat tricky, as
even with ThreadPumps it is not always guaranteed that buffers are resident when
the upload call returns. They can as well be batched, and dedicated asynchronous
mechanisms as present in OpenGL are not really available for DirectX. So getting the
upload „hiccup“-free might require some skillful implementation – but recent driver
releases show significant improvements in these issues.
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Now to point clouds. By point clouds we mean point-sampled surfaces (presumably
2-manifold), not dense sets of points as they arise in physics or numerical simulation. 
The reason is that we‘re still working on that latter type of data and we‘re trying to
figure out how to deal with them most efficiently.
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The point cloud is reconstructed using a Moving Least Squares Surface and is
projected into a local tangent plane. In this plane, it is regularly resampled to yield a 
height field. These height fields are then encoded using standard 2D tensorproduct
wavelet approaches (using SPIHT as a backend). The advantages of this method are
the fairly general encoding process and the good bitrate of only about 2.3 bpp. 
(points need to be stored, only). However, finding the local planes and resampling the
points into it require spatially coherent portions of the point cloud to be resident in 
main memory. Also, this process is fairly costly. The decoding cannot be performed
trivially on the GPU, as SPIHT encoded wavelets do not offer trivial random access, 
but rather an O(log N) process is required to decode a single point. It could be
suitable, though, to encode one height field after another. Another more subtle
drawback is that due to the use of tangent planes the resampling resolution varies
across the mesh and might lead to artifacts.

• T. Ochotta and D. Saupe, „Compression of point based 3D models by shape-adaptive 
wavelet coding of multi-height fields“, Eurographics Symposium on Point Based
Graphics, 2004
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The method proposed by Waschbüsch et al. consists of iterative clustering to obtain a 
multi-resolution point cloud. During this step, the hierarchy is built bottom up by
successive point contractions. Bitrates are largely dependent on the smoothness of
the surface implied by the point set. For smooth surfaces, bitrates are typically
around 2 bit, while normals require another 6 -13 bits (in rare cases up to 17). For the
dragon, the left picture shows the original, while the right one was encoded using
6.4bpp. Note that the problem of varying resampling is entirely avoided, although it
this method is still very likely to result in very awkward and expensive GPU 
decompression if one tried so.

• M. Waschbüsch, S. Würmlin, E.C. Lamboray, F. Eberhard, M. Gross, „Progressive 
Compression of point-sampled models“, Eurographics Symposium on Point Based
Graphics, 2004
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An approach that has been around for quite some while is an octree-based encoding
of points. Among the first papers was Rusinkiewitz and Levoy‘s Qsplat approach that
showed remarkable results for its time.

Later on, Botsch et al showed that by storing points in an octree, coherent decoding
is an O(1) process, and that 2bpp suffice to store points. Normals, however, require
significant more bits. The authors proposed a vector quantizer obtained by successive
octahedron refinement – a technique that avoids any codebook storage, but requires
slightly more bits than other, LBG-based approaches. All these approaches are not 
well suited for random access, since the points have to be decoded sequentially, 
starting with the coarsest resolution. Also, large point sets could pose problems if the
data cannot reside in main memory anymore.

• S. Rusinkiewitz, M. Levoy, „QSplat: A multi-resolution point rendering system for
large meshes“, SIGGRAPH 2000, pp. 343-352

• M. Botsch, A. Wiratanaya, L. Kobbelt, „Efficient High Quality Rendering of Point 
Sampled Geometry“, EG Workshop on Rendering, 2002
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Another method to compress point clouds is to find a coherent path (or, as in this
work, a spanning tree) to traverse all points. This allows graph-theoretical formalisms
to be employed – which is nice, because they have been studied for decades. Then, 
successive points along these paths are predicted either constantly or linearly, and
the offset between prediction and actual point position is encoded. Although the
decompression is somewhat expensive and is likely NOT to be decoded by any of
today‘s GPUs efficiently, the method provides a nice theoretical prediction/correction
frame work and achieves good bit rates.

