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ABSTRACT
Density-based topology optimization using global and lo-

cal volume constraints is a key technique to automatically design
lightweight structures. It is known that stiffness optimal struc-
tures comprise spatially varying geometric patterns that span
multiple length scales. However, both variants of topology opti-
mization have challenges to efficiently converge to such a struc-
tural layout. In this paper, we investigate material layouts that
are generated from stress trajectories, i.e., to compile a glob-
ally consistent structure by tracing the stress trajectories from fi-
nite element simulation of the solid design domain under external
loads. This is particularly appealing from a computational per-
spective, since it avoids iterative optimization that involves finite
element analysis on fine meshes. By regularizing the thickness of
each trajectory using derived strain energy measures along them,
stiff structural layouts can be generated in a highly efficient way.
We then shed light on the use of the resulting structures as ini-
tial density fields in density-based topology optimization, i.e., to
generate an initial density field that is then further optimized via
topology optimization. We demonstrate that by using a stress tra-
jectory guided density initialization in lieu of a uniform density
field, convergence issues in density-based topology optimization
can be significantly relaxed at comparable stiffness of the result-
ing structural layouts.

∗Address all correspondence to this author.

1 Introduction
The design of optimal lightweight structures is a fundamen-

tal research topic in design engineering. It is known that stiffness
optimal structures, i.e., with minimum compliance measured by
strain energy, comprise spatially varying geometric patterns that
span multiple length scales [1]. To approach theoretically opti-
mal structures, early works in topology optimization (e.g. [2]) ex-
plored a material model corresponding to infinitely small square
cells with rectangular holes. The resulting multi-scale struc-
tures were deemed challenging for manufacturing. This had pro-
moted the field of topology optimization to shift its focus from
homogenization-based approaches to “mono-scale” approaches
that optimize the distribution of a homogeneous isotropic mate-
rial [3,4,5], e.g., using a material model known as Solid Isotropic
Material with Penalization.

Due to the increasing flexibility of additive manufacturing
(AM), recent years saw a resurgent interest in optimal design
of multi-scale structures. AM is effective for fabricating com-
plex mono-scale structures as well as delicate multi-scale struc-
tures such as infill lattices. We refer to a recent review article
for the history and latest developments in topology optimiza-
tion of multi-scale structures [1]. Among these approaches, it
is of particular interest to adapt the lattice orientation according
to stress directions. Topology optimization approaches for de-
signing conforming lattice structures can be categorised into two
groups: full-scale density-based topology optimization using lo-
cal volume constraints [6], and de-homogenization of optimized,
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locally defined orientations [7, 8].
Density-based approaches. Density-based topology optimiza-
tion commonly starts from a homogeneous initial density field
and then iteratively performs finite element simulation of the cur-
rent material distribution to optimize for structural performance,
under a constraint on the total material volume. Since the the-
oretically optimal structures are multi-scale, the density-based
approach in principle shall be able to achieve these multi-scale
structures. This, however, is only possible by using sufficiently
fine meshes for discretizing the material distribution, and re-
quires careful continuation techniques. Therefore, commonly
seen topology optimization results are predominantly mono-
scale.

To promote the appearance of fine scale substructures, lo-
cal volume constraints have been proposed to replace the to-
tal volume constraint [6]. This results in distributed substruc-
tures spreading across the design domain, which largely follow
the principal stress directions. This approach has been extended
in various directions, for instance, to design concurrently struc-
tures and porous substructures therein [9], porous structures with
gradation in the porosity and pore size [10, 11], fiber-reinforced
structures [12], and to incorporate multiple materials [13] and
self-supporting constraints [14]. Lately, as demonstrated by
Wang et al. [15], convergence issues may arise in the regions
enclosing degenerate points in the stress field, i.e., points where
the eigenvalues indicating major and minor stress direction be-
come indistinguishable. To reduce the number of optimization
iterations in these cases, Wang et al. proposed using the topolog-
ical skeleton, i.e., principal stress trajectories connecting pairs of
degenerate points, of the stress field in the solid object under load
to initialize the density field.
De-homogenization. In the seminal work of Bendsøe and
Kikuchi, they proposed a material model for infinitely small
square cells with rectangular hole [2]. Using numerical homog-
enization to evaluate equivalent mechanical properties of these
cells, one can optimize the spatially varying size as well as
orientation of such cells. The challenge that is addressed by
de-homogenization is to compile a globally consistent structure
from these locally defined unit cell configurations. Pantz et al
proposed one of the first solutions towards this end [7], which
has been further developed [8,16,17]. A key component in these
approaches is to seek a scalar field, whose gradient is aligned
with the optimized orientation. An effective alternative is to use
hexahedral meshing to create meshes with edges aligned to the
optimized orientation [18].

