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We present a novel de-homogenization approach for ef-
ficient design of high-resolution load-bearing structures.
The proposed approach builds upon a streamline-based
parametrization of the design domain, using a set of
space-filling and evenly-spaced streamlines in the two mu-
tually orthogonal direction fields that are obtained from
homogenization-based topology optimization. Streamlines in
these fields are converted into a graph, which is then used to
construct a quad-dominant mesh whose edges follow the di-
rection fields. In addition, the edge width is adjusted accord-
ing to the density and anisotropy of the optimized orthotropic
cells. In a number of numerical examples, we demonstrate
the mechanical performance and regular appearance of the
resulting structural designs, and compare them with those
from classic and contemporary approaches.

1 Introduction
Achieving the highest stiffness while using the least

amount of material is a fundamental task in mechanical de-
sign. This is often formulated as an optimization problem,
e.g., topology optimization, in which the material distribu-
tion is optimized [1,2]. Early works in topology optimization
employ a material model corresponding to infinitely small
square cells with rectangular holes [3]. The orientation of
the cell and the size of the rectangular hole therein are opti-
mized to minimize the compliance of the structure. The ma-
terial properties of these orthotropic cells are constructed us-
ing homogenization. This homogenization-based approach
generates a mathematical specification of theoretically opti-
mal structures. Yet how to translate the specification of these

∗Address all correspondence to this author.

spatially-varying orthotropic cells into a globally consistent
geometry has remained a challenge. The lack of a consistent
geometry means that the optimal structure is not manufac-
turable. To circumvent this problem, the focus of research
in topology optimization has since the 1990s shifted to op-
timizing the distribution of solid isotropic materials. Popu-
lar approaches such as those based on density [4, 5], level-
sets [6, 7], evolutionary procedures [8], and explicit geomet-
ric descriptions [9, 10], all belong to this category.

Recent years have seen a revival of homogenization-
based approaches, with a focus on the post-process of trans-
lating the results of homogenization-based topology opti-
mization into a manufacturable geometry. This efficiently
generates high-resolution structural designs since topology
optimization is performed only on a coarse grid. This
post-process is now often referred to as de-homogenization.
Pantz et al. proposed one of the first solutions towards this
end [11], which was revisited and improved by Groen and
Sigmund [12] and Allaire et al. [13]. These approaches
have since been extended to 3D [14, 15], and to deal with
singularities in the optimized orientation fields [16]. A
key component in these approaches is computing a fine-
grid scalar field whose gradients are aligned with opti-
mized orientations from homogenization-based topology op-
timization. Wu et al. reformulated this post-process as
quad/hex-dominant meshing, i.e., constructing quad/hex-
dominant meshes whose edges are aligned with the opti-
mized orientations [17]. Stutz et al. [18] reported a method to
generate high-resolution multi-laminar structures from frame
fields by tracing the stream surface. They further formulated
the finding of such a set of well-spaced stream surfaces as an
optimization problem. Convolutional neural networks have
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also been found useful for de-homogenization [19]. Alterna-
tive de-homogenization approaches include [20, 21].

In this paper, we propose a streamline-guided de-
homogenization approach. Similar to the aforementioned de-
homogenization approaches, our approach takes as input the
width and orientation of spatially-varying square cells that
are optimized via homogenization-based topology optimiza-
tion. In contrast to the majority of prior de-homogenization
approaches that represent the final structure as a binary field,
our approach generates an explicit representation in the form
of a quad-dominant mesh. The edges of the mesh represent
beam-like sub-structures. The edges are aligned with the op-
timized cell orientations, and each edge is assigned a unique
width. This compact representation is beneficial for down-
stream operations such as user editing and fabrication pro-
cess planning.

Our technical contribution is a novel method to con-
vert the result of the homogenization-based optimization
process, i.e., the optimized cell widths and orientations,
into a domain-filling mesh whose elements are then de-
homogenized consistently. Our approach builds upon
streamlines, which are commonly used for flow and stress
tensor field visualization. Our approach avoids the projec-
tion step to optimize for a consistent fine-grid scalar field
(e.g., in [12]), and thus is computationally efficient. We
first parameterize the design domain using a set of domain-
filling and evenly-spaced streamlines that are aligned with
the edges of optimized cells. The streamlines are then
converted into a graph, from which we construct a quad-
dominant mesh whose edges follow the optimized direction
fields. For de-homogenization, the widths of the edges are
varied per element and along different directions according
to the average direction and volume fraction of the optimized
cells covered by an element.

