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ABSTRACT: Numerical simulations in earth-system sciences consider a multitude of physical

parameters in space and time, leading to severe I/O bandwidth requirements and challenges in

subsequent data analysis tasks. Deep-learning based identification of redundant parameters and

prediction of those from other parameters, i.e. Variable-to-Variable (V2V) transfer, has been

proposed as an approach to lessening the bandwidth requirements and streamlining subsequent

data analysis. In this paper, we examine the applicability of V2V to meteorological reanalysis

data. We find that redundancies within pairs of parameter fields are limited, which hinders

application of the original V2V algorithm. Therefore, we assess the predictive strength of reanalysis

parameters by analyzing the learning behavior of V2V reconstruction networks in an ablation

study. We demonstrate that efficient V2V transfer becomes possible when considering groups of

parameter fields for transfer, and propose an algorithm to implement this. We investigate further

whether the neural networks trained in the V2V process can yield insightful representations of

recurring patterns in the data. The interpretability of these representations is assessed via layer-

wise relevance propagation that highlights field areas and parameters of high importance for the

reconstruction model. Applied to reanalysis data, this allows uncovering mutual relationships

between landscape orography and different regional weather situations. We see our approach as

an effective means to reduce bandwidth requirements in numerical weather simulations, which can

be used on top of conventional data compression schemes. The proposed identification of multi-

parameter features can spawn further research on the importance of regional weather situations for

parameter prediction, also in other kinds of simulation data.
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1. Introduction25

The rapid increase in available computing power has enabled a broad adoption of simulation-26

based research methodologies in earth-system sciences. Numerical simulations of spatio-temporal27

dynamical systems consider amultitude of physical parameters and are carried out at high resolution28

in space and time. To account for the uncertainty in the representation of certain physical processes,29

in meteorology and climate modelling numerical ensemble simulations are carried out with varying30

magnitudes of initial condition uncertainty. Simulations are performed routinely byweather centers31

worldwide, and in research we see increasing use of unique super-ensembles consisting of hundreds32

and even thousands of members (Necker et al. 2020).33

In classical workflow scenarios, simulations are run on large-scale computing facilities and data34

are streamed to and stored on external file systems for archiving and subsequent analysis. However,35

the volume of generated data has reached an order of magnitude where the speed of data transfer36

between computing device and file system – so-called I/O operations – imposes a major bottleneck.37

For instance, over the last decade the ability to compute increased about two orders of magnitude38

on supercomputers, while the ability to store and load data only increased about one order of39

magnitude.40

The divergence between compute and I/O renders the classical simulation workflow increasingly41

problematic and requires to avoid streaming or even simulating data that can be recovered from the42

generated results. When using data compression, this can significantly reduce the time it requires43

to bring the data to the compression stage (e.g., when using distributed memory architectures) and44

perform the compression.45

Within this line of research, deep-learning-based Variable-to-Variable (V2V) transfer has been46

proposed recently by Han et al. (2021b) for optimizing information transfer in situations where47

spatio-temporal multi-parameter simulations can be carried out in far less time than it requires to48

store the data on a file system. V2V considers each simulated parameter as a separate entity and49

proposes an algorithm to identify groups of similar parameters and one representative member50

from which the other parameters in this group can be inferred.51

V2V represents all simulated parameter fields in a common feature space (the so-called latent-52

space) that is learnt by a convolutional neural network (CNN), and identifies subsets of similar53

parameters in this space. For each subset the most representative member is determined, and54
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another suitably trained network then learns to reconstruct all other member in one subset from55

the representative one. The bandwidth requirements for storing the multi-parameter data is re-56

duced to the bandwidth required for storing the representative parameter fields and the weight57

parameterization of the reconstruction networks.58

Contribution59

In this work, we assess the applicability of V2V transfer to earth-system related data, and60

identify shortcomings of the proposedmethodology. In consideration of these findings, we propose61

an improved approach, in which a single CNN is trained on meteorological archives to learn62

general relationships between subsets of parameters, thereby focusing on subsets of parameter63

fields with vastly different characteristics and variation in 2D space and time. We demonstrate64

the capabilities of the proposed approach using two exemplary datasets, representing different65

modalities of meteorological data. We consider a global reanalysis dataset, which is taken from66

the WeatherBench (WB) benchmark suite (Rasp et al. 2020), and study the performance of the67

proposed approach on data on large spatial scales. Furthermore, we apply the proposed method to68

an ensemble forecast dataset, which was generated by Necker et al. (2020) to study the sampling69

accuracy of spatio-temporal correlation patterns in convective-scale forecast ensembles. Fig. 1, as70

well as Fig. B1, demonstrate significant structural variability between the single-parameter fields in71

each dataset. Fig. 1 (a) shows snapshots of the parameter fields at a particular point in time. Fig. 172

(b) shows a two-dimensional embedding (computed with t-SNE, van der Maaten and Hinton 2008)73

of the V2V latent-space representations of these fields at different time points, which are used74

to search for parameter similarities. Fig. B1 displays the same overview for the convective-scale75

ensemble (CSEns) dataset. It can be seen that visible clusters involve only a single parameter, and76

clusters of distinct parameters are situated at roughly the same distance from one another. The lack77

of similarities between pairs of parameters prohibits the use of the original V2V algorithm.78

