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ABSTRACT
With rapid advances in the field of deep learning, explainable artificial intelligence (XAI) methods were introduced
to gain insight into internal procedures of deep neural networks. Information gathered by XAI methods can help to
identify shortcomings in network architectures and image datasets. Recent studies, however, advise to handle XAI
interpretations with care, as they can be unreliable. Due to this unreliability, this study uses meta information that
is produced when applying XAI to enhance the architecture – and thus the prediction performance – of a recently
published regression model. This model aimed to contribute to solving the photometric registration problem in
the field of augmented reality by regressing the dominant light direction in a scene. Bypassing misleading XAI
interpretations, the influence of synthetic training data, generated with different rendering techniques, is further-
more evaluated empirically. In conclusion, this study demonstrates how the prediction performance of the recently
published model can be increased by improving the network architecture and training dataset.
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1 INTRODUCTION
After the tremendous progress of deep learning (DL)
research in the past decade, gathering information on
how deep neural networks (DNNs) make decisions
from given input is gaining importance, as it may help
to identify weaknesses and flaws in datasets or network
architectures. This specific knowledge constitutes the
foundation of certification processes in security- or
safety-critical applications.

Therefore, in the past years, several explainable
artificial intelligence (XAI) methods to achieve a
human-comprehensible explanation of a DNN’s de-
cision process have been introduced, such as class
activation mapping (CAM), gradient-weighted CAM
(GradCAM), local interpretable model-agnostic expla-
nations (LIME) and layer-wise relevance propagation
(LRP). Both CAM (Zhou et al., 2016) and GradCAM
(Selvaraju et al., 2020) result in heat maps showing

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

what is considered important in an input image by
a network for a specific inferencing task. However,
CAM requires changes to a network’s architecture,
which renders this adjusted network incomparable
to its previous architecture. LIME (Ribeiro et al.,
2016) uses sampling masks to manipulate elements
in the input images so that the influence of a specific
element on the output function of a network can be
estimated. As a sampling-based approach, LIME
requires high-resolution masks to yield meaningful
results when investigating filigree feature structures in
the input images. LRP (Bach et al., 2015) propagates
the relevance from the output all the way back to the
input layer and generates a relevance map, highlighting
the pixels in the input images that contributed most to
a network’s output decision. Most approaches deploy
XAI methods to investigate classification problems. In
an approach to count leaves of plants (Dobrescu et al.,
2019), LRP is used to investigate how the number of
counted leaves is derived from a given photograph.

Applying these XAI methods, we present an analy-
sis of the reconstruction process of our DNN Netsx,sy ,
which was proposed in an earlier publication (Miller
et al., 2021) to predict the dominant light direction of
a scene in stereographic coordinates, and derive ar-
chitectural adjustments from it. We further investi-



gate the influence of computer graphics (CG) render-
ing techniques used in synthetic training data, such as
different shading models (Blinn, 1977; Cook and Tor-
rance, 1981; Lambert, 1760; Oren and Nayar, 1994)
and shadow algorithms (Boksansky et al., 2019; Fer-
nando, 2005; Williams, 1978), on the reconstruction
performance and derive recommendations to generate
synthetic training data.

The main contributions of this work can be summarized
as follows:

• Insights on how to improve the reconstruction re-
sults of our DNN Netsx,sy when regressing the dom-
inant light direction from real scene images using
XAI.

• Reduction of the reconstruction error by optimising
the net architecture.

• Reduction of the reconstruction error by optimising
the training dataset.

2 RELATED WORK
Previous work (Miller et al., 2021) showed that the
dominant light direction of a real scene can be estimated
more accurately from red-green-blue (RGB) images by
using a stereographic coordinate representation of the
dominant light direction, resulting in the stereographi-
cally predicting neural network Netsx,sy . This network,
trained on synthetically generated images, achieved an
average angular reconstruction error E] of 3.7◦ on syn-
thetic reference test data TSYN, as well as 25.5◦ on real
reference test data TREAL, which could be improved to
7.1◦ by training Netsx,sy on mixed data (99.2 percent
synthetic and 0.8 percent real training images). The
higher reconstruction error on real test data was as-
sumed to be caused by a notable domain gap between
synthetic and real datasets.