In this work, we investigate material layouts that are gen-
erated from stress trajectories, i.e., to compile a globally con-
sistent structure by tracing the stress trajectories from finite ele-
ment simulation of the solid design domain under external loads.
This is particularly appealing from a computational perspective,
since it avoids iterative optimization involving finite element
analysis on fine meshes. On this aspect, it is in line with the

de-homogenization approaches. Similar ideas to tracing stress
lines have been explored in [19, 20, 21, 22], yet a challenge is
to get a (quasi-)uniform distribution of the stress lines. To gen-
erate such layouts, we exploit recent results in trajectory-based
stress visualization [23], which automatically generate a regular,
smoothly varying, and space-filling structure consisting of trajec-
tories along the major and minor principal stress directions. The
thickness of each trajectory can be further regularized by using
derived strain energy measures along them. By converting the re-
sulting trajectory ensemble to a corresponding density field, stiff
structural layouts can be generated in a highly efficient way.

We then shed light on the use of the resulting structures as
initial density fields in density-based topology optimization, i.e.,
to generate an initial density field that is then optimized via topol-
ogy optimization. In density-based approaches, as with other
topology optimization approaches, the results are heavily influ-
enced by the initialization, both in terms of convergence and op-
timality of the optimized structural layout. This is because topol-
ogy optimization is a non-convex problem, and depending on the
initialization a different local optimum is reached. We demon-
strate that by using a material initialization guided by stress tra-
jectories instead of a uniform density field, convergence issues in
density-based topology optimization can be significantly relaxed
at comparable stiffness of the resulting layouts. In an exhaustive
study we compare the layouts generated by all variants regarding
their mechanical properties and computational cost.

The rest of our paper is organized as follows. In Section 2
we present the method to generate space-filling stress trajecto-
ries. The use of these stress trajectories for structural design and
for topology optimization is presented in Sections 3 and 4, re-
spectively. We then discuss the computational and structural per-
formance of different variants in Section 5, before concluding the
paper in Section 6.

2 Principal stress trajectories
A consistent visual representation of a 2D stress tensor field

can be obtained via principal stress trajectories, which convey
the directions of the principal stresses and are used in particu-
lar to show where and how loads are internally redirected and
deflected. We will subsequently call such trajectories Principal
Stress Lines (PSLs).

At each point in a 2D solid under load, the stress state is
fully described by the stress vectors for two mutually orthogonal
orientations. The second-order stress tensor

S(x,y) =
[

σxx τxy
τxy σyy

]
(x,y)

(1)

contains these vectors for the axes of a Cartesian coordinate sys-
tem. σxx and σyy are the normal stress components along the x
and y direction, respectively, τxy is the shear stress component.
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FIGURE 1. (a) Solid model discretized by 500×250 simulation elements. Gray and orange arrowheads, respectively, indicate fixation and loading
conditions. (b) Tensor glyphs show the principal stress directions. Red and green, respectively, indicate positive and negative principal stresses. (c)
Uniformly distributed PSLs. Orange and turquoise trajectories represent the major and minor principal stress directions, respectively. (d) Red dots
indicate PSL intersections, and curved PSLs are converted into piecewise linear segments.