We draw inspiration from prior work on structural de-
sign using principal stress lines (PSLs) [22, 23, 24]. The
structures following principal stress directions are continu-
ous, and this regularity is often appreciated in industrial de-
sign and architecture [25]. These prior explorations, how-
ever, make use of the principal stress directions in the stress
field of a solid object with isotropic material. It deviates from
the stress tensor field of the final optimized structure which
is composed of orthotropic cells. Furthermore, the uniform
sampling of the stress lines has been a challenge, and the
beam width was typically assigned based on heuristics. For
example, Kwok et al. [23] propose an iterative optimization
process in which lattice structures along PSLs appear incre-
mentally. This method works for concentrated loads but it
is challenging to cope with distributed loads on the design
domain. Wang et al. [24] use the space-filling and evenly-
spaced PSLs for structural design, where the beam width
is adjusted using a strain energy-based importance metric.
These approaches are attractive for their computational effi-
ciency, yet the stiffness of the obtained structures are sub-
optimal. In contrast to these works, we use the result of
homogenization-based topology optimization for streamline
tracing and to de-homogenize the single elements in the re-
sulting mesh structure. We show that this creates structures

with significantly improved stiffness.
The remainder of this paper is organized as follows.

We first give an overview of the proposed method in Sec-
tion 2. In Section 3, we review the problem formulation
of the homogenization-based topology optimization. In Sec-
tion 4 we describe the construction process of a space-filling
mesh from the direction fields that are optimized via homog-
enization. Mesh-based de-homogenization is presented in
Section 5, and we demonstrate the effectiveness of our ap-
proach in a variety of examples in Section 6. Section 7 con-
cludes the paper with a discussion of the proposed approach
as well as future research directions.

2 Method Overview
Our approach comprises three major stages, which are

illustrated in Fig. 1. The input is a design domain includ-
ing boundary conditions, i.e., the fixations of the domain and
the external forces (Fig. 1a). Furthermore, the material prop-
erties and the volume fraction that can be consumed by the
optimized layout are set by the user.

Optimization. In the first stage, homogenization-based
topology optimization is used to optimize the orthotropic cell
distribution (Fig. 1b). From this distribution, the direction
fields (Fig. 1c) and the density distribution (Fig. 1d) are ex-
tracted. The direction fields locally coincide with the edges
of orthotropic square cells whose deposition ratio and orien-
tation are optimized. The size of the rectangular hole within
each cell determines the local material consumption, and the
ratio between the widths of the cell’s edges determine the
local material anisotropy.

Parametrization. In the second stage, first a domain-
filling and evenly-spaced set of streamlines is computed in
the direction fields (Fig. 1e). Then, a graph structure is con-
structed, in which adjacent streamline intersection points and
intersection points with the initial domain boundaries are
connecting via edges (Fig. 1f). The graph is finally converted
into a mesh that is composed of mostly quadrilateral and few
triangular cells bounded by the edges of the graph (Fig. 1g).

De-homogenization. In this last stage, the final structural
design (Fig. 1h) is computed by jointly using the quad-
dominant mesh, the optimized density distribution, and the
anisotropy of optimized square cells. The mesh structure di-
vides the design domain into a space-filling set of elements
whose interior is filled with material according to the opti-
mized density distribution and the anisotropy of each ele-
ment.