Based on these observations, we propose a different strategy for V2V transfer, which considers83

the expressiveness of subsets of multiple parameters instead of transferring only between pairs84

of them. To identify these subsets, a CNN-based model architecture is trained multiple times85

on multi-parameter fields with varying parameter subsets removed from the input data. In an86

ablation study, we then shed light on the prediction skills of the different models, depending on87
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Fig. 1. Different parameter fields in the ERA5 reanalysis dataset. a) Gray-scale visualizations of the parameter

fields at a particular time. b) t-SNE projections of latent-space features of the parameter fields (different

parameters indicated by colors) at different times (note that projections for different initializations of t-SNE yield

similar groupings).
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the parameter subsets that are used as source. For n ∈ N originally available parameter fields, the88

networks are designed to learn mappings from m (< n) parameter fields (the input) to predict the89

remaining n−m ones (the output). Doing so, the networks encode the inputs into a compact latent-90

space representation, in which relationships between the m input fields and the n−m output fields91

are encoded. The networks are trained via standard backpropagation with a loss function, which92

measures the reconstruction accuracy for all n−m parameters in common. We demonstrate, using93

numerical and visualization-based quality metrics, that the networks efficiently learn to reconstruct94

the unseen parameters, thereby not overfitting to the provided training samples but generalizing to95

simulation snapshots that haven’t been seen before.96

Due to the high computational complexity of training all
(n
m

)
different networks for reconstruct-97

ing n−m fields from m given fields, we propose a computationally less involved strategy and98

demonstrate its effectiveness for selecting the most representative members. Conceptually, this99

strategy builds upon removing iteratively those parameters that are most difficult to predict from100

the remaining parameters, simultaneously avoiding keeping redundant fields in the input. Further-101
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more, the networks’ training behaviours are monitored and the convergence rates at early training102

stages after few epochs of learning are used as indicators of the difficulty of parameter transfer. For103

instance, for one of our use cases comprising nine different parameters and selecting four of them104

to predict the remaining five parameters, training requires only roughly six hours on a low-size105

deep learning cluster with six mid-size GPUs, equipped with 11 GB of graphics memory, each.106

Beyond considering the networks purely as black-box models, we further try to gain insight into107

the multi-parameter relationships that are learned by the models. For this purpose, we employ108

an adapted version of layer-wise relevance propagation (LRP, Bach et al. 2015), a method for109

highlighting input areas and parameters, which are important for the reasoning process of the110

models. This offers the opportunity to uncover feature patterns in multi-parameter space, i.e.111

reoccurring parameter combinations, which are recognized as important for the network to achieve112

high accuracy, and analyse their correspondence to certain weather situations.113

The remainder of this paper is structured as follows. In section 2, we review related work. In114

section ??, we summarize the original V2V algorithm and highlight algorithmic shortcomings.115

Building up on these findings, we present our extended V2V approach in section 4. We introduce116

the example datasets used for subsequent experiments in section 3 and describe the network117

architectures used for the experiments in section b. The ablation study, as well as the LRP analysis118

of the models, are carried out in section 5. We conclude the paper in section 6.119

2. Related work120

In recent years, machine learning with powerful deep-learning architectures has found applica-121

tions in various fields of climate science and meteorology (Reichstein et al. 2019). Many of the122

possible applications exploit the efficiency and flexibility of CNN architectures when applied to123

inference tasks involving grid-structured data.124

a. Super-resolution and downscaling techniques125

Related to our approach are so-called super-resolution and downscaling techniques, which re-126

construct high-resolution parameter fields from corresponding low-resolution versions. In contrast127

to V2V approaches, the information transfer occurs between representations of the same parameter128

with different spatial resolutions. Some of these approaches can be used for data compression, in129
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principle. Such methods operate by first sub-sampling the parameter fields and subsequently re-130

constructing the initial fields from the sub-sampled versions. For example, Rodrigues et al. (2018)131

proposed a supervised convolutional neural network that interpolates a low-resolution weather data132

into a high-resolution output. Pouliot et al. (2018) introduced deep learning-based enhancement in133

landsat super-resolution. Cheng et al. (2020) proposed a method that converts low-resolution cli-134

mate data to high-resolution climate forecasts using Laplacian pyramid super-resolution networks.135

Downscaling approaches, in contrast, aim at predicting additional high-resolution details from low-136

resolution parameter fields, without assuming prior knowledge of the original high-resolution data.137

For instance, Höhlein et al. (2020) and Serifi et al. (2021) train on a small set of paired low- and138

high-resolution simulation pairs to circumvent generating expensive high-resolution simulations at139

inference time at all. These techniques, even though they establish relationships between low- and140

high-resolution fields, are not motivated by the idea to compress the data.141

Super-resolution of scientific data has also been investigated from the perspective of scientific142

visualization, since high-resolution simulations in meteorology make analysis of these datasets143

challenging. Earlyworks on data super-resolution demonstrate the capabilities of neural networks to144

learn upscaling a low-resolution version of the data to the initial high-resolution dataset. Upscaling145

is performed in the spatial domain (Zhou et al. 2017; Han and Wang 2020; Guo et al. 2020),146

in the temporal domain (Han and Wang 2019), and in the spatio-temporal domain (Han et al.147

2021a). Underlying these works is the goal to avoid storing the high-resolution datasets and, thus,148

reduce bandwidth and memory requirements. By training networks to infer the full image from a149

low-resolution image of an iso-surface, Weiss et al. (2019) demonstrate improved rendering frame150

rates. In recent work by Weiss et al. (2020) a convolutional neural network learns to adaptively151

place image samples and reconstruct the full image from the generated unstructured set of samples.152

To work in situations with severe I/O limitations, Sato et al. (2019) introduced a so-called153

in-situ approach for visualizing and post-processing high-resolution meteorological data. In-situ154

approaches process the data instantly when it is produced by the simulation, without involving155

storage resources. Röber and Engels (2019) analysed in-situ data processing approaches in climate156

science. Helbig et al. (2015) proposed a visualization workflow where the first stage is a data157

abstraction layer that downsamples the data spatially and temporally. Toderici et al. (2017) proposed158
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an image compression method using a recurrent neural network by saving the compressed latent159

space produced by the network instead of the high-resolution data.160

A different approach for data compression has been introduced by Han et al. (2021b) for multi-161

parameter data, by training networks to infer certain parameters from others, and, thus, to avoid162

storing these parameters. Conceptually, this work builds upon the notion of information transfer163

between scalar fields (Wang et al. 2011) to derive transferable parameter pairs.164

b. Variable-to-variable (V2V) transfer165

The overall goal of V2V lies in identifying those variables in a multi-parameter dataset that can166

be redundantly reconstructed given other parameters from the same dataset. Han et al. (2021b)167