S is symmetric since the shear stresses are equal on mutu-
ally orthogonal lines. The principal stress directions of the stress
tensor are given by the eigenvectors of S, indicating the two mu-
tually orthogonal directions along which the shear stresses van-
ish. The corresponding eigenvalues σ1 and σ2 of S represent the
magnitudes of the principal stresses. For σ1 ≥σ2, σ1 is called the
major principal stress, and σ2 the minor principal stress, and the
corresponding eigenvectors v1 and v2 are called major and minor
principal stress directions. The signs of the principal stress mag-
nitudes classify the stresses into tension (positive sign) or com-
pression (negative sign). Since there are two principal stresses
acting at each point, the classification is with respect to a specific
direction. Figs. 1a,b, respectively, show a 2D solid under exter-
nal loads and the principal stresses via elliptical tensor glyphs.
The semi-major and -minor axes of the ellipses correspond to the
major and minor principal stress directions.

PSLs are the trajectories that are everywhere tangent to ei-
ther the major or the minor principal stress direction. They are
computed by numerically integrating massless particles in each
single (normalized) eigenvector field (see Fig. 1c). PSLs are
started from an arbitrary seed points, and integrated until the do-
main boundary is reached, the PSL performs a loop, i.e. comes
closer to a previous point than a predefined distance threshold, or
the number of integration steps exceeds a user-defined bound. A
Runge-Kutta (RK2) scheme with fixed integration step size δ is
used for numerical integration. In each integration step, the stress
tensor T is interpolated and the eigenvalues and eigenvectors are
computed from the interpolated tensor. The next integration step
is performed in the direction with the least deviation from the
previous direction.

In addition to the regular PSLs, there are special PSLs com-
prising the so-called topological skeleton. These PSLs start from
a degenerate point of the stress tensor field and separate areas
of different stress behavior. Degenerate points are character-
ized by two equal eigenvalues, so that the principal directions
cannot be decided. In the vicinity of such points a set of hy-
perbolic and parabolic sectors exist, in which similar patterns
of neighboring trajectories are observed [24]. The topological

skeleton consists of the boundaries between adjacent sectors—
so-called separatrices—and indicate pathways along which the
forces are steered towards the degenerate points. To extract the
topological skeleton, first the locations of degenerate points are
computed by using the invariant formulation by Delmarcelle and
Hesselink [24], and then PSLs are started from these points (see
Figs. 5h,i for an example including the topological skeleton).

2.1 Uniformly distributed stress trajectories
To generate a uniformly distributed set of PSLs, we use the

publicly available visualization tool for 3D stress fields provided
by Wang et al. [23] 1. Designed for extracting and visualizing
the PSLs along the three mutually orthogonal principal stress di-
rections in 3D solids under load, with only minor modifications
the tool can be adapted to work with 2D objects.

Starting with a set of seed points that are uniformly dis-
tributed across the domain, PSL extraction starts by selecting
one of the candidate seed points and tracing the major and mi-
nor PSLs (the seed PSLs) passing through it. The point is then
classified as visited by major and minor PSLs. All remaining
seed points that have not yet been classified as major and minor,
and are closer to a new PSL than a threshold ϑ , are processed in
the following way: Firstly, the coordinate of such a point is set
(i.e., snapped) to the coordinate of the closest integration point
on the PSL (in the first step, the closest PSL of the seed PSLs).
Secondly, if the new PSL is a major PSL, the classification ma-
jor is added to the point, and minor if the new PSL is a minor
PSL. Then, the seed point that is closest to the initial seed point
and not yet classified as major and minor is selected, and a ma-
jor (minor) PSL is traced if the point is classified as minor (ma-
jor). Snapping, classification, and selection are then repeated
until all points are classified as major and minor. By this proce-
dure it is ensured that around each PSL a band is generated from
which no more PSL is seeded, and new PSLs are always seeded
from points on existing PSLs. This generates a fairly uniform
and space-filling distribution of PSLs (see Fig. 1c and Fig. 5).

1https://github.com/Junpeng-Wang-TUM/3D-TSV
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To include the topological skeleton, it is first extracted and all
separatrices are considered as seed PSLs as described before.

