
Computers & Graphics (2022)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

GPU Accelerated Scalable Parallel Coordinates Plots

Josef Stumpfeggera,∗, Kevin Höhleina, George Craigb, Rüdiger Westermanna

aTechnical University of Munich, Boltzmannstraße 3, Garching, 85748, Germany
bLudwig-Maximilians Universität München, Theresienstr. 37, 80333 München,Germany

A R T I C L E I N F O

Article history:
Received October 19, 2022

Keywords: GPU Scattering, Parallel Co-
ordinates, Ensemble Analysis

A B S T R A C T

Parallel coordinates are a powerful technique to visually analyze multi-parameter
data, i.e., sets of datapoints with potentially many associated parameter values per dat-
apoint. When these sets are large, line rendering becomes a severe performance bottle-
neck, and since many lines fall into the same pixel the numerical precision of the color
buffer is quickly reached. We propose a scalable GPU realization of parallel coordi-
nates building upon 2D pairwise attribute bins, to significantly reduce the number of
lines to be rendered. Our approach comprises a GPU compute pipeline that combines
shader-based scattering with atomic increment operations to efficiently count how often
a line is drawn. These counts are then used to draw all pairwise sub-plots in the parallel
coordinates plot, by analytically calculating the opacity for each count and rendering a
line with end points determined by the 2D coordinates of the bin. In this way, frame-
buffer precision issues that are paramount in classical approaches can be overcome. We
demonstrate the efficiency of the proposed realization for visualizing a weather forecast
ensemble comprising 2.7 billion datapoints, each carrying 7 prognostic floating-point
variables like temperature, precipitation and pressure, plus spatial and simulation input
variables. We compare our pipeline to a rasterization-based approach regarding perfor-
mance, and demonstrate interactive brushing at 4 seconds per frame at full HD viewport
resolution.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction1

Parallel Coordinates Plots (PCPs) are a powerful technique2

to visually analyse large sets of datapoints with multiple asso-3

ciated parameters [2]. While such plots can be realized effi-4

ciently on GPUs for some millions of datapoints, as this num-5

ber goes into the tens or even hundreds of millions, the line6

rendering capabilities of even the strongest GPUs become a se-7

vere bootleneck. For instance, Kumpf et al. [3] demonstrate8

the use of PCPs for the analysis of meteorological ensembles9

and report interactive update rates of roughly 0.5 seconds for10

∗Corresponding author: Tel.: +49 (89) 289 - 19484;
e-mail: ga87tux@mytum.de (Josef Stumpfegger)

2.5 million datapoints with 12 parameters each, with an opti- 11

mized GPU solution. To overcome rendering issues of PCPs, 12

Novotny and Hauser [4] introduce binned parallel coordinates, 13

which use pairwise attribute-scatterplots (i.e., 2D histograms) 14

that are precomputed on the CPU, to count how many data- 15

points draw the same line. For the analysis of the Hurricane 16

Isabel dataset, Blaas et al. [5] build up on this work and in- 17

clude a data compression layer to support efficient disk-to-CPU 18

streaming. 19

Others have proposed hierarchical aggregation in combina- 20

tion with precomputed and focus+context interactions to de- 21

crease the number of rendered primitives and reduce visual clut- 22

ter due to many overlapping lines [6, 7]. While it has been 23

shown that such approaches can achieve high performance on 24

parallel computing systems, they result in a significant increase 25

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag


2 Preprint Submitted for review / Computers & Graphics (2022)

Fig. 1. Parallel Coordinates Plot (PCP) of one time step of a meteorological Grand Ensemble [1] comprising 2.7 billion datapoints with 11 parameters. The
PCP is generated in roughly four seconds on a desktop PC with a single mid-range GPU. Left: All datapoints render their polylines with very low opacity
of 10−7. Lines drawn by less datapoints than a selected threshold are rendered with constant color as background. Right: Two ensemble members are
emphasized by drawing their polylines in red and blue on top of all other polylines (rendered in white with medium opacity of 10−4).