3 Homogenization-based Topology Optimization
For structures under a single load, the theoretically op-

timal structural layout can be approximated by optimizing
the distribution of square cells with a rectangular hole [3].
As illustrated in Fig. 2a, the design domain is discretized
into finite elements. Each element represents a repetition of
an adapted configuration of the unit cell. The square cell
has a unit side length. Within it, there is a rectangular hole
(Fig. 2c). The configuration of the unit cell is thus described
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Fig. 1. Method overview. (a) The design domain and boundary conditions. (b) The optimized distribution of orthotropic cells from
homogenization-based topology optimization. (c) The mutually orthogonal direction fields defined by the axes of the orthotropic cells. (d)
The equivalent density distribution of the orthotropic cells. (e) Streamlines traced along the two orthogonal direction fields. (f) The graph
structure extracted from the streamlines. (g) The quad-dominant mesh obtained from the graph structure. (h) The final structural design.

by the hole sizes αx and αy and rotation angle θ. The me-
chanical properties of the unit cell is orthotropic. In this pa-
per we refer to these adapted cells as orthotropic cells. The
density or deposition ratio (ρe) of each cell is measured by
1−αxαy. The elasticity tensor of the orthotropic cell is com-
puted by

C(αx,αy,θ) = RT (θ)CH(αx,αy)R(θ), (1)

where R(θ) is the rotation matrix, and CH(αx,αy) represents
the effective elasticity tensor for an axis-aligned unit cell
with αx,αy, evaluated by numerical homogenization.

The structural design is formulated as compliance mini-
mization,

min
αααx,αααy,θθθ

1
2

FFFTUUU , (2)

subject to KKK(αααx, αααy, θθθ)UUU = FFF , (3)
1
n ∑

e
ρe−αglobal ≤ 0, (4)

0 6 αx, αy 6 1. (5)

Here the objective is to minimize the elastic energy. FFF is
the loading vector. UUU is the displacement vector, obtained
by solving the static equilibrium equation (Eq. 3). KKK is the
stiffness matrix in finite element analysis. n is the number of
finite elements. αglobal is the volume fraction prescribed by
the user.

We use the procedure reported by Groen and Sig-
mund [12] for solving the optimization problem. The edu-
cational code for this was provided in the review article [26].

Fig. 2. (a) The design domain is discretized into bilinear square
grids. (b) Each square element is assumed to be filled by the or-
thotropic material. (c) The size and orientation of the approximately
equivalent orthotropic cell, i.e., the square element with rectangular
hole, are taken as design variables in homogenization-based topol-
ogy optimization.

In this procedure, αx and αy are optimized by gradient-based
numerical optimization, while the rotation angle (θ) in each
iteration is determined by the corresponding principal stress
direction.

Figure 3 demonstrates the results of the
homogenization-based optimization for the “Cantilever”
model, showing the initial domain and external forces (a),
the extracted density layout (b) and the direction fields
of the optimized orthotropic cell distribution (c). Fig. 3d
provides a closeup view of the layout of the orthotropic
cells. This layout is not directly manufacturable, and needs
to be transformed into a consistent geometry.

4 Parametrization
The final goal of our approach is to convert the locally

spatial-varying orthotropic cells into a globally consistent ge-
ometry. While thick sub-structures or one single solid block
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Fig. 3. (a) The design domain. (b), (c) The optimal density layout and the corresponding direction field produced by the homogenization-
based optimization. (d) Closeup of the optimized orthotropic cells sampled from the highlighted region in (c).

should be placed in dense regions, in less dense regions only
few thin sub-structures are required. These sub-structures
follow the optimized direction fields. In contrast to previous
approaches that find a fine-grid scalar field with constraints
on its gradient, we trace streamlines along the optimized di-
rection fields. This ensures a global consistency of the sub-
structures, and their alignment with the optimized direction
fields.

We use the direction fields that are optimized via the
homogenization-based approach and generate a trajectory-
based parametrization of the design domain. Therefore, a
uniformly distributed set of streamlines in the direction fields
is computed, based on streamline computation techniques
that were initially developed for visualizing 3D stress ten-
sor fields [27]. The tool enables to compute and visual-
ize a space-filling and evenly-spaced set of streamlines in
three mutually orthogonal direction fields. It can be used
to work with 2D fields (i.e., the u- and v-field in our cur-
rent application), by setting the third vector field to zero.
We will subsequently call the corresponding streamlines in
the u- and v-field the u-streamlines and v-streamlines, re-
spectively. The streamline construction process ensures that
around each streamline an empty band is generated from
which no streamline is seeded, and new streamlines are al-
ways seeded from points on existing streamlines. In this way,
a fairly uniform and space-filling set of streamlines is com-
puted (see Fig. 4a).