2.2 Piecewise linear PSLs
Each PSL is a curved trajectory in the 2D domain, com-

posed of a set of integration points that are connected via line
segments. Especially if the density of PSLs is low, PSLs tend to
curve strongly between two intersection points with other PSLs.
When using PSLs to generate an initial density field in which
the material is smeared out along them, curved segments require
more material than straight lines and are less stable than lines.
Therefore, after all PSLs are computed, we compute all intersec-
tion points between PSLs and convert each PSL into a polyline
comprised of intersection points and linear connections between
them. The result of this process is shown in Fig. 1d.

To efficiently compute piecewise linear PSLs, the following
extensions are introduced: Firstly, once a PSL is computed, the
integration points along this PSL are assigned an index relative
to one of the end points of that PSL, i.e., an index Iid

i says that
the point is the i-th point when counting from the selected end
point of the PSL with unique identifier id. Secondly, additional
information is stored at the cells of the simulation grid on which
stresses are simulated. At every cell a PSL is passing through,
the identifier of the PSL is stored. Thus, eventually each cell
contains the identifiers of all PSLs that might intersect in this
cell. Since only intersections between major and a minor PSLs
can occur, all cells with at least one identifier of a major PSL and
a minor PSL are considered, and the intersection points between
the major and minor PSLs are computed. This results in line-
line intersection test to obtain the locations of intersection points.
In addition, for each intersection point the indices of that point
along the PSLs it resides on are computed by linear interpolation
of the indices at the line end points. Each PSL stores a separate
list containing all intersection points that are found along it, so
that by sorting these lists with respect to increasing index a sorted
sequence of intersection points is obtained.

3 PSL-guided structural design
In the following, we describe how a density field is obtained

from the set of piecewise linear PSLs. This density field is then
used in a finite element stress simulation to compute the com-
pliance of the layout. In the following chapters, this layout is
then used as initial density field in topology optimization, and
the results are compared regarding their mechanical properties.

Given the current and next point along a piecewise linear
PSL, we use Bresenham line rasterization to compute all simu-
lation cells that are hit by the line connecting both points. These
cells are then set to solid, and the process moves on to the next
pair of points along the PSL. The result of the rasterization is
shown in Fig. 2a.

FIGURE 2. Material layout via PSL rasterization. From (b) to (c), the
thickness of the initial material structure in (a) is increased by morpho-
logical dilation.

The material layout can be flexibly and efficiently adjusted
by using a lower or higher density of the computed PSLs. Con-
crete timings for PSL extraction depending on the resolution of
the simulation grid and the PSL density are given in Sec. 5. When
smearing out the material along the PSLs as described, rather thin
structures are generated and the overall compliance of the layout
is only acceptable if many PSLs are used. To address this limi-
tation, the material structures can be thickened via a morpholog-
ical dilation using a 3× 3 structuring element, i.e., around each
solid cell also the 8 adjacent cells are made solid. This process
can be applied iteratively to increase the PSL thickness further
(see Figs. 2b,c). Next, we describe an approach to automatically
adapt the thickness of each PSL by considering a PSL’s impor-
tance regarding the overall compliance.

3.1 Strain energy guided thickness control
Automatic thickness control aims at using the prescribed

material budget in the most effective way so that a low compli-
ance is achieved. Therefore, the importance of each PSL for re-
ducing the compliance is used as an indicator of the PSL’s thick-
ness. The overall compliance of a material layout is computed
via the strain energies of the elements in the simulation grid, i.e.,
by adding the strain energies of all solid elements in the domain.
The overall compliance per PSL can be computed by adding the
strain energies of all elements covered by a PSL. In this way, the
contribution of each PSL to the overall compliance, i.e. to re-
sist the external loads, can be quantified. Specifically, the stored
strain energy of the i-th PSL is computed as

cTi =
Mk

∑
k=1

ce. (2)

Where Mk is the number of elements covered by the PSL. To
avoid that the importance of a PSL is dominated by its length,
cTi is finally divided by the number of elements directly inter-
sected by the PSL. The resulting values are then used to guide
the adjustment of each PSL’s thickness.