of the required memory due the increase of the number of states1

of the visualization. As reported, even on two execution nodes2

with 12 cores and 31GB memory each, multiple seconds are re-3

quired to perform interactions such as selection and refinement4

for 200 million datapoints.5

In our work, we consider a so-called Grand Ensemble com-6

prising roughly 2.7 billion datapoints, each storing seven prog-7

nostic floating-point parameters like temperature, precipitation8

and pressure, along with three spatial variables and an addi-9

tional 180 state simulation input variable. For a single time10

step, this amounts to 56 GB of memory. Grand Ensembles are11

becoming an invaluable tool for assessing and quantifying the12

uncertainty in numerical simulations. An ensemble of simu-13

lations, for example weather forecasts, include members that14

sample different sources of uncertainty, which could include15

different initial conditions, different physical assumptions, and16

even different numerical approximations. A Grand Ensemble17

collects the data produced by a number of component ensem-18

bles, which have often been created independently and with dif-19

ferent applications in mind, and treats it as a single dataset that20

can be analysed as a whole.21

As of today, beyond offline statistical approaches there is no22

support for an interactive explorative analysis of a Grand En-23

semble on desktop PCs. When PCPs are generated in the classi-24

cal way, in our scenario about 2.7 x 10 billion lines (one line for25

each of the 10 variable pairs corresponding to the selected or-26

dering of the PCP axes) need to be rendered in every frame. No-27

tably, this takes multiple minutes on a high-range GPU. Render-28

ing that many lines causes another problem that is related to the29

precision of the color buffer. Since lines falling into the same30

pixel are blended using either additive blending or α-blending,31

the numerical precision of the framebuffer is quickly reached32

and information is lost.33

Contribution: We propose a scalable GPU realization of34

PCPs to enable an interactive visual analysis of large multi-35

parameter datasets on high-resolution displays. Scalability in36

the number of datapoints is achieved via binned parallel coor-37

dinates [4] that grow with the viewport resolution but not with38

the number of datapoints. This viewport-dependent data struc-39

ture is generated instantly on the GPU and does not require any40

pre-baked hierarchical representation in which datapoints are41

aggregated. It encodes all possible visible lines in parallel coor-42

dinates by the vertical pixel coordinates of their end points on43

adjacent parameter axes. Then, computing the opacity of visi-44

ble lines reduces to counting how often a coordinate pair occurs45

in all datapoints.46

For building the data structure we propose an approach that is 47

specifically tailored to the capabilities of recent mid- and high- 48

range GPUs. It exploits the compute capabilities of GPUs to 49

generate the data structure via parallel scatter and atomic incre- 50

ment operations. Scattering is performed into multiple render 51

targets, i.e. one for each adjacent parameter pair in the PCP. 52

The resolution of the render targets depends only on the height 53

of the parameter axes in the pixel raster. For rendering the fi- 54

nal lines between the PCP axes, a GPU line renderer reads the 55

information from the render targets and converts it into a set of 56

lines in a geometry shader. 57

On a single node CPU equipped with an Nvidia RTX 3090 58

GPU with 24 GB on-chip memory, the PCP of the Grand En- 59

semble can be generated in roughly four seconds on a 1920 × 60

1080 viewport, including streaming parts of the data from CPU 61

RAM. If not all datapoints can be stored in CPU RAM, they 62

need to be streamed from disk. To reduce the bandwidth re- 63

quirements in such a situation, we provide the option to com- 64

press the parameter fields in a preprocess and generate the PCP 65

from the compressed representation on the GPU. To distinguish 66

between different members in the Grand Ensemble, the dat- 67

apoints of selected members are binned separately, and their 68

lines can then be rendered in different colors and specific orders 69

to emphasize the ensemble composition. To analyze certain pa- 70

rameter intervals, the user can disable subsets of datapoints by 71

brushing on the parameter axes. 72

Our specific technical contributions are: 73

• A GPU compute shader-based approach that instantly gen- 74

erates pairwise attribute-scatterplots using parallel scatter 75

and atomic increment operations. 76

• The combination of pairwise attribute-scatterplots with an- 77

alytical blending to accurately handle transparency. 78

• The realization of priority rendering via atomic minimum 79

operations, which avoids sorting the datapoints. 80

Our PCP realization is implemented using the Vulkan Graph- 81

ics API. The code is made publicly available under the Apache 82

2.0 license, and published at [8].Since we cannot make the 83

Grand Ensemble dataset publicly available, a synthetic dataset 84

at the same size is provided. The current program has an im- 85

porter for data in network common data format (NetCDF), as 86

commonly used in atmospheric science workflows, as well as 87

for comma separated file formats (CSV). 88



Preprint Submitted for review / Computers & Graphics (2022) 3

2. Related Work1

Multi-variate ensemble visualization. A number of different2

mapping techniques exist, which target the visualization of3

multi-variate data, including axis-based methods, glyph encod-4

ings, as well as pixel-oriented and hierarchical approaches [9].5

Scientific ensemble data, such as weather forecast ensembles,6

possess additional complexity due to the presence of spatial and7

temporal dependence in the data, as well as the uncertainty as8

conveyed in the ensemble dimension [10, 11].9

Wang et al. [12], Kumpf et al. [13] and Kumpf et al. [3]10

have shown that parallel coordinate plots (PCPs) are a promis-11

ing tool for the comparison of multi-parameter distributions12

within a single and between different ensemble members. In13

PCPs [14, 2], data dimensions are visualized as linear coor-14

dinate axes, which are arranged parallel to one another, and15

datapoints are represented as coherent lines crossing these16

axes. PCPs offer simple interaction possibilities for data se-17

lection, such as brushing [15], as well as good scalability to18

high data dimensions, which is an advantage over alternative19

visualization methods, such as scatter-plot matrices or radar20

charts [16, 17]. With a focus on multi-parameter ensemble21

visualization, Kumpf et al. [3] present an optimized GPU-22

based visual analysis tool, which allows users to explore spatio-23

temporal ensemble datasets at interactive frame rates and with24

direct linking to secondary visualization tools such as direct25

volume rendering or violin charts for statistical distribution vi-26

sualization.27

Scalable parallel coordinate plots. Besides methods to im-28

prove the information content and visual quality of PCPs, such29

as optimal axis layouting, e.g. [18, 19, 20, 21, 22], curved poly-30

lines, e.g. [23, 24, 25, 26, 27, 28], priority rendering [29], or31

slope-adaptive line rendering [30], another research direction32

has been towards scalable PCPs that can deal with large num-33

bers of datapoints.34

Most of these methods rely on rendering aggregated data35

representations instead of the raw data itself. For a review of36

methods, see Heinrich and Weiskopf [31]. Moustafa [32] de-37

scribe scalability methods which rely on computing and visu-38

alizing summary statistics, which can be rendered faster and39

with less visual clutter than the raw data. Palmas et al. [33]40

cluster datapoints axis-wise and visualize connections between41

clusters through polygonal strips to reduce overplotting. Mc-42

Donnell and Mueller [25] combine edge bundling and cluster-43

ing of datapoints and render aggregate data representations with44

opacity and shading effects to distinguish between different ag-45

gregates. Alternative bundling techniques have been evaluated46

by Heinrich et al. [34]. For large sets of multi-parameter points,47

Fua et al. [35] describe cluster-based hierarchical extensions of48

PCPs, which help to identify structure in large data more eas-49

ily. Elmqvist and Fekete [36] discuss hierarchical aggregation50

approaches for information visualization, with applications to51

PCPs. More recently, Richer et al. [7] proposed a hierarchi-52

cal aggregation framework, which enables the visual analysis53

of large datasets on distributed computer systems, and Sansen54

et al. [6] discuss the practical implementation of such systems55

on big data hardware.56

To optimize rendering times, rather than visual display, 57

Novotny and Hauser [4] and Blaas et al. [5] propose binning 58

continuous data parameters and precomputation of 2D joint his- 59

tograms for pairs of data parameters. PCPs are then rendered 60

from the 2D joint histograms. Rubel et al. [37] propose an 61

adaptive binning approach, and Cui et al. [38] use binning to 62

create a web-based parallel-coordinates framework for visual 63

data analysis. In this paper, we build upon binning and show 64

that even for large datasets the joint histograms that are required 65

for PCP rendering can be generated at interactive rates. Simi- 66

lar in spirit to previous work on the efficient computation of 67

image histograms Scheuermann and Hensley [39], we employ 68

parallelism and high memory bandwidth to scatter large sets of 69

datapoints into GPU render targets. In contrast to Cui et al. [38], 70

we demonstrate interactive PCP visualization while not relying 71

on data abstractions, which might potentially discard important 72

information in the data. 73

3. Method Overview and Data 74

The data is read from a collection of data files, in which the 75

ensembles Ei are stored in succession as a sequence of their 76

members. For each Ei, the parameter values of each member 77

are read in the order of the datapoints in the input file. The 78

parameters of each member are stored normalized in 1D half- 79

precision floating-point arrays in CPU memory. Since these 80

fields become large, they are internally partitioned into smaller 81

blocks of 226 entries each (Figure 2, data pre-processing). For 82

attributes that are defined on a subset of the dimensions of the 83

dataset (i.e., a 2D field in a 3D dataset), the attribute domain is 84

extruded and values are duplicated to retrieve attribute arrays of 85

equal size. 86

Each block is uploaded to the GPU, where it is stored in a 87

storage buffer. If not all blocks fit into the available GPU mem- 88

ory, they are stored on the CPU when sufficient CPU RAM is 89

available. If this is not the case, the data is first compressed 90

(Figure 2, compression) using the publicly available CUDA 91

compression library by Treib et al. [40], which we have re- 92

implemented to run with the Vulkan API. It provides lossy 93

GPU-based compression using a combination of the discrete 94

wavelet transform, coefficient quantization, run-length encond- 95

ing, and Huffman coding. GPU decompression is supported 96

such that either the compressed data can be stored completely 97

in main memory and streamed to the GPU to avoid expensive 98

load operations from system drives or the data can be streamed 99

efficiently from system drives to avoid the file I/O bottleneck. 100

section 5 shows the timings for differently sized datasets and 101

different transfer operations. We have slightly modified the 102

compression scheme to avoid splitting the blocks into smaller 103

sub-blocks so that memory address indirections introduced by 104

the use of a block table are avoided. We typically choose a com- 105

pression ratio of roughly 1:10, resulting in a compression error 106

below 0.5% of the value range of each parameter. We demon- 107

strate in section 5 the visual artefacts that can be introduced by a 108

lossy compression scheme. Upon decoding a block, the data is 109

stored in a storage buffer in local GPU memory and handled the 110

same as uncompressed data by the following pipeline stages. 111



4 Preprint Submitted for review / Computers & Graphics (2022)
st

o
ra

ge

𝑃1

𝑃𝐾

𝐸1

𝑃1

𝑃𝐾

𝐸𝑚

compression

data pre-processing

compressed data pool

𝑃𝑖

𝑃𝑗

𝑃𝑗

𝑃𝑙

𝑃𝑚

𝑃𝑛

thread blocks

𝑃𝑖 𝑃𝑗 𝑃𝑚 𝑃𝑛𝑃𝑙
raw blocks

data point activations

Fig. 2. Method overview. Green and grey backgrounds indicate GPU and CPU execution, respectively. Orange background indicates optional stages and
data representations. In a pre-process, the parameter fields are read and structured, optionally compressed, and uploaded to the GPU. On the GPU,
the data is read (requiring decompression if stored compressed), and scattered in a compute shader to multiple render targets to count the number of
datapoints drawing the same line. The GPU line renderer interprets and renders the content of the generated buffers as lines. For the sake of clarity, we
illustrate the case where all datapoints are scattered into the same set of render targets, regardless of the ensemble they come from.