One possibility to improve the reconstruction perfor-
mance achieved by Netsx,sy is to analyse its decision
process using an XAI model (such as LRP or Grad-
CAM) and derive architecture optimisations from any
insight gained.

LRP (Bach et al., 2015), when applied to a DNN, prop-
agates the relevance, which is the contribution of a pixel
or hidden neuron to the predicted output value, layer by
layer from the output layer back to the input layer. Be-
tween two consecutive layers, relevance distribution is
associated with the connections between each layer’s
neurons, following a given distribution rule. The distri-
bution rule determines how relevance, i. e. positive or
negative contributions to the regression result, or com-
binations of both, is being propagated, which may allow
the importance of specific features in an input image to
be investigated.

To analyse a given layer, as a first step, GradCAM (Sel-
varaju et al., 2020) computes weighted feature maps by
scaling each feature map in the layer with its average
gradient. Those weighted feature maps are then com-
bined into a layer saliency map. By upscaling the layer
saliency map to the input resolution and overlaying the
input image with it, sensitive regions in the input image
can be highlighted. Unlike LRP, GradCAM analyses
one layer at a time.

Sanity checks (Adebayo et al., 2018) were introduced to
gain intuition on how reliable explanations of different
XAI methods may be by applying randomisation tests
for both model parameters, as well as data labels and
comparing the changes in the produced saliency maps.
According to Adebayo et al. (2018), visual inspection
of explanations alone may result in misleading conclu-
sions. An extending study (Sixt et al., 2020) concludes
that the gradient of most back-propagation based XAI
approaches, such as LRP with certain relevance distri-
bution rules, converges to a rank-1 matrix, which is why
saliency maps of those approaches tend to highlight fea-
tures of rather shallow network layers, not sufficiently
showing decisions in deeper layers. Hence, despite the
benefits XAI methods may provide, they also need to
be handled with care.

Though not referring to this, in an approach to count
the leaves of a plant (Dobrescu et al., 2019), LRP is
applied to analyse a VGG-16 DNN, similar to Netsx,sy ,
when regressing the number of leaves in a given image.
By investigating the features extracted by the convolu-
tional section and other experiments, such as manually
covering leaves, it was concluded that the investigated
DNN has indeed learned to regress the number of leaves
from actual depictions of leaves. However, the content
displayed in the investigated features was unhesitantly
accepted, disregarding a potential unreliability.

Another possibility to improve the reconstruction per-
formance is to optimise the dataset used for training,
in particular the synthetic dataset, by investigating the
influence of CG rendering techniques on the recon-
struction result and tailoring a well-performing training
dataset.

When optimising the training datasets to predict illumi-
nation situations, CG rendering techniques responsible
for illumination and shadows are most relevant. Most
basic illumination is achieved by applying the Lam-
bertian reflection model (Lambert, 1760), which cre-
ates diffusely illuminated surfaces. The Phong-Blinn
illumination model (Blinn, 1977) adds specular high-
lights to Lambertian reflecting surfaces by incorporat-
ing a half-way vector between light and view direction
into the illumination computation. Extending the Lam-
bertian reflection model, a more realistic diffuse illu-
mination was achieved by assuming surfaces consisted
of microfacets (Oren and Nayar, 1994), modelling sur-



face roughness with a probability function. By tak-
ing physical models for refraction, roughness and self-
shadowing into account, specular reflections could be
improved to appear more realistic (Cook and Torrance,
1981). Since local illumination models disregard global
phenomena like shadows, shadow mapping (Williams,
1978) introduced the ability to add hard shadows to
a CG scene, independent from the used illumination
model, by comparing computed depth values to values
sampled from a previously generated depth or shadow
map. The percentage closer soft shadows (PCSS) ap-
proach (Fernando, 2005) introduced soft shadows with
variable penumbra by taking the distance between the
shaded surface and blocker into account. When hard-
ware acceleration for ray tracing became widely avail-
able, algorithms (Boksansky et al., 2019) for both hard
and soft ray traced shadows could be incorporated into
real-time applications using APIs, such as Vulkan or
NVidia OptiX (Parker et al., 2010).