Material initialization starts by setting the initial PSL thick-
ness (t0) either to 2, i.e., at least there are three layers of cells
surrounding the PSL (see Fig. 2b), or to a larger value specified
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FIGURE 3. PSL-guided material layouts for two different PSL densities, with the used volume fractions (v) and resulting compliances (c). (a)
(v = 0.370, c = 2.657c0) and (c) (v = 0.250, c = 4.436c0): Layouts using PSLs with t0 = 2, decreasing brightness indicates increasing PSL strain
energy. (b) (v = 0.493, c = 1.839c0) and (d) (v = 0.499, c = 1.780c0): layouts corresponding to (a) and (c) where thickness is adapted according to
strain energy. c0 = 40.93 is the compliance of the fully solid domain.

by the user. This enables to consider manufacturing constraints,
for instance, to enforce a certain minimum thickness that is re-
quired by the printing process. Furthermore, a maximum thick-
ness tmax is set to reduce the chance that adjacent PSLs merge
and form thick strands. Now, in the case that the usable mate-
rial budget αglobal has not been reached by the initial material
layout, in descending order with respect to cTi the PSL’s thick-
ness is set to tmax until all material has been deposited. Thus, a
final layout comprising PSL-guided material structures with ei-
ther the minimum or maximum allowed thickness are generated.
We also performed tests using an assignment strategy that gen-
erates structures with thickness values within the whole range
from t0 to tmax, yet while this improved the overall compliance
only marginally it increased the computational overhead consid-
erably.

For two initial material layouts using different PSL densi-
ties, Figs. 3a,c show the importance values that are computed
per PSL by greyscales ranging from bright (low importance) to
dark (high importance). Figures 3b,d show the corresponding fi-
nal layouts after automatic thickness control. The finite element
simulation is then re-performed using the empty-solid material
design to evaluate the mechanical performance of the layout. It
can be seen that adaptive thickness control distributes the mate-
rial along regions that are important for achieving mechanically
sound layouts and improves the overall compliance.

4 PSL-guided structural topology optimization
In density-based topology optimization, the design variable

is the pseudo density of each element in the discretized design
space. A structural layout can be represented by a binary field,
i.e., density ρe equals 0 or 1, indicating an empty or solid el-
ement. The objective is to find the stiffest structure, i.e., min-
imum compliance, for a prescribed set of boundary conditions,
and under an upper bound on the global material fraction,

1
n ∑

e
ρe ≤ αglobal. (3)

Here n is the number of elements, and αglobal is the global mate-
rial fraction.

To solve the optimization problem by mathematical pro-
gramming, the binary variables are relaxed to take intermediate
values between 0 and 1. The Young’s modulus associated with
intermediate density values (Ee(ρe)) is interpolated from that of
a solid basis element E0 (i.e., ρ0 = 1).

Ee(ρe) = ρmin +ρ
p
e E0. (4)

ρmin is a non-zero small value, to avoid the stiffness matrix
becoming singular, typically ρmin = 10−6. The power p is a
key parameter for the validity of the optimized layout. p = 1
results in a convex optimization problem, but it overestimates
the attainable Young’s modulus for intermediate densities (cf.
Hashin–Shtrikman bounds [25]). The resulting optimized layout
consists of many intermediate density values, i.e. large grey re-
gions when visualizing the layout as an image. p = 3 is a reason-
able approximation of the Hashin–Shtrikman bounds [26], ac-
cording to which, for instance, half density (ρe = 0.5) gets much
less than half Young’s modulus. This physically valid interpola-
tion thus promotes the optimization to converge to a physically
valid structural layout (i.e., a binary density field). p > 1, how-
ever, raises a challenge for mathematical programming as the
optimization problem becomes non-convex. Given the fact that
the number of design variables in topology optimization is large,
there exist an extremely large number of local minima.