Assuming a set of K data parameters, plots must be ren-1

dered for K − 1 pairs of adjacent coordinate axes. For each2

axis pair, multiple 2D render targets (i.e. storage buffers) are3

allocated and used to count the number of lines that are drawn4

between adjacent axes. Counting is realized on the GPU by5

letting a compute shader write (i.e., scatter) into the render tar-6

gets using atomic increment counters (Figure 2, scatter shader).7

We analyse in detail this approach and demonstrate that it can8

exploit GPU parallelism and high memory bandwidth to effi-9

ciently count the number of datapoints – within the currently10

selected parameter intervals – drawing the same line. In princi-11

ple, the scattering operation can also be realized via point ren-12

dering using the GPU rasterizer. We briefly review and analyze13

this alternative, yet decided to not follow it due to its lower per-14

formance compared to compute shader-based scattering.15

Eventually, a GPU line renderer (Figure 2, line renderer)16

reads the information from the render targets and renders one17

line for every non-empty entry. The value in each entry is used18

to adjust a line’s saturation or compute its opacity analytically.19

If the lines of different Ei should be distinguished in the final20

PCP, scattering and rendering is performed for these Ei consec-21

utively, with their own user-defined color and opacity.22

4. Scalable PCPs23

The proposed PCP realization builds up on the observation24

that the number of visually distinguishable lines is determined25

by the pixel resolution available to display the coordinate axes,26

rather than the number of datapoints (see Figure 3). Assuming27

that lines between adjacent parameter axes are rendered onto28

a screen region with resolution Tu × Tv pixels, where Tu rep-29

resents the height in pixels of the coordinate axes and Tv is30

the horizontal spacing in pixels between adjacent axes, then a31

pair of lines can hardly be distinguished visually if their end32

points on either axis fall into the same pixel. Thus, for large33

datasets many datapoints draw very similar lines, and the max-34

imum number of distinguishable lines is roughly equal to T 2
u .35

This observation suggests that a viewport resolution-dependent36

discretization and binning of the datapoints into Tu bins along37

each coordinate axis can reduce the maximum number of lines 38

to be rendered to T 2
u at limited loss of visual quality. Even 39

though rendering lines with end point positions on sub-pixel 40

scale affect the rasterization marginally, we show in section 5 41

that the visual difference between classical and binned PCPs 42

is negligible. To let the lines’ appearance, e.g., its opacity, re- 43

flect the number of datapoints drawing each line, this number 44

has to be counted at run time. In the following, we describe 45

how to efficiently realize this counting using 2D render targets 46

(i.e., storage buffers on the GPU) of resolution Tu × Tu, which 47

accumulate in element (i, j) the number of datapoints drawing 48

a line between pixel bins i and j of adjacent coordinate axes. 49

To distinguish between different ensemble members, separate 50

counters are generated for each of them. Then, the line sets can 51

be rendered in member-specific colors, or in a user-set order 52

that shows the lines of a selected member on top of all others. 53

4.1. Compute Shader-based Scattering 54

To efficiently count the number of datapoints drawing the 55

same line, we utilize the massive data parallelism and I/O band- 56

width on recent GPUs to simultaneously write many values to 57

arbitrary target positions in multiple bound render targets. Re- 58

cently, Schütz et al. [41] have proposed a compute shader-based 59

approach for rendering large sets of 3D spatial points, demon- 60

strating the extreme performance that can be achieved when 61

rendering pixel-size point primitives. Inspired by the reported 62

results, we have implemented a compute shader-based scatter- 63

ing operation on the GPU. Multiple so-called work groups are 64

spawned, which are internally mapped to the GPUs compute 65

units and can access work group-local memory in a fast way. 66

The compute shader reads all parameter values of its cur- 67

rently assigned datapoint from the parameter buffers and first 68

evaluates the datapoint’s activation, i.e., it exits if at least one 69

parameter is not within the currently selected (brushed) parame- 70

ter intervals. Then, for each of the K−1 pairs of coordinate axes 71

the vertical pixel position of the first and the second parameter 72

are used as target addresses into the currently bound render tar- 73

get. Note that the compute shader can write to multiple render 74

targets in one single pass, so that the parameter values need to 75



Preprint Submitted for review / Computers & Graphics (2022) 5

Fig. 3. Line representation. Left: Parallel coordinates axes for parameters
Pi and P j are shown in the pixel raster by blue pixels. Two lines (black and
gray pixels) are drawn to represent two pairs of values in Pi and P j, with
the values mapped to pixels seven (15) on the axis of Pi and pixels 0 (seven)
on the axis of P j. Right: The two lines in the corresponding (Pi, P j) raster.

be read only once and the activation is computed instantly in the1

shader. The operation for the buffer writeout is set to an atomic2

increment, which needs to be executed for every datapoint and3

render target this point is written to.4

Due to the many atomic increment operations, we cannot5

achieve the scatter performance reported by Schütz et al. [41].6

When rendering 3D point sets, the number of atomic operations7

can be reduced significantly by early depth-tests in the compute8

shader, i.e., by testing the depth value in the render target and9

exiting when the render target already holds a lower value. In10

our application, the atomic operation needs to be performed for11

every value that is scattered into a render target.12

4.2. Line Renderer13

On the GPU, we employ the functionality of the geometry14

shader stage to spawn a line from each input vertex. Per ren-15

der target a draw call with as many vertices as entries is issued.16

From its position in the render target, every vertex can com-17

pute the position on both PCP axes for which the current render18

target holds the 2D histogram. The vertex shader – in the i-th19

render pass – reads for each vertex the value of the correspond-20

ing entry from the i-th render target and forwards the value to21

the geometry shader. Processing is stopped if this value is zero,22

otherwise, a second vertex is spawned and the positions of both23

vertices in the viewport to which the final PCP is rendered are24

computed (see Figure 4). The geometry shader then issues a25

line primitive using the two transformed vertex coordinates.26

When reading a line count of n, the accumulated opacity of n27

lines is first computed analytically in the shader program as28

αn = 1 − (1 − αL)n (1)29

with αL being the opacity of a single line. Equation 1 can be de-30

rived inductively via iterative application of multiplicative alpha31

blending. Finally, a single line is rendered with color CL · αn,32

where CL is the selected line color for the current render target.33

Thus, at most T 2
u lines are blended together in the framebuffer,34

which significantly reduces overdraw and framebuffer precision35

issues arising from this. As another option, the line renderer can36

consider the values stored in the render targets to control the37

saturation of each line, i.e., to let the saturation decrease with38

increasing line count.39

𝑃𝑖 𝑃𝑗 𝑃𝑚 𝑃𝑛𝑃𝑙

𝑃𝑖

𝑃𝑗

𝑃𝑗

𝑃𝑙

𝑃𝑚

𝑃𝑛

d
raw

call1

d
raw

callK
-1

d
raw

call2

render targets

geometry shader

[𝑃𝑥, 𝑃𝑦] ∶ [𝑃
𝑖 , 𝑃𝑦][𝑃

𝑗 , 𝑃𝑥]

vertex array

[𝑃𝑥, 𝑃𝑦] ∶ [𝑃
𝑗 , 𝑃𝑦][𝑃

𝑙, 𝑃𝑥]

[𝑃𝑥, 𝑃𝑦] ∶ [𝑃
𝑚 , 𝑃𝑦][𝑃

𝑛, 𝑃𝑥]

vertex shader

Fig. 4. GPU line renderer. A vertex buffer is rendered for every render
target, and the geometry shader spawns a line for every non-empty entry.
Pi to Pn are the viewport x-coordinates of the parameter axes.