The presented study uses available XAI methods and
tailored datasets to further improve the prediction per-
formance achieved by Netsx,sy .

3 APPLYING EXPLAINABLE AI
The architecture of Netsx,sy (Fig. 1) inherits the con-
volutional section of the VGG-16 (Simonyan and Zis-
serman, 2014) architecture, initialized with ImageNet
(Russakovsky et al., 2015) pre-trained weights. Convo-
lutional block C5 was unlocked for training to adjust to
the regression task, so its weights have changed. C5 is
followed by a custom fully connected (FC) block, con-
sisting of a single FC layer Lh and a linear output layer
Lo. Lh contains 4,096 neurons, is activated by a rec-
tified linear unit (ReLU) function and uses a dropout
value of 0.25. Lo consists of two output neurons with-
out an activation function to regress stereographic coor-
dinates sx and sy, representing the dominant light direc-
tion. Netsx,sy was trained using Adam as the optimizer,
a batch size of 32 and a uniform learning rate of 1e−31.

In order to improve the prediction results of Netsx,sy , a
deeper understanding of its internal function and deci-
sion process may be helpful. However, additional archi-
tecture elements, as required by CAM, might notably
change the reconstruction performance of Netsx,sy , as
well as the net itself, which is why CAM cannot be
reasonably applied. Initial evaluation of LIME indi-
cated that a fine-grained sampling mask would be re-
quired to produce meaningful explanations, which re-
quires impractically high computing time even on high-
performance computers.

1 Given as uniform learning rate of 1 in Miller et al. (2021),
which means 0.001 when using Adam as the optimizer.
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Figure 1: Diagram of the architecture of Netsx,sy .

LRP and GradCAM neither require high computing
power, nor changes to the architecture when investigat-
ing a network. Thus, LRP and GradCAM are applied to
analyse Netsx,sy .

Ideally, XAI methods yield easily interpretable saliency
maps, identifying distinct image regions in the input,
such as surface shading or shadow edges. Those im-
age regions, when changed, may significantly influence
the reconstruction performance. Consequently, to in-
vestigate positive and negative contributions to the re-
gression result, when applying LRP, the relevance is
distributed with the αβ -rule (Bach et al., 2015)

Ri = ∑
j

(
α ·

(aiwi j)
+

∑i (aiwi j)
+ −β ·

(aiwi j)
−

∑i (aiwi j)
−

)
R j (1)

with α = 1 and β = 0 for positive, or α = 0 and β = 1
for negative contributions, respectively. When propa-
gating the relevance back through a network using the
αβ -rule, the relevance Ri of a particular neuron i in the
target layer is computed by proportionally summing up
the relevance R j of each neuron j in the source layer
that it is connected to. The proportion to which each
R j contributes to Ri is given as the quotient of the con-
nection contribution, i. e. the product of i’s activation
value ai and the connection weight wi j between neu-
rons i and j, and the sum over all connection contri-
butions between neuron j and any neuron in the target
layer. This proportion is then separated into a positive
and negative partial sum, indicated by superscript plus
sign and minus sign, respectively. However, distribut-
ing the relevance with the αβ -rule causes LRP to con-
verge to a rank-1 matrix (Sixt et al., 2020) and thus may
not reliably provide insight into the decision process of
Netsx,sy . GradCAM as a gradient-based XAI method
may provide valid insights, as it is not affected by this
issue.