subdivide the V2V process into 3 conceptually distinct stages: feature learning, translation graph168

construction and variable translation. First, a CNN model architecture such as UNet (Ronneberger169

et al. 2015) is trained in an auto-encoder-like setting to encode and reconstruct snapshots of170

parameter fields. The same model is shared between all parameters, such that the internal hidden171

variables of themodel, referred to as the latent-space representation, are informed about similarities172

and dissimilarities between different parameters. After training, all parameter snapshots aremapped173

into the latent space where clusters of similar parameters are detected. Han et al. (2021b) propose174

to find clusters through visual examination of the latent-space features. To visualize the features,175

they apply a non-linear dimension reduction algorithm, called t-distributed stochastic neighbor176

embedding (t-SNE, van der Maaten and Hinton 2008). Parameters in the same cluster become a177

transferable variable group.178

In the translation-graph construction stage, the Kullback-Leibler divergence is used to estimate a179

measure of so-called transferable difficulty for pairs of parameters inside a transferable parameter180

group. Parameter pairs are considered for transfer, if the Euclidean distance between their respective181

latent-feature representations is smaller than a predefined distance threshold. Parameters in different182

transferable parameter groups are not considered for transfer. A directed transfer graph is then183

constructed by chaining transferable pairs according to a minimum discrepancy criterion. Finally,184

in the variable transfer stage, CNNs are trained to learn the transfer mapping according to the185

translation graph.186
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V2V reduces the search for transferable variables to pairs of similar variables based on a distance187

threshold criterion and the visual analysis of a t-SNE projection. This leads to a number of188

shortcomings regarding the expressiveness of the identified parameter relations and reproducibility189

of the results. V2V does not assess true predictability of one variable based on another, but190

uses an empirically determined approximate criterion, which might overlook potentially valuable191

relationships when the threshold value is not set optimally.192

Furthermore, V2V cannot always decide unambiguously the source and target fields. This193

decision is based on the translation graph where the nodes correspond to the parameter fields and194

directed edges indicate transferability from a source to a target variable. In this graph, however,195

cycles can occur. This happens because the transferable difficulty is based on the Kullback-Leibler196

divergence, which is not a metric and does not satisfy the triangle inequality in general. When only197

pairwise transferabilities are considered, this can result in the selection of all parameters in a set of198

similar parameters as sources and targets of one another, respectively.199

3. Datasets200

We validate our approach with the WeatherBench dataset, which has been proposed as a bench-201

mark dataset for data-driven, medium-range climate prediction problems (Rasp et al. 2020), and202

the convective-scale forecast ensemble generated by Necker et al. (2020) (see appendix B).203

In both cases, the proposed neural network models receive as input an array of shape m×H×W ,204

with m the number of physical input parameters, and H ∈ N and W ∈ N denoting the spatial205

dimensions of the field. Assuming an initial number of n ∈ N physical parameters, the model206

output is a field of shape (n−m) ×H ×W , which contains reconstructions of the parameters that207

have not been considered in the input (see Fig. 2).208

WeatherBench (WB) is based on ERA5 atmospheric reanalysis data (Hersbach et al. 2020) gener-209

ated regularly at the European Center for Medium-Range Weather Forecasting (ECMWF) through210

data assimilation procedures, combining spatio-temporal numerical simulations and observation211

data. To facilitate the accessibility to machine learning workflows and accelerate studies in weather212

prediction, WB provides regridded ERA5 reanalysis data on regular latitude-longitude grids with213

three different resolutions and 13 different pressure levels. The data is available hourly for 40 years214

from 1979 to 2018.215
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We consider a selection of 2D single-level fields with a resolution of 1.40525◦ in latitude and216

longitude, resulting in a domain size of 128×256 vertices for global data. The selected physical217

parameters are 2m-temperature (t2m), total cloud cover (tcc), u- and v-component of 10m-wind218

(u10, v10), total precipitation (tp), and top-of-atmosphere incident solar radiation (tisr). As219

in previous studies (e.g., Höhlein et al. 2020), where the prediction accuracy of convolutional220

neural networks could be improved by using orography information, orography height is added221

as an additional constant predictor. To facilitate model training, all field values are standardized222

before training the models. This normalization scheme enforces equal variation in all parameter223

fields under consideration, which is helpful for ensuring comparability of reconstruction accuracy224

metrics. We utilize two different global and local standardization. In local standardization,225

rescaling is computed for each grid location from the statistics of all time steps, while in global226

standardization, mean and standard deviation values are computed over the whole domain for all227

time steps. Global standardization performs better in our case and helps to reduce the reconstruction228

error. We refer this to the fact that the local standardization can enhance uniformity of the data,229

but destroys spatial coherence patterns. We use the 23 first years of WB during training. Of these,230

20 years serve as training data for fitting the models, and three years are reserved for validation.231

The remaining years are left out for testing and visualization.232

4. Method233

To overcome the shortcomings of V2V, we propose an alternative parameter selection proce-234

dure. It replaces the single-parameter auto-encoding CNN and subsequent clustering and pairwise235

similarity search with multi-parameter CNNs and loss-based tracking of the learning progress.236

Initially, given a multi-variate time-varying dataset with n ∈ N parameters and T ∈ N timesteps,237

the user selects the number m of input fields from which the remaining n−m parameter fields are238

predicted.239

a. Parameter selection240

The most straight forward – yet computationally demanding – approach is to launch
(n
m