4.3. Rasterization-based Scattering 40

As an alternative to compute shader-based scattering, we 41

have also implemented a rasterization-based approach. Simi- 42

lar in spirit to early approaches for computing histograms on 43

the GPU [39], the implementation utilizes the point-rendering 44

capabilities on the GPU to render many points in parallel at ar- 45

bitrary target positions in the bound render targets. Therefore, 46

we use a single vertex buffer that is stored in GPU memory and 47

can be re-rendered in multiple rendering passes. 48

Initially, a vertex array is generated, which has the same size 49

as the blocks into which the data has been partitioned (i.e., 226
50

entries). When using point rendering to realize the scattering 51

operation, an additional bitfield – the datapoint activations – is 52

required to indicate for every datapoint whether it is currently 53

selected, i.e., whether all of its parameter values lie within the 54

currently selected intervals. The bitfield is internally repre- 55

sented as an array of 32 bit uints with one bit per datapoint and 56

is reused for each block of datapoints to keep the memory re- 57

quirements low. The reason for computing and storing the acti- 58

vations in each frame is that the pixel shader in the rasterization- 59

based approach cannot scatter into multiple render targets at 60

different positions simultaneously. Thus, scattering needs to be 61

performed consecutively into the render targets, which would 62

require to load all attribute values each time to evaluate the ac- 63

tivation. By using the bitfield, the evaluation needs to be per- 64

formed only once per datapoint, and the pixel shader needs to 65

read only one single 32 bit element. 66

For a single pair of adjacent parameters in the PCP, the ver- 67

tex array is rendered as many times as required to render one 68

point primitive for every datapoint. The vertex shader first reads 69

the point’s activation and performs a bit-wise AND operation 70

to obtain the value for the current vertex. Only if the bit is 71

set, the shader proceeds by reading the parameter values of the 72

currently rendered datapoint. The parameter values are then 73

mapped to the discrete set of pixels that are used to represent 74

the vertical parameter axes, and for the current pair of coordi- 75

nate axes the pixel position of the first and the second parameter 76

are used as target addresses into the currently bound render tar- 77

get. The state of the output merger is set so that an atomic ad- 78

dition operation is performed, and the output from the fragment 79



6 Preprint Submitted for review / Computers & Graphics (2022)

shader equals 1 to emulate the atomic increment operation.1

As reported by Schütz et al. [41] in the context of point cloud2

rendering, where every point represents an object sample in 3D3

space, rasterization-based point rendering can be accelerated4

significantly if the point set is laid out in a GPU friendly or-5

der. If the point set is laid out along a space-filling curve so6

that points close to each other in space are projected into pixels7

lying close together, distributed framebuffer writes and cache8

misses thereof can be reduced considerably. Furthermore, by9

splitting the sorted sequence into blocks and shuffling the pro-10

cessing order of these blocks, even lower rendering times are11

achieved due to a more uniform utilization of the GPUs view-12

port tile units.13

In our application, however, these optimizations are problem-14

atic since the placement of a point within the render target de-15

pends on the parameter values. Following space-filling curves16

would thus be required in all visible 2D parameter sub-spaces17

in the PCP. Thus, multiple ordered sequences, and also one acti-18

vation field per sequence, need to be stored, which significantly19

increases the memory requirement. Furthermore, if the axis or-20

dering is changed, the whole layout for the affected parameter21

pairs has to be recomputed. Due to these reasons, we could22

not consider these otherwise effective improvements, resulting23

in about 10x lower performance of the rasterization-based ap-24

proach compared to the compute shader-based approach.25

4.4. Priority Rendering26

Priority polyline rendering [29, 42] is an method to en-27

hance the perception of proximity between datapoints in dense28

datasets. Upon selecting the value of a certain parameter, called29

the priority center, the datapoints are sorted with respect to de-30

creasing distance of their value to the selected one. The poly-31

lines are then rendered in this order, so that lines belonging to32

datapoints with parameter values closer to the selection are ren-33

dered on top of those with a larger distance. The distance can34

be further mapped to color to emphasize those datapoints with35

a closer value.36

In our approach, priority polyline rendering can be enabled37

with only a slight change in the scattering operation that is used38

to generate the render targets. Instead of an atomic increment39

operation, the write operation is performed with the distance to40

the selected parameter value as argument, and an atomic min-41

imum operation is selected for the render targets. In this way,42

all render targets – regardless of which parameter pair they rep-43

resent – always keep track of the minimum distance from the44

selected priority center. I.e., a value in a render target indicates45

that the corresponding line should be rendered, and states for46

all datapoints whose polyline contains this line what the mini-47

mum distance of any of these datapoints to the priority center48

is. For rendering the lines, the elements in the 2D render targets49

are sorted such that lines with a low distance are drawn last and50

appear in front of all other lines. Notably, this approach by-51

passes the need for exhaustive sorting operations on the full set52

of datapoints, since sorting is required only for the significantly53

smaller set of elements in the render targets.54

While this approach does generate a correct priority plot for55

fully opaque lines, only information about the closest distances56

Fig. 5. Iso-surfaces to a value equal to 7.5 × 107 in NCCLOUD in two dif-
ferent members of the Grand Ensemble including a parallel coordinates
visualization.