Each streamline can be converted into a polyline consist-
ing of a set of intersection points and linear connections be-
tween them [28]. From this representation, a graph structure
with the nodes and edges, respectively, being the intersection
points and piecewise linear connections between them can be
easily constructed. By connecting adjacent integration points
on the domain boundaries, the final graph —due to the mu-
tual orthogonality of the u- and v- streamlines—comprises
mostly regions that are bounded by exactly four edges. Only
at degenerate points and at points lying on a boundary, re-
gions that are bounded by three edges can occur. The result
of this process is shown in Fig. 4b.

Finally, the graph structure is used to discretize the de-
sign domain into a set of independent elements, i.e., the in-
terior regions of the graph structure, so that each element
can be de-homogenized independently. The orientation of
the elements is given by the streamline skeleton, and the
de-homogenization process proceeds by filling the elements
with material according to the optimized density field. This
is performed by extruding material from the edges of each

element inward, according to the volume fraction of the con-
tinuous density field in each element. To do so, the graph
structure first needs to be converted into an explicit cell-
based mesh structure.

Since the 2D graph structure represents the connectiv-
ity (i.e. the edges) between the coordinates of the stream-
line intersection points, a quad-dominant mesh can be con-
structed in a straight forward way from this structure. By
iteratively processing the local vertex and edges topology
along streamlines, a mesh comprising quadrilateral and trian-
gular elements can be computed, along with the cell topology
that represents the cell adjacency information. Note that the
local ordering of nodes of each quadrilateral and triangular
cell needs to be consistent, i.e., either clockwise or counter-
clockwise. Figure 4c shows the constructed mesh from the
graph structure in Fig. 4b.

Singularities. To obtain a consistent mesh structure from
the streamline skeleton, singularities in the direction fields
need to be determined and treated in a special way. In our
case, where the direction fields coincide with principal stress
directions, singularities occur at so-called degenerate points
of the corresponding stress field, i.e., points where the two
eigenvalues of the stress tensor in the underlying stress tensor
field become indistinguishable. In the seminal work by Del-
marcelle and Hesselink [29] both the classification of degen-
erate points and their numerical computation is discussed.
In the vicinity of degenerate points a set of hyperbolic and
parabolic sectors exist, in which similar patterns of neighbor-
ing trajectories are observed. The topological skeleton con-
sists of the boundaries between adjacent sectors—so-called
separatrices—and indicate pathways along which the forces
are steered towards the degenerate points. By first extracting
the degenerate points and computing the topological skele-
ton, the separatrices can then considered as seed streamlines
as described before, so that an evenly-spaced set of stream-
lines is computed in each sector. Let us refer to the work by
Wang et al. [28] for a more detailed description of the imple-
mented procedure. Figure 11b and 13f show the embedding
of singularities into the computed streamlines.

5 De-Homogenization
In order to de-homogenize the optimal density layout,

i.e., to convert the continuous density layout into a binary
one, we utilize the constructed quad-dominant mesh and de-
homogenize the region covered by each mesh element sep-
arately. As shown in Fig. 5, each element covers a certain
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Fig. 4. Parametrization by streamlines. (a) Space-filling and evenly-spaced streamlines. (b) Graph structure. (c) Quad-dominant mesh.

Fig. 5. Correspondence between continuous material field and
mesh elements, facilitating the assignment of a material budget v∗i
to each mesh element and de-homogenization of each element sep-
arately.

region in the domain. The material in each region, i.e., the
deposition ratio, should be re-distributed so that a) a binary
material layout is generated, b) a continuous transition at the
element boundaries is obtained, and c) the orthotropic cells’
orientations, which have been optimized with respect to the
object’s compliance, is reflected in the binary material lay-
out. The target deposition ratio v∗i of a mesh element (see
Fig. 5) is measured by D

M , where M is the number of or-
thotropic cells located in the region covered by the element,
and D is sum of the density values over all these cells. The
de-homogenized mesh element should keep this deposition
ratio after de-homogenization.