)
training241

runs for the different parameter configurations, and select the network with the lowest loss. By242

starting from n− 1 inputs and one output and proceeding iteratively with decreasing number of243
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inputs, the procedure can also be made dependent on a predefined loss threshold, i.e., by launching244

for all k, 1 ≤ k ≤ m, a batch of
(n
k

)
training runs and stopping once the minimum loss exceeds245

a given threshold. The parameter configuration for which the minimum loss is achieved is then246

selected for variable transfer. In our current implementation we consider only the user-specified247

number of input parameters.248

Since for large values of n, the described procedure requires training too many networks, a249

computationally less expensive alternative needs to be developed. A straight forward approach is250

to train only n networks, where each network predicts one single parameter from the remaining251

n− 1 parameters, and use the networks’ losses as indicators of how difficult the prediction of a252

parameter is. If a loss value is high, predictability is low, and, thus, the parameter predicted with253

the highest loss is fixed as one of the input parameters. Then, of all trained networks where this254

parameter is already contained in the input set, the one with the largest loss is selected, and the255

variable that is predicted is added to the input. This procedure is repeated until the specified256

number of inputs is reached.257

In our experiments, this approach finds exactly the same input and output sets as the exhaustive258

training procedure, yet it requires training only n networks. In general, however, since only the259

difficulties of predicting each parameter individually from all other parameters are considered,260

parameter combinations with higher prediction strength can be overlooked. For instance, consider261

a subset of similar parameters, each of which can be predicted at high accuracy from the other262

parameters in this subset. In this situation, the loss values of the reconstruction networks will be263

low, and it becomes unlikely that one of these parameters will be selected as input. Consequently,264

either the input solely comprises parameters from which the ones in the subset cannot be well265

predicted, or m needs to be so large that of each subset of similar parameters at least one is selected.266

However, since parameters from the most similar subset will be considered last, m can become too267

large to be of any practical relevance.268

To address these shortcomings, we propose a strategy with lower computational complexity275

than the first strategy, and which differs from the second strategy in that it considers subsets of276

parameters in both the inputs and predicted outputs. As in the previous strategy, n networks277

are trained initially, with each network predicting a single parameter from the remaining n− 1278

parameters, and the parameter predicted by the network with the highest loss is fixed in the input.279
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Fig. 2. Method overview. In the i-th iteration, the same Resnet is trained multiple times using different

combinations of n− i input and i output parameters. Orange crosses indicate the output parameters, green pluses

indicate the parameters that are fixed in the input set, blue squares indicate the remaining parameters in the input

set. In each iteration, for each free parameter a loss is computed by adding the losses of those networks in which

the parameter is in the output set. The parameter with the maximum loss is fixed in the input set. For the WB

dataset, orography is used in every input, but is not predicted.
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In the next iteration, all networks with n−2 inputs (including the fixed parameter) and two outputs280

are trained. For all but the fixed parameter, the overall loss is computed by adding the losses of281

all networks where this parameter is in the predicted set. The parameter with the highest loss is282

fixed, and the procedure moves on with n− 3 inputs, and three outputs now containing the two283

fixed parameters (see Fig. 2 for a graphical overview of the proposed approach). This strategy, in284

case of a similar subset of parameters, recognizes when a certain output cannot be well predicted285

and then fixes an input which is necessary to achieve higher accuracy.286

In our experiments, all parameter fields are normalized before training to equilibrate differences287

in parameter magnitudes and variation. If the dataset contains static fields like orography, these288

fields are concatenated to the inputs to serve as additional information for the models. In particular,289
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orography is used with the WB dataset to enable the networks learning dependencies between290

the parameters and land-/sea-scape, and, thus, enhance their inferencing skills. The quality of291

the reconstruction of all parameters is measured by a suitable loss function, e.g. L1 loss, and the292

model weights are optimized using standard backpropagation. We monitor both the training and293

validation loss to avoid overfitting.294

A network’s loss curve indicates how difficult it is for the network to achieve an accurate295

reconstruction depending on the current input and output parameters. I.e., depending on which296

parameters are used, the reconstruction error decreases more or less quickly. While saturation of297

both losses typically happens after 70 epochs, our experiments show that already after few epochs298

of training the reconstruction error clearly reveals the differences between different parameter299

combinations. In particular, when comparing the loss curves in these early stages with the loss300

curves after convergence, the relative behaviour of the networks does not change. This indicates301

that network training does not need to be performed until convergence, but can be stopped after302

few epochs to obtain an indication of the reconstruction quality. In particular, we consider loss303

values after five epochs of training, resulting in roughly one hour (for training 20 networks) on a304

low-size deep learning cluster with six mid-size GPUs to determine three input and three output305

parameters for theWB dataset, comprising six parameters. For the CSEns dataset, comprising nine306

different parameters, the proposed procedure requires roughly six hours for training 87 networks307

to determine the four input parameters that best predict the remaining five output parameters.308

Compared to the V2V approach by Han et al. (2021b), the proposed strategy is computationally309

more expensive, yet it exhibits a number of advantages: Firstly, we obtain a more accurate measure310

of transferability, since our models are directly trained to reconstruct parameters. Second, the311

proposed approach is not constrained to selecting pairs of parameters, but can uncover multi-312

parameter relationships. Lastly, the method, in principle, enables to set a loss threshold for313

triggering the stopping of iterations. Due to normalization of the target parameters, this threshold314

can be interpreted as a measure of acceptable relative error, and is thus more accessible than the315

distance threshold in the latent-space features, which was considered in the original V2V algorithm.316
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b. Network architectures317

In this study, we propose to train a deep convolutional neural network (CNN) architecture to318

predict a certain number of output parameters from a given set of input parameters. In general,319

deeper networks can have higher prediction quality, yet they can easily lead to convergence problems320

in the optimization process due to vanishing gradients (Glorot and Bengio 2010). In early layers of321

the network, gradient estimation causes an exponential decay of the gradient magnitudes, so that322

the parameters cannot change significantly in the training process. An efficient way to overcome323

this problem is to utilize short-cut or residual connections as in ResNet architectures (He et al.324

2016). In such architectures, outputs of earlier layers are added to the output of later layers, thus325

circumventing the accumulation of intermediate gradients.326

In this study, we select a ResNet architecture with three residual blocks. A schematic represen-327

tation is shown in Fig. 3. The input block of the model consists of a single convolution layer with328

kernel size of (3,3), 64 channels, batch normalization, and leaky rectified linear unit (LeakyReLU).329