Strictly speaking, to approach theoretically optimal struc-
tures, one shall start with p = 1, and gradually increase its value
after some iterations, until p eventually reaches 3. Practically,
to cut down the number of iterations, one commonly starts di-
rectly with p = 3 (e.g., in the 99-line or 88-line Matlab ver-
sions [27, 28]). Meanwhile since the discretization resolution
of the design space is limited, the optimized structural layout,
under a global material volume constraint, often consists of dis-
tinctively bulk substructures (cf Fig. 4a) rather than a multi-scale
structure.

To design bone-inspired porous structures, Wu et al. pro-
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FIGURE 4. (a), (c): Structural layouts generated via topology optimization with global and local volume constraint, respectively, starting with a
homogeneous density field. (b), (d): Corresponding results when the initial density field is guided by PSLs, i.e., higher initial density is distributed
along the PSLs in Fig. 3a, and lower initial density is prescribed in all other regions. c is the compliance and c0 is the compliance of a fully solid
domain, v is the deposition ratio. s is the sharpness value introduced in Sec. 5, where a smaller value indicates a sharper binary layout. N represents the
number of iterations until s is reached.

posed to replace the global volume constraint with local volume
constraints [6]. A local volume constraint is applied to each ele-
ment, i.e.,

ρ̄e ≤ αe, ∀e (5)

where αe is a prescribed upper bound on the local volume. ρ̄e is
the average of densities in a small region centered at the centroid
of element e, computed by

ρ̄e =
∑i∈Ne ρi

∑i∈Ne 1
, Ne = {i| ∥ xi − xe ∥2≤ Re}, ∀e, (6)

where Re denotes the radius of a circular region. xi and xe rep-
resent the centroid of elements, Ne represents the number of ele-
ments within this circular region.

Figure 4c shows an example of using the local volume con-
straint. The optimization problem is solved using the method
of moving asymptotes (MMA) [29]. We refer to Wu et al. [6]
for a detailed discussion of the computational steps for avoiding
checkerboard patterns and stimulating a 0-1 design. The local
volume constraints are more restrictive than the global volume
constraint. Consequently, the optimized structure with the same
amount of total material is somewhat less stiff than obtained with
the global constraint. The benefits of the porous structures in-
clude robustness regarding material damage, unmodelled varia-
tion in boundary conditions, and buckling.

Density-based topology optimization under either global or
local volume constraints is dependent on the initialization of the
density field. Commonly in density-based topology optimiza-
tion, one prescribes ρe = αglobal or αe, ∀e, for global or local vol-
ume constraints, respectively.

We propose to use a PSL-guided density field to initialize
ρρρ [0]. In particular, we use the PSL-guided layouts as shown
in Figs. 3a,c for initialization. Here the elements correspond-
ing to the thickened PSLs (P) are prescribed a higher initial

FIGURE 5. Models used in our experiments. Grey regions and orange
arrowheads indicate fixations and loads, respectively. c0 is the compli-
ance of the fully solid layout under the boundary conditions. Orange and
turquoise trajectories represent the major and minor PSLs, respectively.
In (h), the topological skeleton that is traced from the two degenerate
points (black circles) is shown. The number of simulation elements
is 153,133 (’femur’), 70,042 (’hook’), 449,918 (’wrench’) and 95,028
(’bracket’).

value (ρ [0]
e∈P = 1 in this paper). The rest elements have a lower

value, ρ
[0]
e/∈P = αglobal or αe. Thus, the PSL trajectories are pre-

embedded into the ρρρ [0]. Figures 4a,b compare optimized layouts
using a homogeneous initialization and the proposed initializa-
tion, under the global volume constraint. Figures 4c,d compare
the effects of initialization for local volume constraints.