Our approach allows to easily achieve different granu-
larity levels of the streamlines by setting the seeding rate.
Since the resolution of the corresponding quad-dominant
mesh varies spatially and is not necessarily at a resolution
comparable to the finite element discretization used in topol-
ogy optimization, the density and directions need to be re-
sampled from the finite element grid to compute the target
deposition ratio of a mesh element. This is performed via bi-
linear interpolation at a set of sampling points in each mesh
element.

5.1 Anisotropic mesh element
To distribute the material in a mesh element according

to the mentioned requirements, we propose to extrude the
available material from the edges of each element inward.
By starting with a minimal edge thickness, the edges are it-
eratively thickened until all available material is used. In this
way, we enforce a layout that aligns with the element orienta-
tion, seamlessly connects adjacent elements, and can further-
more account for an anisotropic stress distribution by adapt-
ing the edge thickness according to the mechanical properties

Fig. 6. Schematics of computing the area subtended by edges of
a certain thickness. From intersection points between dashed lines
(extruded edges) and edges of the mesh element the areas can be
computed.

of each element.
The process starts by removing mesh elements which

have a very low target deposition ratio (e.g., v∗< 0.05), in or-
der to avoid the generation of very thin mesh edges that can
cause difficulties in the manufacturing process. Similarly,
mesh elements with a large deposition ratio (e.g., D

M > 0.95)
are made fully solid. The edges of all remaining mesh ele-
ments are set to a minimum thickness t0.

Taking a single mesh element as shown in Fig. 6, its de-
position ratio v is computed as the sum of the areas Ai cov-
ered by each extruded edge, subtracting the sub-areas that are
counted twice, and then dividing by the total area of the ele-
ment. We start with two opposite edges and compute for each
edge the intersection points between the extruded edge and
the respective other mesh edges (P00,P01,P20,P21 in Fig. 6).
Including the endpoints of the mesh edges, this gives two
quadrilaterals A0, A2, whose areas can be computed via tri-
angulation. For the other two mesh edges, we use the newly
computed edge intersection points and the intersection points
between the four extruded edges, and compute two quadrilat-
erals representing the missing areas A1,A3. Now, the thick-
ness t of each edge can be increased iteratively from the ini-
tial value t0, until the actual deposition ratio v approaches the
target v∗, i.e., the available material budget is used.

In order to match the mechanical properties of the set
of orthotropic cells covered by a single mesh element, we
start with a minimal edge thickness, and then thicken the
edges according to the ratio of the edge thicknesses of the
orthotropic cells (Fig. 7). The edge thicknesses 1−αx and
1−αy as well as the orientation of an orthotropic cell have
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Fig. 7. Top: the edges are equally thickened (left) or thickened (us-
ing the same amount of material) according to the edge thicknesses
of the orthotropic cells they cover (bottom left). Bottom: For the set
of orthotropic cells covered by a mesh element, representative edge
thicknesses and orientation are computed via averaging. The arrow
length indicates the thickness of edges along the pointing direction.

been optimized to maximize stiffness of the resulting layout.
As such, if all cells covered by a mesh element have the same
thickness ratio, and are consistently orientated with the mesh
element, the material should be deposited along the element
edges so that the thickness ratio of the cells is maintained.
However, since the ratio and orientation vary across the cells,
in general, we first need to compute representative values for
both (see Figure 7 bottom for an illustration).

We do so by first computing the normalized thickness of
the cell edges ϕ1 and ϕ2 following the u- and v-field, respec-
tively, by adding up the values of the per-cell thicknesses and
dividing through the maximum of the resulting values, i.e.,

ϕ∗1 = ∑(1−αi
x), ϕ∗2 = ∑(1−αi

y),

ϕ1 = ϕ∗1/max(ϕ∗1, ϕ∗2), ϕ2 = ϕ∗2/max(ϕ∗1, ϕ∗2).
(6)

Then, to determine which edge of the mesh element cor-
responds to ϕ1 and which to ϕ2, we compute the average
direction vectors

−→
U and

−→
V of all the per-cell direction vec-

tors −→ui and −→vi , i.e.,
−→
U = norm(∑

−→ui ) and
−→
V = norm(∑

−→vi ).
We let the mesh edges correspond to

−→
U or

−→
V to which they

have the least directional deviation.
Now, we can introduce for each mesh edge e j a scaling

factor w j, which is calculated by e j = t0 +w jδ. Here δ is an
increment used for adjusting the edge thickness iteratively.
With the thicknesses and directions (ϕ1,