We use input padding before each convolution layer. To account for periodic boundary conditions330

in the longitude direction of the WB dataset, we employ a periodic padding scheme in this dimen-331

sion, and replication padding elsewhere. After that, there are three residual blocks and each block332

has two convolution layers with 64 channels and kernel size (3,3). Since the number of parameters333

grows with the kernel size, it is cost efficient to select a kernel of size 3. After the first convolution334

layer in the residual block, the network utilizes a batch normalization layer, a LeakyReLU layer, the335

second convolution layer, and another batch normalization layer. Batch normalization is used to336

achieve improved stability and convergence (Ioffe and Szegedy 2015). After each residual block, a337

LeakyReLU activation function guarantees non-linearity of the mapping. The final layer is a single338

convolution layer with kernel size of (3,3) and n−m output channels.339

As an alternative to the ResNet architecture, we also analysed the potential of a UNet architecture344

(Ronneberger et al. 2015) for loss-based parameter selection.345

In contrast to the ResNet architecture, which operates on a single spatial scale throughout the346

whole architecture, the UNet architecture allows for the extraction of features on multiple spatial347

scales, which offers the possibility to learning a wider range parameter relationships. The UNet348

consists of two symmetric branches, which give it the characteristic u-shape, as seen in Fig. 4. In349

the encoding branch, the data are encoded into an abstract reduced feature representation, and in the350
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kernel size of (3, 3), a batch normalization layer, and LeakyReLU activation function. The network comprises

three residual blocks and a final single convolution layer. The network predicts n−m output fields.

340

341

342

343

decoding path the feature representations are then decoded to reconstruct the predicted fields at the351

target resolution. During the encoding step, the resolution is iteratively reduced, and the number352

of feature channels is increased at the same time. In the decoding step, while reducing the number353

of feature channels, the features are super-sampled to a higher resolution. The paths are connected354

by skip connections, which concatenate feature channels from the encoder with corresponding355

features from the decoder, in order to precisely preserve and localize the information in the data356

that could be lost in the encoding stage. The most bottom layer of the UNet, i.e., the bottleneck357

layer, enforces the model to learn a compact representation of the input containing the globally358

most relevant information to recover it.359

In our experiments, the UNet architecture did not improve the reconstruction quality significantly,360

yet increased the training time due to its higher computational complexity. A sample of the361

reconstruction quality of the UNet architecture is shown in Fig. A2. Nevertheless, we found that362

ResNet and UNet seem to learn different mappings internally, which we discuss in more detail in363

section 5 c.364

The presented architectures have been designed through empirical experimentation, trading of365

model flexibility and reconstruction quality against applicability to diverse datasets and computa-366

tional efficiency. Especially for data fields on spherical geometries, more sophisticated network367

designs exist, see, e.g., the survey by Cao et al. (2020). Such architectures, however, come at higher368
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Fig. 4. Schematic of the used UNet architecture. The contracting branch is comprised of three convolu-

tional blocks, each consisting of two convolution layers with subsequent batch normalization, dropout, and a

LeakyReLU activation function. The expansive branch includes three deconvolution blocks, each consisting of

one convolution, and one deconvolution layer. Each of these layers is followed by a batch normalization layer,
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a single convolution layer with 64 channels and kernel size of (3, 3), followed by batch normalization layer,

dropout, and LeakyReLU activation function. The number of reconstructed fields is n−m.
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377

computational complexity or require careful data-specific selection of hyper-parameters to achieve369

better performance than standard CNNs, and are thus not considered in the present study.370

The error between target fields and predictions is measured in terms of L1 distance, which we378

prefer over L2 due to empirically less pronounced suppression of outlying predictions.379

5. Experiments380

In an exhaustive ablation, we demonstrate the feasibility and reliability of our approach using the381

WB reanalysis dataset as a use case. The results of applying the proposed strategy to the CSEns382

dataset are shown in the appendix.383

Via this ablation study, we aim to answer the following questions:384
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1. Which is the minimal set of input parameters from which the remaining parameters can be385

reconstructed accurately? This number indicates how aggressively the initial parameter set386

can be reduced.387

2. Over which geographic regions do parameters strongly affect the network’s prediction quality?388

To answer the first question, we use loss-based parameter selection via the ResNet architecture.389

Both architectures are used subsequently to answer the second question by visualizing the sensitivity390

of the local prediction accuracy to regional changes of the input parameters.391

a. Validation of the extended V2V approach392

To validate the reliability and reproducibility of the proposed loss-based parameter selection,393

we train networks for different parameter configurations multiple times with different random394

weight initializations, and compare the order of the observed losses after five training epochs.395

For brevity, we first show results only for the case m = 1, which results in six different parameter396

configurations. For every configuration, we train 10 models and sample model ensembles by397

randomly picking one of the 10 models for each configuration. For each sample, we then rank the398

model configurations according to the observed loss value after five training epochs, and assess399

the consistency of the ranking order among different samples. Fig. 5 illustrates the observed loss400

statistics. We find that the separation in loss magnitude between different parameter configurations401

is typically larger than the variance of losses for each configuration (see Fig. 5, left). As a result,402

the ranking of losses is consistent between different runs. This is seen in the heat chart in Fig. 5403

(right), which visualizes the frequency of how often a particular loss rank is observed for each of404

the parameters, and suggests an almost perfect one-to-one mapping between parameters and ranks.405

Both charts together confirm that our loss-tracking approach constitutes a reproducible criterion for406

selecting parameter configurations. Nevertheless, we observe that clustering of losses may occur,407

i.e. different configurations may result in very similar loss statistics (e.g., parameters tp, u10 and408

v10 in Fig. 5, left). Due to the overall small variation in losses per configuration, we conjecture409

that all of the possible outcomes are equally well-suited for further evaluations.410
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different parameter configuration (m = 1, i.e. one parameter is left out and is to be predicted) with different

weight initializations. Left: Box plot of the loss statistics. Right: Heat map of the observed ranking order.
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b. Ablation study414