5 Results
We use several examples to compare the mechanical proper-

ties of PSL-guided material layouts to the layouts generated by
density-based topology optimization with and w/o PSL-guided
material initialization. All experiments have been carried out on
a desktop PC with an Intel Xeon CPU at 3.60GHz. The used op-
erations have been implemented in MatLab, to ease the combi-
nation of finite element stress analysis with PSL integration and
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FIGURE 6. Layouts for ’femur’. (a) Topology optimization with global volume constraint, homogeneous material initialization. (b) Same as (a) but
with PSL-guided material initialization. (c) Topology optimization with local volume constraint, homogeneous material initialization. (d) Same as (c)
but with PSL-guided material initialization. (e) PSL-guided material layout.

material layout. All design domains are discretized by Carte-
sian finite element grids with unit-size simulation elements. The
Young’s Modulus and Poisson’s ratio are set to 1.0 and 0.3, re-
spectively.

To analyze the convergence improvements when using PSL-
guided material initialization in topology optimization, we use
the sharpness measure

s =
4
n ∑

e
ρe(1−ρe). (7)

A small value of s indicates a sharper binary design of the opti-
mized layout. To facilitate the comparison of the convergence
behavior, according to [6, 15] we define that the optimization
process has converged once s is less than 0.01. Thus, the conver-
gence of different approaches can be compared easily by count-
ing the number of iterations (N) until the sharpness value is be-
low 0.01.

Generating the PSL-guided material layout involves a finite
element analysis to compute the stresses in the solid object under
load, followed by PSL extraction and material deposition along
PSLs. Strain-guided thickness control requires another finite ele-
ment analysis to compute the strain energy of the initial material
layout. A final simulation is used to evaluate the mechanical
properties of the layout. Even for the largest model ’wrench’
with 449,918 simulation elements (see Fig. 5e), the entire pro-
cess takes less than 30 seconds. When using the PSL-guided
layout as initialization for topology optimization, only the initial
finite element analysis to simulate the stress field is required. In
all our examples this is performed in less than 15 seconds.

In the following, the ’femur’ model shown in Fig. 5 is used
to compare the results of all proposed approaches and analyse
their specific properties. Figure 6 shows the generated material
layouts using the same external load conditions.

In Figs. 6b,a, the results of topology optimization with
global volume constraint with and w/o the proposed material ini-
tialization are compared. While the compliance and the number
of optimization iterations remain almost unchanged, very differ-
ent material layouts are generated. It is in particular apparent
that the final layout when the specific material initialization is
used contains far more fine-grained sub-structures which are dis-
tributed over the domain. In Figs. 6d,c, the comparison is with
respect to topology optimization under local volume constraint
with and w/o the proposed initialization strategy. In this case,
even at a significantly reduced number of optimization iterations
the compliance is still comparable. Furthermore, the resulting
layout appears more regular and is close to a 2D quad-mesh.

From Fig. 6e it can be observed that PSL-guided material
layout achieves similar compliance than topology optimization
with local volume constraint, yet the layout is generated at sig-
nificantly lower computational cost. While it requires only three
finite element simulations to generate the final layout, even with
the proposed material initialization topology optimization re-
quires over 300 iterations of finite element simulation and mate-
rial update. In addition, a very regular and uniformly distributed
layout is obtained.

Besides the compliance, we also evaluate the robustness of
the material layouts generated by the different approaches with
respect to local damage. Therefore, we remove a small piece of
material from the optimized structures, but the boundary condi-
tions are kept the same, see the region marked by a red box in
Fig. 7 left. By comparing the compliances before and after local
damage is applied (see Fig. 7 right), we see that the layout gen-
erated by topology optimization under global volume constraint
has the weakest robustness in the tested scenario. However, by
using the proposed material initialization, the robustness is im-
proved significantly. The result by the topology optimization un-
der local volume constraint is robust with respect to the local
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FIGURE 7. Robustness with respect to local damage. Left: Red box
indicates where material is removed. Right: Compliance comparison
before and after local damage. (a)-(e) correspond to the cases in Fig. 6.