and no underlying distribution of the distances of all datapoints 57

are stored and thus when reducing the opacity the resulting plot 58

diverges from true priority rendering. 59

5. Results and Evaluation 60

In the following, we first describe the dataset that was used 61

to test the performance and scalability of our approach. We 62

then provide a quantitative performance analysis of the stages 63

of the proposed PCP realization, and continue with an illustra- 64

tion of the visual quality of the PCPs generated with the pro- 65

posed methods, including the supplementary visualization op- 66

tions that have been discussed. All experiments have been car- 67

ried out on a single node desktop PC with an Intel Xeon CPU 68

at 3.60 GHz with 64 GB RAM, equipped with an Nvidia 3090 69

GPU with 24 GB on-chip memory. 70

5.1. Dataset 71

For the evaluation, we use a Grand Ensemble dataset that was 72

produced by Matsunobu et al. [1] to study the impact of un- 73

certainty in cloud microphysics models on convective weather 74

forecasts. In their original study, the authors examine the effect 75

of two microphysical model parameters on the uncertainty that 76

is observed in ensemble simulations. The parameters are called 77

CCN (density of cloud condensation nuclei) and NU (shape pa- 78

rameter of a Gamma distribution, describing the size distribu- 79

tion of cloud water droplets). For both input parameters three 80

possible values are considered, and ensembles are generated for 81

all possible pairs of input values. The dataset thus comprises 82

a total of nine different simulation ensembles, with 20 mem- 83

bers each. The difference between members within each sub- 84

ensemble results from varying the boundary conditions (BC) 85

used for the simulation. Each of the 180 ensemble members 86

contains time-variate volumetric simulation output for 40 prog- 87

nostic variables over a rectangular domain in central Europe, 88

from which we select temperature, pressure, specific humid- 89

ity, cloud density, total precipitation and 3D wind components 90

for the analysis. The simulation data is stored at time steps 91

of one hour on a (716 × 651)-grid with horizontal resolution 92

of 2 km and 65 levels in height. In the current work we con- 93

sider only one single time step including 33 horizontal levels 94

from the ensemble, which amounts to 2.7 billion datapoints and 95

56 GB of memory. In addition to the seven prognostic variables, 96



Preprint Submitted for review / Computers & Graphics (2022) 7

each datapoint is assigned additional descriptor variables, pro-1

viding information about its horizontal (longitude and latitude)2

and vertical location (level), as well as the index of the ensem-3

ble member it belongs to. In Figure 5, the 3D distribution of4

the particle density parameter NCCLOUD is illustrated via iso-5

surface renderings for two different ensemble members. Differ-6

ences between the members, as well as a clustering of regions7

with high NCCLOUDS along the latitude dimension are clearly8

visible. To validate the accuracy of the proposed method for9

a dataset with smaller size, we use the cars dataset with seven10

attributes and 392 datapoints [43].11

5.2. Performance Evaluation12

Reading the data from disk and subdividing each set of pa-13

rameter fields into smaller blocks takes roughly 30 minutes. On14

the CPU, each block is optionally compressed using cudaCom-15

press. This requires additional 15 minutes for the whole en-16

semble and reduces the memory requirement from 56 GB to17

5.6 GB, so that even multiple time steps can be stored on the18

GPU. Streaming one compressed time step from the CPU to the19

GPU takes below one second, yet decoding the ensemble on20

the GPU, where a decompression throughput of approximately21

5 GB/sec is achieved, requires about 10 seconds. Since upload-22

ing directly from RAM via PCI-e x16 4.0 yields a throughput23

of roughly 15 GB/sec on our hardware, streaming the uncom-24

pressed data is preferable in terms of speed and quality. How-25

ever, when the data needs to be streamed from disk, typically26

not more than 1 GB/sec sustained bandwidth can be expected,27

even on recent SSD technologies. In such scenarios, compres-28

sion becomes a useful option.29

For different numbers of datapoints and vertical viewport res-30

olutions, Figure 6 shows the timings for scattering (i.e. gener-31

ating the line counts in the render targets) and line rendering.32

All times are measured under the assumption that the uncom-33

pressed parameter fields are available in GPU memory.34

As can be seen, the time required by the final line renderer35

varies only slightly and, in particular, is negligible compared to36

the time consumption of the scatter shader. Given a pixel reso-37

lution of Tu×Tv for the rendering of lines between two adjacent38

parameter axes, at most Tu × Tu lines need to be rendered for39

this parameter pair. Even when Tu equals 210 and all lines are40

rendered, line rendering using x2 supersampling requires only41

about 100 milliseconds.42

One can see that a full PCP update for the Grand Ensemble at43

a vertical resolution of up to 2000 pixels can be accomplished44

in slightly less than one second when all data can be stored45

in GPU memory. Beyond this number, interactivity degrades46

linearly with the number of datapoints. Since on our GPU tar-47

get architecture, however, only approximately one billion dat-48

apoints can be stored uncompressed in GPU memory, in every49

frame we stream the entire dataset from the CPU to GPU mem-50

ory. This requires about 3 seconds via PCI-e4 X16, so that an51

overall frame rate of roughly 4 seconds per frame is achieved.52

When using priority rendering, once the scattering operation53

has been performed, the elements in the generated 2D render54

targets need to be sorted to draw the corresponding lines in the55

order of decreasing distance to the selected parameter value. In56

.5 1 2 4 8 16
Amount of data points x109

0

1

2

3

4

5

Ti
m

e 
in

 se
co

nd
s

50
0

50
0 50

0 50
0

50
0

50
0

10
00

10
00 10

00 10
00

10
00

10
00

20
00 20
00 20

00 20
00

20
00

20
00Counting

Rendering

Fig. 6. Timing statistics for scalable PCPs, using different numbers of dat-
apoints with 11 parameters each, and different resolutions of the viewport
into which lines are rendered. Blue sub-bar: the time to scatter all data-
points into the render targets. Red sub-bar: the time to render all lines. It
is assumed that all data is available uncompressed in GPU memory.

O
rig

in
al

 P
C

P
S

ca
la

bl
e 

P
C

P

Fig. 7. Comparison of the standard PCP with one polyline rendered for
each datapoint (top) and our proposed approach (bottom), using 30 million
datapoints from the Grand Ensemble dataset (left) and a smaller dataset
comprising 392 cars with seven attributes [43] (right). Line opacity is set
to 10−5 (left) and 1 (right).

our current implementation, this is realized by downloading the 57

render targets to the CPU, sorting the elements, and issuing a 58

vertex buffer with the sorted sequence of lines to the GPU for 59

rendering. The extra time that is required for downloading and 60

sorting is about 380 milliseconds for an axis resolution of 1000 61

pixels and 11 attributes (i.e., ten 2D render targets). Notably, 62

when priority rendering is selected, scattering is even faster than 63

scattering using atomic increment operations, as early out tests 64

regarding the current values in the render targets can signifi- 65

cantly reduce the overall number of atomic operations that need 66

to be performed. 67

5.3. Qualitative Analysis 68

First, we demonstrate that the proposed PCP realization pro- 69

duces the same results as the conventional approach where all 70

polylines are rendered consecutively. In Figure 7, datasets are 71

rendered once with one polyline per datapoint, and once with 72

the proposed binning approach. Both variants use the same line 73

opacities. We use two different datasets with reduced number 74

of datapoints to effectively reveal differences. While for the 75

Grand Ensemble dataset the standard approach requires 32 bits 76

per channel framebuffer precision to correctly blend the lines, 77

16 bits per channel are sufficient for our approach. Even for the 78

smaller dataset with only NN datapoints, visual differences can 79

hardly be perceived. 80

In Figure 8, we further motivate our approach by demon- 81

strating that even for large datasets subsampling can remove 82



8 Preprint Submitted for review / Computers & Graphics (2022)
su
bs
am
pl
ed

or
ig
in
al

Fig. 8. Loss of outliers due to subsampling. Top: one ensemble of the
Grand Ensemble dataset. Bottom: subsampling with a sampling rate of
1:100 is applied. Left: all datapoints are shown. Right: datapoints are
thinned out via the selection of parameter sub-interval.

O
rig

in
al

 P
C

P
S

ca
la

bl
e 

P
C

P

Fig. 9. Precision issues of standard PCP generation for 2.7 billion data-
points with a 16 bit framebuffer. Top: Standard PCP where one polyline is
rendered for every datapoint. Bottom: Result of our new approach. Ren-
dering times are 30 seconds (top) and one second (bottom)

important information such as outliers. As can be seen, already1

a moderate subsampling rate of 1:100 causes loss of outlying2

datapoints. Furthermore, when the subsampled data is explored3

via parameter brushing, the selected sub-intervals can become4

so sparse that a meaningful visual analysis becomes impossi-5

ble.6

For large numbers of datapoints, numerical inaccuracies due7

to insufficient framebuffer precision start to affect the quality of8

conventional PCPs (see Figure 9). When using a 16 bit frame-9

buffer and rendering all 2.7 billion lines of the Grand Ensemble,10

the numerical precision is quickly reached and information is11

lost, i.e., the PCP only gets darker when reducing the line opac-12

ity. Due to analytical alpha blending and a significantly reduced13

number of rendered lines, the scalable PCP realization shows no14

artifacts when reducing the opacity and can clearly reveal the15

major structures contained in the data. When rendering all 2.716

billion lines into a 32 bit framebuffer, visual artifacts disappear17

in the conventional PCP, but the rendering time is nearly tripled;18

it increases from 500 seconds to 1300 seconds for a 2000 pix-19

els wide and 450 pixels high PCP, and rendering lines with one20

sample per pixel. In contrast, our approach renders the PCP in21

the same size and quality in less than one second.22

Figure 11 demonstrates the effect of lossy data compression23

on PCP accuracy, by comparing the quality of PCPs for differ-24

ent compression rates. Lossy compression is applied to each25

attribute separately, with compression ratio of roughly 5:1 and26

10:1. The used compression scheme first transforms the origi-27

nal data into a wavelet representation to separate low-frequency28

and high-frequency signal components, and then performs a29

al
ph

a 
= 

1
al

ph
a 

= 
10

⁴⁻
al

ph
a 

= 
10

⁷⁻

Fig. 10. Interactive opacity reduction reveals the major trends in certain
multi-parameter combinations in the Grand Ensemble comprising 2.7 bil-
lion datapoints.