•S. Gumhold, Z. Karni, M. Isenburg, H.-P. Seidel, „Predictive Point-Cloud
Compression“, SIGGRAPH Sketch, 2004
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In a similar style, we presented the Duodecim approach that is exceptionally well 
suited for models exhibiting a major axis, such as statues or CT scans. Again, the key
insight is that data is highly coherent along spatially coherent paths. Unlike previous
work, however, the data is sliced into 2D slabs and points falling into these slabs are
inserted into a closest sphere packing grid. We then first compute a spanning tree of
adjacent occupied cells and transform this tree (or more precisely the forest of such 
spanning trees in case of multiple connected components) into one or more paths. 
Then, these paths are cut into conveniently-sized chunks of about 12 points
(depending on the decoding GPU‘s capabilities). Points along these paths can be
encoded differentially by storing a symbol 1..6 denoting the neighboring cell through
which the path passes next. If we require the path to leave through a different cell
than it entered, we can further reduce the symbols to only 5 choices. Note that this is
no restriction, since we already encoded the entering neighbor. Consequently, we can
encode each point differentially at log_2 (5) bits – except for the first one, which is
plainly encoded using the respective grid cells 2D index.

Although good fidelity is achieved at very low bitrates, we still resample the data –
albeit at a scale comparable to the Nyquist rate of the scan.

• J. Krüger, J. Schneider, R. Westermann, „Duodecim – A Structure for Point Scan 
Compression and Rendering“, EG Symposium on Point-Based Graphics, 2005
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To efficiently slab the data, we perform an out-of-core sorting along the major axis. 
This is a pre-process that simply permutes indices and vertex positions. Hence, it is
lossless with respect to the render-ability and process-ability of the input mesh. The 
sorted data set can thus replace the original data without any second thoughts.

• R. Sedgewick, „Algorithms in C++ Parts 1—4“, 3rd Edition, Addison-Wesley 
Longman, Amsterdam, 1998
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Here are some figures from the paper demonstrating how to convert the spanning
tree into a path, an example of the slice geometry, and the storage layout in textures. 
For a full description, please consult the paper.
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The GPU-based decoder pretty much relies on the driver to provide him with the data
necessary to render the model. This can be afforded, since the entire Digital 
Michelangelo Project (19GB) fit into video memory on modern GPUs (the DMP 
occupies about 500MB in compressed form). On today‘s GPUs, rendering is quite
straightforward, decoding the short runs in parallel and writing decoded positions to
a vertex array. Of course it is even simpler to implement this decoding in the
Geometry Shader, but we cannot whole-heartedly recommend doing so with respect
to performance.

•M. Botsch, L. Kobbelt, „High-Quality Point-Based Rendering on Modern GPUs“, 
Pacific Graphics, pp 335-343, 2003

• J. Krüger, J. Schneider, R. Westermann, „Compression and Rendering of Iso-Surfaces
and Point Sampled Geometry“, The Visual Computer, Vol. 22, No. 8, August 2006
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Here‘s some statistics on bit rates and performance as well as a zoom on the
unfinished Atlas statue. This model is particularly interesting, because:

• It is, unlike Michelangelo‘s other statues, not polished. Consequently, you can
observe the chisel directions and gain some insights into how these statues were
made.

• It is large. 255M points to be precise, occupying roughly 10GB as a ply-file.

• Its surface is quite rough, so you can judge the efficiency and fidelity of your
compression algorithm very well.
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Rendering of Medical Volumes will be presented by Christof Resz-Salama in this
tutorial. I will just very briefly discuss bricking and data management.
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Bricking sounds easy – but this is not always the case! If you want to generate a multi-
res representation for your volumes, there is a plethora of literature ranging from box 
filters, over histogram-based approaches to appearance preserving methods. While
we will not discuss them here, be warned that due to the volume rendering integral 
otherwise reliable techniques to filter data can (and will) fail.
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Assuming that you now generated your multi-res representation using a method of
choice, memory management is easy – with a quirk!