For the WB data comprising six parameters, we start with applying the loss-based selection415

procedure to predict one masked out parameter using the remaining five input parameters. This416

number is then increased to two and finally three predicted parameters, with four and three input417

parameters, respectively. This means that during the first iteration six networks, then
(5
2
)
networks418

and finally
(4
3
)
networks are trained. We do not go beyond three masked out parameters, since419

significantly reduced reconstruction quality is observed in this case.420

To justify our decision to use the network losses after five epochs as indicators of the difficulty425

to predict a certain parameter or parameter combination, we analyze the loss values for five and426

70 epochs of training of all networks that were trained. Fig. 6 shows the losses of all networks427

trained for five epochs by the proposed loss-based selection approach (top and bottom left charts),428

and the losses of all
(6
3
)
possible networks trained for five epochs (dark blue bars in bottom right).429

The loss values indicate that the loss-based selection approach finds the parameter combination430

yielding the lowest loss. Note that this is also confirmed for the CSEns dataset, as shown in Figs. B2431

and B3 in the appendix. As shown by the overlayed loss values of the networks trained for 70432

epochs (green bars in bottom right), training for five epochs shows very similar relative differences433

between different parameter combinations. Also this result is confirmed by the comparison of the434
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Fig. 6. Bar charts showing the losses of all networks trained for 3-to-3 parameter transfer with the WB dataset

using the proposed iterative loss-based approach (top left: first iteration, top right: second iteration, bottom left:

third iteration), and of all possible
(6
3
)
networks (bottom right). Blue bars represent losses after five epochs of

training, green bars indicate losses after 70 epochs.

421

422

423

424

loss values for five and 70 of the CSEens dataset. When only one parameter is predicted from the435

remaining five parameters (plus orography), it can be seen that 2m-temperature and total cloud436

cover, respectively, are the parameters that are easiest and most difficult to reconstruct. Thus, total437

cloud cover is the first parameter that is fixed in the input.438

Fig. 7 shows the initial parameter fields (including orography) and the reconstruction results of439

the three parameters that have been masked out by the loss-based procedure. For comparison,440

the reconstruction results of the three worst parameter combinations are shown in A1 in the441

appendix. Notably, when all
(6
3
)
parameter combinations are evaluated, the very same combination442

is determined.443

In Fig 8, for the selected parameter combination the resulting pixel-wise differences between the450

reconstructions and the initial parameter fields are shown. The quality of the reconstructed fields451

is measured using the image statistics SSIM (Wang et al. 2004) and the peak signal to noise ratio452

(PSNR), with the initial parameter fields as references. It can be seen that even when one half of453
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the parameters are masked out, they can still be reconstructed at high accuracy by the network.454

In addition, the reconstruction quality that is achieved by the worst parameter combination is455

shown, i.e., the parameter combination yielding the highest loss of all possible
(6
3
)
parameter456

combinations. The results indicate the importance of a suitable procedure for finding the best457

parameter combination. The pixel-wise error plots indicate significantly different reconstruction458

quality between the best and worst parameter set.
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c. Feature analysis460

While the potential of the selected network architecture for V2V can be concluded from the461

results of the ablation study, no information can be drawn about what kind of dependencies are462

exploited by the networks. To shed light on this aspect, we use layer-wise relevance propagation463

(LRP) to localize the sensitivity of the reconstruction results to changes in the input parameter464

fields.465

In its original form, LRP has been introduced as an explainability algorithm for image clas-466

sification models (Bach et al. 2015), which is achieved by combining neuron activations and467

back-propagated gradient information to highlight image regions that exert a strong effect on the468

classifier output. LRP, thereby, builds on the concept of pixel-wise decomposition of the classifier469

score. I.e., given a classification score mapping of the form f :Ω→ R, where Ω ⊆ Rm×H×W is the470

input domain (e.g., the space of images with H×W pixels and m channels per pixel), and f (x) > 0471

(< 0) indicates evidence for presence (absence) of a particular feature, LRP attempts to find a set472

of relevance values Rki j ∈ R associated with the pixel values, such that the classification score can473

be approximated as474

f (x) ≈
m−1∑
k=0

H−1∑
i=0

W−1∑
j=0

Rki j , (1)

and Rki j > 0 (< 0) indicates that pixel channel k at position (i, j) contributes evidence in favor475

of (against) the presence of the feature in question. In the case of deep neural networks, which476

are composed of linear transformations with element-wise activation functions, suitable relevance477

values can be computed via iterative relevance back-propagation, subject to propagation rules (Bach478

et al. 2015).479

Deviating from the setting of standard LRP, the input of V2V models is not an image, but480

a multi-dimensional array, representing a multi-parameter field, and the output is not a uni-481

variate classification score, but a multi-dimensional multi-parameter field. The difference in input482

modalities is only of limited importance, since themulti-parameter fields can be interpreted directly483

as multi-channel images. However, the complexity of the model output prevents straight forward484

application of standard LRP. We therefore propose to use an adapted variant of LRP to gain insight485

into spatio-temporal relevance and correlation patterns between model predictions and inputs.486
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Given a model mapping of the form f : Ω→ R(n−m)×H×W , we propose adding an additional487

selector layer s : R(n−m)×H×W → R at the end of the model, such that the output of the combined488

model, s( f (x)) ∈ R, admits an additive decomposition according to Eq. (1), and can thus be further489

analyzed using standard LRP. Possible choices for s include summation operators, such as global490

(or local) averaging of field values or deviation measures, or selection operations, which select491

single pixels and output channels for computing LRP relevances. Depending on the choice of492

selector layer, different aspects of the input-output relationship can be investigated. For instance, a493

selector function returning the mean value of the output channel 0 ≤ c < m inside a region defined494

by the pixel set I ⊆ {(i, j) : 0 ≤ i < H,0 ≤ j < W}, i.e.495

s(c)I (x) :=
〈
[x]ki j

〉
(i, j)∈I,k=c , (2)

where [x]ki j denotes selection of the element at position (k, i, j) in the array x, yields positive496

relevance for input regions. This causes an increase of the averaged quantity according to Eq. (1).497