quantization of the resulting wavelet coefficients. To achieve 30

higher compression rates, larger quantization steps are used, 31

which directly affects the accuracy of the PCP. While a com- 32

pression ratio of 5:1 shows no noticeable differences, the quan- 33

tization of the wavelet coefficients introduces clearly visible 34

artefacts when the ratio is increased to 10:1. Even though the 35

compression error on the data level is low, i.e., a fairly high 36

PSNR of 39 dB with a maximum point-wise error below 5% of 37

the value domains, line end points can fall into false pixels due 38

to the quantization. Depending on the height in pixels of the 39

parameter axes, the quantized pixel positions can be multiple 40

pixels apart from the correct positions. On the other hand, since 41

the major structures in the data are preserved, we see lossy com- 42

pression as a useful option to quickly obtain a first overview of 43

the data in scenarios where the original data cannot be stored 44

on the CPU. 45

5.4. Use Case 46

Figure 10 illustrates how interactive opacity control in scal- 47

able PCPs can help to uncover the major trends and reveal lo- 48

cal maxima in the data distribution of the Grand Ensemble. 49

From top to bottom, all polylines of the Grand Ensemble are 50

blended with decreasing opacity for each line. With lower opac- 51

ity, only those lines drawn by many datapoints survive in the 52

final plot, demonstrating both the frequency of occurrence of 53

certain parameter combinations and suggesting prominent cor- 54

relation patterns between different parameters. An example for 55

the latter is seen in the subplot pressure (pres) vs. temperature 56

(t), where the majority of lines are parallel to one another, indi- 57

cating a positive linear correlation between the parameters. 58

In the following, we demonstrate the use of the scalable PCP 59

to analyse different members of the Grand Ensemble. Two ex- 60

emplary ensemble members are selected by brushing along the 61

right-most axis of the PCP. The datapoints of the selected mem- 62

bers are rendered in red and blue, respectively, with the red lines 63

on top of the blue lines. The same opacity value is used to allow 64



Preprint Submitted for review / Computers & Graphics (2022) 9
O

rig
in

al
 d

at
a

C
om

p 
1:

5.
2

C
om

p 
1:

10
.4

Fig. 11. Influence of compression rate on quality. From top to bottom:
PCP using the original parameter values, and using the lossy compressed
parameter values with a compression ratio of 5:1 and 10:1. All plots where
created with a vertical pixel resolution of 1000 pixels. Due to compression
errors, parameter values are discretized into false pixels along the param-
eter axes.

for a better comparison of the number of datapoints in the ap-1

pearing trends. Contextual information is provided by render-2

ing lines for the complete dataset in white color as background.3

Note here, that the opacity value of both the background and the4

single members can be changed independently. Green boxes in5

the figure correspond to parameter brushes that can be applied6

either to the selected ensemble members or to the remaining7

context. This allows to quickly compare members regarding8

certain parameter ranges simultaneously.9

In Figure 12 (top), datapoints with high number of cloud par-10

ticles (NCCLOUD, green box on 3rd axis) are compared be-11

tween the selected members. Here one can instantly see, that12

the number of datapoints with such high values is larger in the13

member with a higher CCN value. Furthermore, the PCP shows14

that for one member there is a region at high latitude where high15

NCCLOUD values exist, whereas the other member does not16

contain datapoints in this region with the specific NCCLOUD17

values. The members are then compared with respect to total18

precipitation (tp), see Figure 12 (middle). Since in the original19

data, precipitation is given only at a single horizontal layer, the20

values in this layer are copied across all other layers. In addi-21

tion, the drawing order of the red and blue lines is switched,22

since the blue lines would have been vastly obscured otherwise.23

Again, a significant difference in the parameter domains can be24

seen. Looking at the spatial coordinate values a certain region at25

high latitudinal and low longitudinal values can be observed for26

the red member where precipitation above a value of 40 exists,27

while in the blue member this region did not include any high28

precipitation. Further the equal spread pattern between longi-29

tude and the parameter generalVerticalLayer hints at the copied30

values: each layer has the same tp field and thus, looking at the31

vertical layer, each layer has an equal amount of active points.32

Finally, in Figure 13 the entire Grand Ensemble is rendered33

with no particular members selected. Instead, brushing is con-34

N
C

C
L

O
U

D
 >

7
.5

x
1
0
⁷

tp
 >

 4
0

N
C

C
lo

u
d

 >
8

x
1
0
⁷

Fig. 12. PCP-based comparison of members in the Grand Ensemble. Top:
Two members with specific NU, CCN and BC values are selected and
rendered in blue and red, respectively. datapoints where the number of
cloud particles (NCCLOUD) is below 7.5x107 are discarded via brush-
ing (green box). Bottom: the drawing order of the selected members has
been changed, and brushing selects datapoints with total precipitation (tp)
above 40. datapoints in the members that are not selected are shown as
background in white.

ducted on different parameter axes. In a) high absolute wind 35

speeds in u direction were selected. Here one can see that these 36

high wind speeds occur in all members (equal spread on the 37

member axis) and are mainly apparent either in a very high or 38

low vertical layer. When analyzing the dataset interactively and 39

looking only at positive or negative wind speeds one can further 40

see that in the low vertical layers only high positive wind speeds 41

exist while all negative wind speeds occur in high layers. Also 42

positive correlations between pressure (pres), temprature (t) and 43

general vertical layer can be observed for high u wind speeds. 44

In b) high absolute wind speeds in v directions are shown. In 45

comparison to a), the spatial distributions of high positive and 46

negative wind directions are not separated when looking at the 47

vertical position in the 3D domain. Further no noticeable dif- 48

ference wrt. the simulation input parameters can be observed. 49

In c) then the correlation of NCCLOUD values is visualized. 50

By choosing high NCCLOUD values and reducing the opacity 51

value one can see a three-fold structure emerging on the sim- 52

ulation parameter axis (i.e., rightmost axis). Since along this 53

axis the three simulation parameters CCN, NU and BC are laid 54

out in BC-major order, it can be seen that high NCCLOUD val- 55

ues are given for three specific CCN/NU value combinations. 56

Furthermore, the general trend of the multi-parameter dataset 57

across all members for high NCCLOUD values is visualized by 58

regions with high opacity. With this visualization also informa- 59

tion about average temperature, average pressure and other pa- 60

rameters across multiple members in the dataset can be gained. 61

In Figure 14, the Grand Ensemble is visualized using prior- 62

ity rendering in the PCP. The priority center is set to the max- 63

imum NCCLOUD value in the top plot and maximum tp value 64

in the bottom plot. With priority rendering active, it is possible 65

to track datapoints with respect to a priority center on a single 66

axis which reveals correlations to attributes which are not di- 67

rect neighbours of the priority center axis. Like this one can 68

see that high NCCLOUD values correspond always to low total 69

precipitation (tp) values. Further when looking at the mem- 70

ber attribute a certain structure is apparent. This shows that 71

high NCCLOUD values are directly influenced by certain com- 72



10 Preprint Submitted for review / Computers & Graphics (2022)

a)

b)

c)

Fig. 13. Exploring the Grand Ensemble by interactively applying brushes
to different attributes. In a) u-wind extremes are selected, b) shows v-wind
extremes and in c) high NCCLOUD values are selected.