Assume that you have less memory than your data set would naturally require. Now
if you use an LRU paging strategy, you will be constantly paging your entire volume in 
each frame. If, however, you use an MRU strategy, you will effectively partition your
data into a part that is always resident and a part that will always be paged. This is a 
great advantage when compared to paging all your data, although the choice of MRU 
might seem counter-intuitive.
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Gigapixel Images have become quite a hype recently. I attribute this to their amazing
zoom range. On a PC high-resolution display of 2560x1600 (4MPixels), you can zoom 
in about a factor of 30+ (4.5GPixels) before you finally arrive at the true resolution of
the image. By doing so, you will encounter lots and lots of details hidden in these
gigantic images.

But are they different from terrain data? Well, they do not have geometry, but 
otherwise… You can in fact use your favorite terrain engine, look straight down from
atop and render dummy geometry to view them. But this aside, does this data allow
for more efficient methods? Let‘s have a look at that.
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The concept of Gigapixel images was only recently introduced to the graphics
community by Kopf et al. Their paper discusses the tiled acquisition using multiple 
cameras and multiple snapshots. Also, the paper addresses HDR-based rendering and
how to use perspective to generate more immersive images.

As an alternative we would like to point out that there are single shot Gigapixel
images. These are obtained using an analog camera, scanning the analog output. 
These shots are currently limited somewhere around 4GPixels, but they are still 
impressive.

• J. Kopf, M. Uyttendaele, O. Deussen, M. Cohen, „Capturing and Viewing Gigapixel
Images“, ACM Transactions on Graphics, Vol. 26, No. 3, Art.No. 96, 2007

• www.gigapxl.org
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As mentioned, we implement our Gigapixel viewer „on-top“ of our terrain viewer. We
just lock the camera at straight atop, use an orthographic projection and throw away
unnecessary geometry. However, since the camera is locked, you no longer need
anisotropic filters, and you do not generate any overdraw any more. Sweet!

While the working set of textures for the terrain viewer corresponds to roughly
350MB uncompressed texture for 4MPixel view ports due to perspective and
overdraw, for the Gigapixel viewer this is exactly 12MB + mipmaps. Consequently it
does not really hurt to have a texture format from which the GPU cannot
immediately render but which allows a significantly more compact representation of
the data. Realizing this, we utilized a hierarchical vector quantization scheme based
on Gauss / Laplace-Pyramids that uses bilinear-interpolation from coarser levels as a 
predictor and encodes only the difference. This difference is then blocked into 2x2 
pixel groups and encoded using a 12D vector quantizer. At a visual fidelity that is
subjectively hard to distinguish from the original photograph, we can encode typical
images at around 1.5bpp (including overhead for the mip hierarchy!), thereby rivaling
standard jpg compression. Unlike jpg compression, however, we still maintain the
ability to decode the image on the GPU.

48



This involves slight changes to the terrain engine, since we now need to access
parents. Consequently, we fetch them recursively and cache them in video memory. 
This works exceptionally well and requires only minimal bandwidth overhead.

As a side note, by counting the internal nodes vs. the leaf nodes of the quadtree, we
can proove that there exists a pre-fetching strategy that has to load at most 1 
additional tile for any coherent movement. Implementing this strategy, however, 
requires a lot more memory in the worst-case, and consequently we live with
occasional bandwidth peaks. They do not generally endanger smooth movements.
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Some of the remaining challenges are clearly editing, new data types such as multi-
spectral images (due to issues with the compressor) and image operations.

• M. Kazhdan, H. Hoppe, „Streaming multigrid for gradient-domain operations on 
large images“, ACM Transactions on Graphics, Vol. 27, No. 3, Art.No. 21, 2008
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