−→
U ) and (ϕ2,

−→
V ),

the corresponding weighting factor w j of the j-th element
edge is given by

w j = θ j1 < θ j2 ? ϕ1 : ϕ2. (7)

Here, θ j1 and θ j2 are the included angles between the j-
th element edge and the directions

−→
U and

−→
V , respectively,

and we consistently use the same thickness for opposite
edges in each quadrilateral element, and the triangular ele-
ments are treated as degenerate quadrilaterals where one of
the edges is collapsed, specifically, for each edge, the weight-
ing factor w j is determined by Eqn. 7.

It is worth mentioning that in rare cases the per-cell di-
rections may change considerably in a single mesh element,
and thus the per-element direction becomes less represen-
tative. To cope with this, the mesh element can be subdi-
vided into a set of smaller elements, for each of which the
de-homogenization is performed as described.

6 Results
We demonstrate our de-homogenization approach with

several examples, and compare the results to those of
density-based and de-homogenization approaches. In all
cases, the design domains are discretized by Cartesian grids
with unit-size. The Young’s modulus and Poisson’s ratio
are set to 1.0 and 0.3, respectively. Homogenization-based
topology optimization is performed with the Matlab code
provided in [26]. We terminate the optimization process
after 200 iterations. We have implemented the proposed
parametrization and de-homogenization operations in Mat-
lab as well. All experiments have been carried out on a
desktop PC with an Intel Xeon CPU at 3.60GHz. In all
of our experiments, the time for parametrization and de-
homogenization is less than a minute.

Comparison to density-based approaches. In our first
experiment, we use the cantilever model described in
Fig. 3a to demonstrate the properties of the proposed de-
homogenization approach and compare the results to those
of density-based topology optimization.

Figure 8 (top) shows the de-homogenization results for
different streamline densities, resulting in an increased or de-
creased number of ever smaller or larger mesh elements, re-
spectively. The compliances of the designs with different
granularity vary only slightly. With c0 being the compliance
of the fully solid domain, one can see that with the same
amount of material all resulting designs achieve almost the
same compliance of roughly 1.5c0. The compliance of the
de-homogenized binary layouts is slightly higher than that
from homogenization-based optimization (1.447c0).

In Fig. 8 (bottom), we compare our results to those gen-
erated by the stress trajectory-guided structural design by
Wang et al. [24], the porous infill approach using local vol-
ume constraints by Wu et al. [30], and density-based topol-
ogy optimization with a global volume constraint. In all ex-
amples, the same number of simulation element as for de-
homogenization in our approach is used.

Fig. 8d,e show the results of stress trajectory-guided
structural design. In (d), the material is distributed along
principal stress trajectories of the solid object under load, and
the thickness of the material is adapted according to the ac-
cumulated strain energy along each trajectory. Fig. 8e shows
the optimized material layout when the material field in (d) is
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Fig. 8. Top: Results with the proposed de-homogenization strategy. (a) to (c) demonstrate the changes due to different amounts of stream-
lines used in the parametrization stage. Bottom: Comparison to alternative approaches for generating a binary design via topology optimiza-
tion. (d) PSL-guided material layout [24]. (e) PSLs-initialized density-based topology optimization using a global volume constraint [24]. (f)
Porous-infill optimization with local volume constraints [30]. (g) Density-based topology optimization with a global volume constraint. c0 and
c, respectively, are the compliances of the fully solid domain and the shown results, v is the volume fraction.

used as initialization for topology optimization with a global
volume constraint. The generated layouts also show a very
regular structural design, but a considerably higher compli-
ance than the de-homogenization approach. The latter can
also be observed when comparing to porous infill optimiza-
tion (Fig. 8f) which applies a strict constraint on local vol-
ume. Here, besides having a smaller compliance, the de-
homogenized layout (Fig. 8a-c) also shows a more regular
structural layout. Notably, while porous infill optimization
generates many bifurcations, i.e., solid strands that merge
and split, the de-homogenization approach, per construction,
results in a grid-like structure mostly comprising quadrilat-
eral elements. Finally, compared to density-based topology
optimization with a global volume constraint (Fig. 8g), our
result still shows a slightly smaller compliance, yet the re-
sults are far more regular and, are expected to exhibit higher
stability when the load conditions are changed or certain
parts undergo damage, as demonstrated for evenly-spaced,
space-filling structures in [30, 28].