Fig. 14. PCPs of the Grand Ensemble including priority rendering. A value
on a specific axis is selected as priority center (turquoise dots), and poly-
lines are colored according to the distance of their value to the priority
center, i.e., from low to high distance the color changes from white over
red to blue. Polylines with lower distances are rendered on top of polylines
with higher distances.

binations of simulation input parameters and are then consistent1

across the members of a single such combination. In the bottom2

plot one then can track datapoints with high tp values, revealing3

their correlation to low NCCLOUD values as well as showing4

certain latitudinal and longitudinal regions with high tp values.5

Further certain members with exceptional high tp values can be6

easily determined by the coloring at the member axis.7

6. Conclusion and Future Work8

We present a GPU optimized computation pipeline for creat-9

ing multiple bi-dimensional histograms that are then used to10

generate parallel coordinates plots (PCPs) for large datasets11

at interactive framerates. Both a compute shader-based and12

rasterization-based approach are described and compared to13

each other regarding computational efficiency. By exploiting14

high memory bandwidth and compute parallelism on the GPU,15

PCPs for up to 3 billion datapoints with 11 parameters each16

can be generated in less than 1 second when all data fits into17

GPU memory. Due to algebraic blending of lines in a GPU 18

shader instead of blending all lines in the output merger stage, 19

framebuffer precision issues can be avoided. Thus, PCPs can be 20

rendered into 16 bit framebuffers instead of 32 bit framebuffers, 21

which gives a significant performance improvement. 22

We demonstrate the use of the pipeline for analyzing a Grand 23

Ensemble comprising numerical weather forecast simulations, 24

and show that the limiting factor is the memory available on 25

the GPU and the CPU. Since not all data can be stored in GPU 26

memory, the data needs to be streamed from the CPU via PCIe- 27

4 x16. This reduces the throughput to roughly 0.7 billion dat- 28

apoints per second, including streaming, histogram update and 29

PCP rendering. To support the analysis of multiple time steps, 30

which cannot even be stored in CPU-RAM, we provide the pos- 31

sibility to work on a compressed data representation that can be 32

streamed at much higher rates from disk to the GPU than un- 33

compressed possible. 34

In the future, we also aim to investigate the use of alterna- 35

tive lossy compression schemes like cuSZ [44] to improve the 36

performance of the GPU decompression stage, at the same time 37

enforcing upper bounds on the introduced compression errors. 38

By this, the visual error can be reduced, and the overall runtime 39

for datasets that need to be streamed from disk can be improved. 40

Another future direction will be to investigate other PCP vi- 41

sualizations such as continuous parallel coordinates by [45] and 42

bundled PCPs, based on the fast bi-dimensional histogram cal- 43

culation presented in this work. For continuous parallel coor- 44

dinates the bi-dimensional histograms can be used as density 45

estimators for the numerical integration of the dual line in the 46

data domain. In this context, it will also be interesting to enable 47

the integration of spline PCPs, which requires to consider more 48

than 2 adjacent parameter axis in the scattering operation. 49

7. Acknowledgments 50

This study was conducted within the subproject B5 of the 51

Tran- sregional Collaborative Research Center SFB/TRR 165 52

Waves to Weather funded by the German Research Foundation 53

(DFG). 54

References 55

[1] Matsunobu, T, Zarboo, A, Barthlott, C, Keil, C. Impact of com- 56

bined microphysical uncertainties on convective clouds and precipita- 57

tion in icon-d2-eps forecasts during different synoptic control. Weather 58

and Climate Dynamics Discussions 2022;2022:1–25. URL: https: 59

//wcd.copernicus.org/preprints/wcd-2022-17/. doi:10.5194/ 60

wcd-2022-17. 61

[2] Inselberg, A, Dimsdale, B. Parallel coordinates: a tool for visualizing 62

multi-dimensional geometry. In: Proceedings of the First IEEE Confer- 63

ence on Visualization: Visualization90. IEEE; 1990, p. 361–378. 64

[3] Kumpf, A, Stumpfegger, J, Hartl, PF, Westermann, R. Visual analy- 65

sis of multi-parameter distributions across ensembles of 3d fields. IEEE 66

Transactions on Visualization and Computer Graphics 2021;. 67

[4] Novotny, M, Hauser, H. Outlier-preserving focus+ context visualization 68

in parallel coordinates. IEEE Transactions on Visualization and Computer 69

Graphics 2006;12(5):893–900. 70

[5] Blaas, J, Botha, C, Post, F. Extensions of parallel coordinates for inter- 71

active exploration of large multi-timepoint data sets. IEEE Transactions 72

on Visualization and Computer Graphics 2008;14(6):1436–1451. 73

https://wcd.copernicus.org/preprints/wcd-2022-17/
https://wcd.copernicus.org/preprints/wcd-2022-17/
https://wcd.copernicus.org/preprints/wcd-2022-17/
http://dx.doi.org/10.5194/wcd-2022-17
http://dx.doi.org/10.5194/wcd-2022-17
http://dx.doi.org/10.5194/wcd-2022-17


Preprint Submitted for review / Computers & Graphics (2022) 11

[6] Sansen, J, Richer, G, Jourde, T, Lalanne, F, Auber, D, Bourqui, R.1

Visual exploration of large multidimensional data using parallel coordi-2

nates on big data infrastructure. In: Informatics; vol. 4. Multidisciplinary3

Digital Publishing Institute; 2017, p. 21.4

[7] Richer, G, Sansen, J, Lalanne, F, Auber, D, Bourqui, R. Hiepaco: Scal-5

able hierarchical exploration in abstract parallel coordinates under budget6

constraints. Big Data Research 2019;17:1–17.7

[8] Lachei, , inmetak, . wavestoweather/pcviewer: v0.1-alpha. 2022.8

URL: https://doi.org/10.5281/zenodo.7225765. doi:10.5281/9

zenodo.7225765.10

[9] Liu, S, Maljovec, D, Wang, B, Bremer, PT, Pascucci, V. Visualizing11

high-dimensional data: Advances in the past decade. IEEE transactions12

on visualization and computer graphics 2016;23(3):1249–1268.13

[10] Obermaier, H, Joy, KI. Future challenges for ensemble visualization.14

IEEE Computer Graphics and Applications 2014;34(3):8–11.15

[11] Wang, J, Hazarika, S, Li, C, Shen, HW. Visualization and visual16

analysis of ensemble data: A survey. IEEE transactions on visualization17

and computer graphics 2018;25(9):2853–2872.18

[12] Wang, J, Liu, X, Shen, HW, Lin, G. Multi-resolution climate ensemble19

parameter analysis with nested parallel coordinates plots. IEEE transac-20

tions on visualization and computer graphics 2016;23(1):81–90.21

[13] Kumpf, A, Stumpfegger, J, Westermann, R. Cluster-based analysis of22

multi-parameter distributions in cloud simulation ensembles 2019;.23

[14] Inselberg, A. The plane with parallel coordinates. The visual computer24

1985;1(2):69–91.25

[15] Siirtola, H, Räihä, KJ. Interacting with parallel coordinates. Interacting26