In contrast, functions of the form498

δ
(c)
I (x; x0, p) :=

〈��[x− x0]ki j
��p〉
(i, j)∈I,k=c , (3)

p> 0, yield positive relevance for regionswhich increase the deviation between themodel prediction499

x and a certain reference prediction x0 within the region I.500

Figs. 9 and 10 show relevance maps for the global atmospheric situation on May 15, 2004,505

08h, as seen in the WB dataset, using the ResNet (Fig. 9) and the UNet model (Fig. 10). We506

employ an absolute-difference-based selector function with a focus on single pixel deviations507

of the predicted quantities from the respective target value, i.e. δ(c)I (x; x0,1) with I = {(i∗, j∗)},508

0 ≤ i∗ < H, 0 ≤ j∗ < W , and x0 denoting the target field. This allows drawing information about509

what parts in the data push the separate prediction channels away from the actual target value.510

Figures are shown for (i∗, j∗) = (63,127), which corresponds to the center pixel in the image,511

located at 0◦N 180◦E . Relevance maps for other dates and pixel indices look similar. All output512

channels are treated separately, yielding a matrix of relevance maps, which visualize relationships513

between channel-wise prediction errors and model inputs. The back-propagation of relevance514
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Fig. 9. LRP relevancemapswith deviation-based selector function for theResNetmodel in the best input-output

configuration wrt. the proposed selection procedure. Timestamp of data sample: May 15, 2004, 08h.
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Fig. 10. LRP relevancemapswith deviation-based selector function for the UNetmodel in the best input-output

configuration wrt. the proposed selection procedure. Timestamp of data sample: May 15, 2004, 08h
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values according to our proposed feature selection is carried out using the standard LRP algorithm,515

which is available in the Captummodel interpretability library for Pytorch (Kokhlikyan et al. 2020).516

While the relevance patterns appear noisy in both cases, the structure of the relevance maps517

differs significantly between the model architectures, despite being trained on the same task and518

with the same set of training data. The ResNet architecture favors relevance distributions which519

are concentrated around the reference location. This is consistent with the inductive bias of520

the architecture, which arises from the use of convolution layers with small kernel sizes (see521

section b). Positive and negative relevances appear to be distributed randomly throughout the map,522

but significant differences are observed in the magnitude of the relevances. Relevance values wrt.523

orography possess larger magnitude in both positive and negative orientation than the remaining524

parameters. For the cloud-cover input, relevance values are concentrated on a small number of525

pixels, which obtain a relevance with notably higher amplitude than that of surrounding pixels.526

Similarly, the large degree of variability in the relevance maps makes it difficult to identify. For527

the UNet, relevance values are distributed over a larger spatial domain and relevance magnitude528

is largest for the cloud cover field and the v-component of the wind field. Likely, this is caused529

by the multi-scale properties of the UNet architecture, and confirms that the UNet manages to530

learn features on larger spatial scales. Notably, the distribution of relevance values also displays531

stronger spatial correlations, whichmight suggests that the model learns to pay attention to spatially532

coherent features in the data. Also, in contrast to ResNet, the relevance of the orography field533

is smaller. Intuitively, this relevance attribution appears more understandable, since the selected534

reference pixel corresponds to a location in the mid of the Pacific Ocean, where the impact of535

orography on physical processes should be weak.536

A prominent feature of the WB dataset is the temporal coherence of subsequent samples, which537

is determined by the day-night cycle, as well as the seasonal cycle. To assess the stability of the538

relevance maps, as well as the impact of the day-night cycle on the model mapping, we show539

two additional relevance maps for the UNet model applied to data samples from May 15, 2004,540

12h and 20h in Figs. A3 and A4 in the appendix. The figures show that the relevance maps for541

08h and 20h look very similar. In particular, clusters of spatially coherent regions of positive or542

negative relevance are preserved, which suggests a stability and coherence in the visual structure543

of the relevance maps. The maps for 12h deviate slightly and show larger relevance as for the 2m-544

25



temperature with respect to the top-of-atmosphere incoming solar radiation, which is consistent545

with physical intuition.546

Overall, we conclude that the different architectures learn distinct mappings, despite being trained547

on the same task and achieving similar prediction accuracy. Yet, we find that some aspects of the548

dependency structure can be partly reverse engineered via through investigation of the relevance549

maps. Similar statements apply to the relevance maps for models trained on the CSEns dataset.550

Exemplary relevance maps for this dataset are shown in Fig. B8. A more detailed analysis of the551

derived relevance maps, as well as the study of more specific meteorological events and weather552

situations at selected times and locations, is however beyond the scope of this paper and will be553

addressed in future work.554

6. Conclusion555

We have introduced an alternative way to perform deep learning-based variable-to-variable556

transfer. Instead of building upon the similarity of latent-space representations of parameter fields557

to determine transferable parameter pairs, we train a network using different transfer scenarios and558

select the best parameter setting. In this way, we give more flexibility to the network to exploit inter-559

parameter relationships, i.e., to learn parameter combinations for improved transfer. This allows560

saving bandwidth in in-situ settings, and can help to more aggressively compress multi-parameter561

simulation data. As shown in Figs. A5, B9 in the appendix, V2V transfer cannot compete with562

classical lossy data compression schemes in terms of compression rate, yet it may effectively563

support such schemes when the structure of the relevance maps generated via LRP is exploited to564

select spatially varying bitrates according to the importance of the data values. Other potential565

limitations arise due to intricacies in comparing the loss values of different parameter fields.566

Comparing L1 loss values performs well on our data, which we verify by showing visualizations567

of the reconstructed fields. Yet it may happen that differences in the statistical distribution of field568

values result in deceptively low or high loss values for certain fields, which do not accurately reflect569

the reconstruction quality. In such cases, it may be useful to explore alternative metrics which570

are more robust to differences in data distributions, such as relative improvement metrics which571

compare against simpler baseline models such as climatologies, or metrics like SSIM (Wang et al.572