Comparison to de-homogenization approaches. In
Fig. 9, we compare the result that is obtained with our ap-
proach to the result of projection-based de-homogenization
by Groen and Sigmund [12]. To match their model config-
uration, the force applied to the cantilever model has been
changed accordingly, and homogenization-based topology
optimization is performed at a coarse grid resolution of
100× 50. Density based topology optimization using a
global volume constraint is also included here as a reference.
It is computed at a grid resolution of 1600× 800. It can
be seen that the compliance of the layout generated by our
approach (d) is only slightly higher than that of the layout
produced by the method of Groen and Sigmund in (e),
yet using a little less material. The layout in (e) has some
concentrated clusters in the middle of the domain, while
our approach generates a more uniform grid-like material

layout. This difference is likely due to the parameter setting
(e.g., the filter size) in the homogenization-based topology
optimization. While Groen et al. perform an optimization
to generate a consistent binary pattern at finer resolution
(1600× 800 in the example) from the coarse grid results, in
our method the resolution of the final layout is controlled
by the density of seeded streamlines. Since streamlines are
always traced in the initial domain, they always stay entirely
within the domain. The optimized quantities required
to trace streamlines and de-homogenize the final mesh
elements are reconstructed via bilinear interpolation from
the coarse grid.

Figure 10 shows the structural design that is generated
by our method when applied to the Michell’s structure ac-
cording to the specification in [12]. The coarse and fine grid
resolutions used for optimization and de-homogenization are
80×60 and 1280×960, respectively. In this case, the com-
pliance of our design (Fig. 10d) is lower than that of the
projection-based de-homogenization (Fig. 10e). As a side
note, perfect symmetry is not achieved because the stream-
line seeding process is not designed to consider symmetry in
the design domain or the underlying direction field. If sym-
metry is known beforehand, however, the seeding process
can be easily adapted to consider it.

From these two examples, it can be found that the
compliance from the proposed streamline based approach
is comparable to that from the projection-based approach
that requires solving for a scalar field by optimization. On
this aspect, the computation involved in our approach is
more efficient. For example, the parameterization and de-
homogenization for Fig. 9d took about 40 seconds, while
from [12], the de-homogenization for Fig. 9e took more than
2 minutes.

Singularity treatment. As we described in Section 4,
our proposed approach can handle situations where singu-
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Fig. 9. Comparison of de-homogenization approaches on a cantilever beam. (a) The design domain and boundary conditions. (b) The
result of density-based topology optimization with a global volume constraint simulated (c = 62.56, v = 0.500). (c) Optimal density layout,
superimposed with streamlines. (d) The de-homogenized structural design by our method (c = 60.04, v = 0.500). (e) The result of the
projection-based de-homogenization (c = 58.57, v = 0.510). The image is reproduced from [12].

Fig. 10. Comparison of de-homogenization approaches on a Michell’s structure. (a) The design domain and boundary conditions. (b)
The result of density-based topology optimization with a global volume constraint (c = 64.452, v = 0.250). (c) Optimal density layout,
superimposed with streamlines. (d) The de-homogenization using our approach (c = 62.301, v = 0.250). (e) The result of the projection-
based de-homogenization (c = 67.830, v = 0.252). The image is reproduced from [12].

Fig. 11. Tests on a cantilever beam fixed by the endpoints of its left boundary. (a) Optimal density layout (c∗ = 1.138c0, v = 0.500) and
streamlines. (b) The generated streamline graph. The degenerate point (singularity) is marked by the red circle. (c) The de-homogenized
structural design (c = 1.170c0, v = 0.500).