with Computers 2006;18(6):1278–1309.27

[16] Elmqvist, N, Stasko, J, Tsigas, P. Datameadow: a visual canvas28

for analysis of large-scale multivariate data. Information visualization29

2008;7(1):18–33.30

[17] Kandogan, E. Star coordinates: A multi-dimensional visualization tech-31

nique with uniform treatment of dimensions. In: Proceedings of the IEEE32

information visualization symposium; vol. 650. Citeseer; 2000, p. 22.33

[18] Wegman, EJ. Hyperdimensional data analysis using parallel coordinates.34

Journal of the American Statistical Association 1990;85(411):664–675.35

[19] Yang, J, Peng, W, Ward, MO, Rundensteiner, EA. Interactive hierar-36

chical dimension ordering, spacing and filtering for exploration of high37

dimensional datasets. In: IEEE Symposium on Information Visualization38

2003 (IEEE Cat. No. 03TH8714). IEEE; 2003, p. 105–112.39

[20] Ferdosi, BJ, Roerdink, JB. Visualizing high-dimensional structures by40

dimension ordering and filtering using subspace analysis. In: Computer41

Graphics Forum; vol. 30. Wiley Online Library; 2011, p. 1121–1130.42

[21] Long, TV, Linsen, L. Efficient reordering of parallel coordinates and its43

application to multidimensional biological data visualization. In: Visual-44

ization in medicine and life sciences III. Springer; 2016, p. 309–328.45

[22] Lu, LF, Huang, ML, Zhang, J. Two axes re-ordering methods in parallel46

coordinates plots. Journal of Visual Languages & Computing 2016;33:3–47

12.48

[23] Theisel, H. Higher order parallel coordinates. In: VMV. 2000, p. 415–49

420.50

[24] Graham, M, Kennedy, J. Using curves to enhance parallel coordinate51

visualisations. In: Proceedings on Seventh International Conference on52

Information Visualization, 2003. IV 2003. IEEE; 2003, p. 10–16.53

[25] McDonnell, KT, Mueller, K. Illustrative parallel coordinates. In: Com-54

puter Graphics Forum; vol. 27. Wiley Online Library; 2008, p. 1031–55

1038.56

[26] Zhou, H, Yuan, X, Qu, H, Cui, W, Chen, B. Visual clustering in57

parallel coordinates. In: Computer graphics forum; vol. 27. Wiley Online58

Library; 2008, p. 1047–1054.59

[27] Luo, Y, Weiskopf, D, Zhang, H, Kirkpatrick, AE. Cluster visualiza-60

tion in parallel coordinates using curve bundles. IEEE Transaction on61

Visualization and Computer Graphics 2008;18.62

[28] Yuan, X, Guo, P, Xiao, H, Zhou, H, Qu, H. Scattering points in parallel63

coordinates. IEEE Transactions on Visualization and Computer Graphics64

2009;15(6):1001–1008.65

[29] Roberts, RC, Laramee, RS, Smith, GA, Brookes, P, D’Cruze, T. Smart66

brushing for parallel coordinates. IEEE transactions on visualization and67

computer graphics 2018;25(3):1575–1590.68

[30] Pomerenke, D, Dennig, FL, Keim, DA, Fuchs, J, Blumenschein, M.69

Slope-dependent rendering of parallel coordinates to reduce density dis-70

tortion and ghost clusters. In: 2019 IEEE Visualization Conference (VIS).71

IEEE; 2019, p. 86–90.72

[31] Heinrich, J, Weiskopf, D. State of the art of parallel coordinates. In: 73

Eurographics (State of the Art Reports). 2013, p. 95–116. 74

[32] Moustafa, RE. Parallel coordinate and parallel coordinate den- 75

sity plots. Wiley Interdisciplinary Reviews: Computational Statistics 76

2011;3(2):134–148. 77

[33] Palmas, G, Bachynskyi, M, Oulasvirta, A, Seidel, HP, Weinkauf, T. An 78

edge-bundling layout for interactive parallel coordinates. In: 2014 IEEE 79

Pacific visualization symposium. IEEE; 2014, p. 57–64. 80

[34] Heinrich, J, Luo, Y, Kirkpatrick, AE, Zhang, H, Weiskopf, D. Eval- 81

uation of a bundling technique for parallel coordinates. arXiv preprint 82

arXiv:11096073 2011;. 83

[35] Fua, YH, Ward, MO, Rundensteiner, EA. Hierarchical parallel coordi- 84

nates for exploration of large datasets. IEEE; 1999. 85

[36] Elmqvist, N, Fekete, JD. Hierarchical aggregation for information vi- 86

sualization: Overview, techniques, and design guidelines. IEEE Transac- 87

tions on Visualization and Computer Graphics 2009;16(3):439–454. 88

[37] Rubel, O, Wu, K, Childs, H, Meredith, J, Geddes, CG, Cormier- 89

Michel, E, et al. High performance multivariate visual data exploration 90

for extremely large data. In: SC’08: Proceedings of the 2008 ACM/IEEE 91

conference on Supercomputing. IEEE; 2008, p. 1–12. 92

[38] Cui, W, Strazdins, G, Wang, H. Confluent-drawing parallel coordinates: 93

Web-based interactive visual analytics of large multi-dimensional data. 94

arXiv preprint arXiv:190610017 2019;. 95

[39] Scheuermann, T, Hensley, J. Efficient histogram generation using scat- 96

tering on gpus. In: Proceedings of the 2007 symposium on Interactive 3D 97

graphics and games. 2007, p. 33–37. 98

[40] Treib, M, Reichl, F, Auer, S, Westermann, R. Interactive edit- 99

ing of gigasample terrain fields. Computer Graphics Forum (Proc 100

Eurographics) 2012;31(2):383–392. URL: http://diglib.eg.org/ 101

EG/CGF/volume31/issue2/v31i2pp383-392.pdf. doi:10.1111/j. 102

1467-8659.2012.03017.x. 103

[41] Schütz, M, Kerbl, B, Wimmer, M. Rendering point clouds with compute 104

shaders and vertex order optimization. In: Computer Graphics Forum; 105

vol. 40. Wiley Online Library; 2021, p. 115–126. 106

[42] Hauser, H, Ledermann, F, Doleisch, H. Angular brushing of extended 107

parallel coordinates. In: IEEE Symposium on Information Visualization, 108

2002. INFOVIS 2002. IEEE; 2002, p. 127–130. 109

[43] Xmdvtool homepage, . ???? URL: https://davis.wpi.edu/xmdv/ 110

datasets/cars.html. 111

[44] Tian, J, Di, S, Yu, X, Rivera, C, Zhao, K, Jin, S, et al. Optimizing error- 112

bounded lossy compression for scientific data on gpus. In: 2021 IEEE 113

International Conference on Cluster Computing (CLUSTER). Los Alami- 114

tos, CA, USA: IEEE Computer Society; 2021, p. 283–293. URL: https: 115

//doi.ieeecomputersociety.org/10.1109/Cluster48925. 116

2021.00047. doi:10.1109/Cluster48925.2021.00047. 117

[45] Heinrich, J, Weiskopf, D. Continuous parallel coordinates. IEEE Trans- 118

actions on Visualization and Computer Graphics 2009;15(6):1531–1538. 119

https://doi.org/10.5281/zenodo.7225765
http://dx.doi.org/10.5281/zenodo.7225765
http://dx.doi.org/10.5281/zenodo.7225765
http://dx.doi.org/10.5281/zenodo.7225765
http://diglib.eg.org/EG/CGF/volume31/issue2/v31i2pp383-392.pdf
http://diglib.eg.org/EG/CGF/volume31/issue2/v31i2pp383-392.pdf
http://diglib.eg.org/EG/CGF/volume31/issue2/v31i2pp383-392.pdf
http://dx.doi.org/10.1111/j.1467-8659.2012.03017.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03017.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03017.x
https://davis.wpi.edu/xmdv/datasets/cars.html
https://davis.wpi.edu/xmdv/datasets/cars.html
https://davis.wpi.edu/xmdv/datasets/cars.html
https://doi.ieeecomputersociety.org/10.1109/Cluster48925.2021.00047
https://doi.ieeecomputersociety.org/10.1109/Cluster48925.2021.00047
https://doi.ieeecomputersociety.org/10.1109/Cluster48925.2021.00047
https://doi.ieeecomputersociety.org/10.1109/Cluster48925.2021.00047
https://doi.ieeecomputersociety.org/10.1109/Cluster48925.2021.00047
http://dx.doi.org/10.1109/Cluster48925.2021.00047

	Introduction 
	Related Work 
	Method Overview and Data 
	Scalable PCPs
	Compute Shader-based Scattering
	Line Renderer
	Rasterization-based Scattering
	Priority Rendering

	Results and Evaluation 
	Dataset
	Performance Evaluation
	Qualitative Analysis
	Use Case

	Conclusion and Future Work
	Acknowledgments