FIGURE 8. (a) PSLs used to guide material deposition. (b) and (c):
PSL-guided material initialization of topology optimization with global
and local volume constraints, respectively. (d) PSL-guided material lay-
out with thickness control.

damage, which has also been demonstrated by the work [6], and
our initialization strategy doesn’t violate this feature. Further-
more, the result of using the PSL-guided structural design also
shows this characteristic of the result by topology optimization
under local volume constraint.

In addition to the experiments in Fig. 6 with a rather dense
set of PSLs, a second row of experiments has been conducted
with a more sparse set of PSLs for material initialization and
PSL-guided layout (see Fig. 8a). Again, the result in Fig. 8b
shows a more detailed and distributed material layout when these
PSLs are used for initialization in topology optimization with
global volume constraint. Figure 6c demonstrates improved con-
vergence rate of topology optimization with local volume con-
straint, and Fig. 8d supports our finding that PSL-guided material
layouts come at reasonably compliance yet significantly reduced
computational load. On the other hand, it becomes less signif-
icant compared to Fig. 6d since less PSLs are used. In order
to set an appropriate PSL distribution for the PSL-guided struc-
tural design or topology optimization, we recommend taking the
affecting radius Re in Eqn. 6 as a reference in selecting the snap-
ping threshold ϑ of 3D-TSV, where the former determines the
pore size of the porous infill, the latter controls the gaps among
different PSLs.

To further demonstrate the potential of PSL-guided material
initialization to improve the convergence of the optimization pro-

FIGURE 9. (a), (b) Only using the topological skeleton of the stress
tensor field as initial material field and the corresponding result [15].
(c), (d) The proposed approach.

cess, a comparison to the approach by Wang et al. [15] using only
the topological skeleton of the stress field in the initialization is
performed. We use the same ’bracket’ model (see Fig. 5g) as in
[15]. Figure 9 shows the generated material layouts and the per-
formance statistics for both variants. While the generated layouts
are similar in terms of compliance, our proposed initialization
can reduce the number of optimization iterations until conver-
gence by more than 30%.

By using the ’hook’ and ’wrench’ models, the basic features
of material initialization are further emphasized (see Fig. 10).
In particular, the results are in line with those obtained for ’fe-
mur’, with respect to compliance and number of optimization
iterations. Figure 11 shows rendering of 3D objects that were
created by extruding the 2D material layouts.

6 Conclusion and future work
In this work, we have analyzed the use of PSL-guided ma-

terial layouts for and as an alternative to density-based topol-
ogy optimization. We have demonstrated that the convergence of
topology optimization with local volume constraint can be sig-
nificantly improved when such layouts are used to initialize the
optimization process. When only a global volume constraint is
enforced, the robustness of the final layout with respect to local
damage is vastly improved. In both cases, the resulting layouts
show improved regularity and are more evenly distributed across
the domain.

When PSL-guided material layouts are used alone, with the
thickness of PSLs adjusted according to their mechanical proper-
ties, the resulting compliances are en par with those generated by
topology optimization with local volume constraint. In contrast,
however, the computational complexity of the generation pro-
cess is significantly reduced, and more regular and distributed
layouts are generated. While compared to topology optimiza-
tion with global volume constraint the overall resistance to the
considered loading conditions is reduced, the layouts show sig-
nificantly higher robustness to local damage. All of our exper-
iments have shown that highly regular, smoothly varying, and
distributed layouts are generated by PSL-guided material depo-
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FIGURE 10. From (a) to (e), and (f) to (j), respectively: Material layouts generated via topology optimization with global volume constraint (with
and w/o PSL-guided initialization), with local volume constraint (with and w/o PSL-guided initialization), and PSL-guided material layout.

FIGURE 11. The 3D objects created by extruding the 2D designs.
(a)-(f) correspond to Fig. 10b, d, e, g, i and j, respectively.

sition.
In the future, we intend to investigate the extension of PSL-

guided material deposition to 3D domains. In particular, we aim
at analyzing whether purely line-based structures can be obtained
in 3D. Furthermore, it will be interesting to apply PSLs to com-
pile global consistent structures from the local configuration of
optimized orthotropic rectangular cells in homogenization-based
topology optimization [18].
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