Fig. 12. (a) A cantilever under a distributed load along the right edge. (b) Result of density-based topology optimization with a global
volume constraint (c = 1.675c0, v = 0.500). (c) Optimal density layout (c∗ = 1.533c0, v = 0.500) and streamlines. (d) De-homogenized
structural design (c = 1.661c0, v = 0.500). (e) De-homogenized structural design with less streamlines (c = 1.680c0, v = 0.500).

larities exist in the direction fields that are obtained via
homogenization-based optimization. Such singularities usu-
ally incur discontinuities during streamline tracing, and they
furthermore result in low convergence for density-based
topology optimization under local volume constraints [28].

The singularity can be detected by topology analysis of the
orthogonal direction fields. As an example, we again use the
cantilever model (Fig. 3a), but now replace the distributed
fixation condition with point fixations applied on the end-
points of the left boundary. Fig. 11a highlights a singu-
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larity in the left part of the domain, where 3 u-streamlines
and 3 v-streamlines converge to a single point. This type
of singularity is termed a trisector degenerate point in stress
topology analysis, and the 6 streamlines are the correspond-
ing topological skeleton. Figure 11b shows the generated
mesh, which demonstrates that a consistent structure can be
obtained around the singularity. The de-homogenized result
is shown in Fig. 11c.

Distributed loads. Our de-homogenization approach nat-
urally works well also for distributed loads. Fig. 12a shows
the structural design problem under distributed loads. Fig. 12
compares the results of density-based topology optimization
with a global volume constraint to those of our proposed de-
homogenization method using different streamline densities.
The compliance from density-based topology optimization is
between the tight range of compliances of de-homogenized
structures with two different streamline densities. The devi-
ation of the compliances of the de-homogenized structures
(d and e) from the compliance in homogenization (c) is less
than 10%.

L-shape panel and MBB beam. We have also tested our
approach on an L-shaped beam and a double-clamped beam.
Figure 13 shows the optimized results. In both cases, the
compliance of the de-homogenized layout is about 5% higher
than the compliance after homogenization. It is worth noting
that also in the stress field of the double-clamped beam a
degenerate point occurs, which, according to the topological
skeleton, generates a grid composed of triangular and quadri-
lateral mesh elements around it. In these two examples, as in
previous examples, the compliance of the de-homogenized
structure is lower than that from the density-based approach
with a global volume constraint.

7 Conclusion and Future Work
In this paper, we have introduced a novel streamline-

based parametrization of a design domain to de-homogenize
the optimal continuous density layout produced by
homogenization-based topology optimization. The com-
pliance of the de-homogenized high-resolution struc-
tures is very close to that of the optimal design from
homogenization-based optimization, and it is consistently
superior to the compliance achieved via density-based topol-
ogy optimization. The resulting structures exhibit a glob-
ally regular appearance, uniformly covering the domain with
quad-dominant mesh elements.

In the current work we did not strive for an efficient im-
plementation of the method. However, streamline integration
and intersection computation can be effectively parallelized,
for instance, on a GPU. The intersection points are already
ordered along the streamlines, and graph as well as mesh
construction requires only local access operations to adja-
cent streamlines or intersection points. Thus, we believe that
the entire approach can be implemented on the GPU so that
even instant de-homogenization is possible once the contin-
uous density layout is available. We will consider such an
implementation in future work, and investigate the possibil-

Fig. 13. (a) Optimal density layout (c∗ = 1.332c0, v = 0.500) for
an L-shaped beam under a point load. (b) Inlet shows the binary
result of density-based topology optimization with a global volume
constraint (c = 1.399c0, v = 0.500). (c) De-homogenization re-
sult (c = 1.397c0, v = 0.500). (d) Optimal density layout (c∗ =
1.663c0, v = 0.500) for a double-clamped beam. (e) Binary re-
sult of density-based topology optimization with a global volume con-
straint (c = 1.808c0, v = 0.500). (f) Streamline graph used for
de-homogenization. A degenerate point is marked by a red circle.
(g) De-homogenization result (c = 1.763c0, v = 0.500).

ity for designers to probe different streamline densities and
seeding strategies. Finally, we are particularly interested in
extending this approach to design 3D beam-like lattice struc-
tures. A challenge here is that the intersection of indepen-
dently traced streamlines in 3D happen only coincidentally.
The optimization approach for constructing stream surfaces
from [18] could be an interesting direction to further explore.
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