2004) which relate to visualization quality. The choice of such metrics, however, may depend573
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strongly on the dataset at hand, as well as on the intended application. For reasons of general574

applicability, we rely on the L1 loss in this study, and demonstrate that it can serve as a reasonable575

default choice.576

We have further analyzed the regional parameter structures that have the most significant effect577

on the reconstruction quality. By using an extension to layer-wise relevance propagation (LRP),578

we were able to determine regions over which the field values have a large effect on the local579

reconstruction accuracy. LRP results demonstrate that different model architecture learn different580

mapping functions, depending on the inductive bias of the used architecture. In our study, the use581

of the UNet model led to more physically interpretable relevance maps, while the mappings learned582

by the ResNet architecture are constrained in learning spatial dependencies due to the construction583

of the network architecture. Information like this may help in operational model applications to584

gain a better understanding of model-driven inference procedures and increase trustworthiness of585

data-driven model predictions.586

In the future, we will shed light on the use of the proposed V2V approach with 3D and especially587

large forecast ensembles. In our current use cases, all parameter fields show rather low mutual588

similarities, and, thus, one can expect our approach to perform even more effective once parameter589

fields with certain similarities and more pronounced spatial relationships are given, like ensemble590

simulations. One specific task we envision is to analyse the representativeness of the single591

members captured by a Grand Ensemble, by using V2V to reconstruct an as small as possible592

subset of all members capturing the full ensemble spread. This can facilitate guidance towards593

weather situations that are under- or over-represented in the ensemble, and reveal situations which594

are intrinsically difficult to resolve. Furthermore, we intend to consider the temporal evolution595

of the fields to improve the reconstruction at a certain time, i.e., by letting the network train on596

multiple timesteps from the past.597

Finally, together with meteorologists and climatologists we intend to further analyse the sensitiv-598

ity maps that have been derived via LRP. Such an analysis includes the extraction of specific local599

weather events such as jet-cores or fronts, and to set them into relation to the regions that have been600

deemed important for achieving high reconstruction accuracy. A limitation of the current LRP601

approach lies in the necessity of selecting reference locations, for which "point-to-field" relevance602

maps shall be computed. In exploratory data analysis tasks, it might be non-trivial to make sen-603
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sible decisions about which locations to look at in a first place. We therefore plan on refining the604

LRP-based analysis procedures to detect regions of high impact in an automated fashion and with605

a more global view to enable the interactive exploration "field-to-field" relevance relations. In a606

similar line of reasoning, we intend to include the time dimension in the analysis, e.g., by using607

temporal coherence and recurrence in the data to reduce the noise level of the derived LRP maps608

via temporal filtering or climatological summarization of relevances. Further efforts will be put on609

the investigation of alternative mechanisms for pursuing a sensitivity analysis, focusing more on610

spatial as well as temporal relationships between different parameters.611
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APPENDIX A620

Supplementary Visualizations for the WeatherBench Dataset621

The appendix provides supplementary figures illustrating specific aspects of V2V transfer in the622

first dataset, the WeatherBench renalysis (WB) dataset.623
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indicates those fields the network has learned to predict from the others. Bottom: Predicted parameter fields.
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APPENDIX B637

Variable-to-Variable Transfer for the Convective-Scale Ensemble638

The convective-scale ensemble simulation (CSEns), generated by Necker et al. (2020), contains639

1000 runs of a 3D atmospheric dynamics model over a rectangular domain in central Europe. Data640

are stored on a regular grid with 352×250 nodes, which corresponds to a horizontal grid spacing of641

3km and allows the resolution of convective effects in the model dynamics. The simulation covers642

a time interval of six hours, with a period of one hour between successive time steps, and comprises643

30 levels in height. In the lower levels, some of the data are invalid due to grid cells falling below644

the level of the surface topography. Levels with missing values are omitted. 3D data are available645

for a total of 9 different parameters, which are temperature (tk), u-, v-, and w- component of winds646

(u, v, w), geopotential height (z), relative humidity (rh), mixing ratio of all hydro meteors (qh),647

water vapor mixing ratio (qv), and radar reflectivity (dbz). Structural differences are observed648

not only between different parameters, but also between different timesteps and height levels of649

the same parameter. Specifically, the variation in the fields decreases with increasing distance650

from the earth surface, due to decreasing influence of boundary layer effects, and complexity651

increases with increasing simulation time due to a strengthening of convective activity. To enable652

a fair comparison between the CSEns and WB, we consider data only for the three lowermost653

levels without missing values, as well as the three latest time steps, which show the highest field654

complexity. We further split time-variate 3D fields both in time and height to obtain a sequence of655

plain 2D fields. We then consider data for 200 members for training, five members for validation,656

and the remaining members for testing and visualization.657

The appendix provides additional figures illustrating V2V transfer in the second dataset, the658

convective-scale ensemble (CSEns) by Necker et al. (2020), which were excluded from the main659

paper to improve readability.660
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Fig. B2. Bar charts showing the losses of all networks trained for 4-to-5 parameter transfer with the CSEns

dataset using the proposed iterative loss-based approach. Top left: first iteration, top right: second iteration,

bottom left: third iteration, bottom right: fourth iteration. Bars represent losses after five epochs of training.
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Fig. B6. Same as Fig. A1, but using the CSEns dataset.
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Fig. B7. Same as Fig. B4, but using the UNet architecture instead of the ResNet.
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Fig. B8. LRP relevancemapswith deviation-based selector function for theUNetmodel in the best input-output

configuration for CSEns data. Timestamp of data sample: June 1, 2016, 17h.
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Fig. B9. Quality comparison ofV2V against a dedicated compression algorithm for volumetric data. Parameter

field qv compressed at a rate of 12:1 with the publicly available CUDA compression library by Treib et al. (2012),

which provides lossy compression using a combination of the discrete wavelet transform, coefficient quantization,

run-length enconding, and Huffman coding. Top left: Original field, top right: Parameter field predicted using

4-to-5 V2V transfer. Bottom: Pixel-wise differences for reconstructed compressed field and V2V reconstruction.
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