Interpreting image regions highlighted by the saliency
maps of LRP or GradCAM remains difficult, nonethe-
less, as Netsx,sy does not predict discrete classes, but
continuous values of sx and sy, denoting the dominant
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Test Image 1: sx
Test Image 1: sy
Test Image 2: sx
Test Image 2: sy
Test Image 3: sx
Test Image 3: sy

Figure 2: Relevance conservation of mixed trained Netsx,sy for sx (solid) and sy (dash-dotted) neurons. Steep
changes between layers indicate loss of relevance (highlighted), most likely due to the bias (note: the red highlight
is inherent to the pre-trained VGG-16).
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Figure 3: Bias deviation of mixed trained Netsx,sy . The high bias deviation in block5_conv3 may suggest the reason
for the occurring relevance loss.

light direction in the scene. Different from classifi-
cation, no statistical accumulation of saliency maps,
which relates to a certain class, is formed due to the
continuous values. Therefore, deriving statistical infor-
mation, which image regions are important for a cer-
tain prediction, from saliency maps of single images,
which constitute merely a momentary snapshot, cannot
be considered reliable. A statistical evaluation, indicat-
ing how significant particular image regions are asso-
ciated to a regression result, might accumulate saliency
maps over a series of input images with same predic-
tions and thus identify important image regions. How-
ever, this is most likely bound to fail as well due to the
scene diversity (meaning different objects, light direc-
tions and camera directions) depicted in the images and
the spatial variation of the image regions, leading to a
map with scattered accumulated highlights not contain-
ing helpful information.

So, how can XAI be applied to analyse Netsx,sy as a
regression model? During the calculation of XAI meth-
ods, meta information is generated, such as relevance
conservation when applying LRP, which can be used

to gain intuition about the inner structure of a net-
work. Relevance conservation means that relevance
is assumed to be constant across the layers of a DNN
and is a constraint of LRP computation. Inside a layer,
the relevance is distributed to the bias and all neurons.
However, only the relevance distributed to the latter is
propagated to the next layer. Hence, jumps in a rele-
vance conservation plot indicate a bias-heavy decision
contribution in the affected layer. Initially, the convolu-
tional section of Netsx,sy was assumed to extract relevant
features from the input image, and the FC block would
connect this feature information into knowledge about
the illumination situation. Analysing the relevance con-
servation of Netsx,sy (Fig. 2), however, indicates a signif-
icant loss of relevance, particularly between the third
convolutional and pooling layer of C5 (block5_conv3
and block5_pool), suggesting the weighted sum that is
passed to the activation function is significantly influ-
enced by bias. This is further supported by analysing
the bias deviation in each layer (Fig. 3), showing a high
bias deviation in block5_conv3. The bias deviation is
analysed by plotting the deviation of bias values from



the average bias value in each layer. The bias value of
single bias layers, such as FC layers, are captured by the
average bias value in that layer, denoting the actual bias
value. Interpreting the graphs, the convolutional section
is not only extracting features, but also appears to pre-
select important features in block5_conv3 through bias
values. Each feature map of block5_conv3 maintains a
dedicated bias value, which may suppress or dampen a
feature map with negative or small bias values in favour
of feature maps with a significant positive bias value
when passed to the ReLU activation function. Due to
this pre-selection, it appears that the FC block merely
combines already existing information into regression
values without providing new knowledge in that sense,
leading to the hypothesis that the FC block may be re-
placeable with a linear layer. This hypothesis is inves-
tigated by replacing the FC block of Netsx,sy with a sin-
gle linear layer with two output neurons. The changed
architecture (Fig. 4) is called linear feature aggregation
network (LFAN).
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Figure 4: Diagram of the LFAN architecture.

When analysing the regression of the amount of leaves
in a given image, Dobrescu et al. (2019) interpreted
the contents of features extracted by the convolutional
section of their VGG-16 and concluded their DNN
would count leaves in given images using intended
information, though disregarding research (Adebayo
et al., 2018; Sixt et al., 2020) recommending to handle
results of XAI methods based on back-propagation
with care. However, extracted features, computed by
forward-propagating an image through the convolu-
tional section of Netsx,sy , choosing a particular feature
map and propagating its relevance back through the
net, may contain a different form of meta information,
such as certain regions a feature map is sensitive to
in the input image (Fig. 6). Seemingly, the convo-
lutional section of Netsx,sy extracts abstract chunks
as features, containing small sections of the input
scene. These abstract chunks show combinations
of unrelated image content, such as partial shadow
edges or fractions of shaded surfaces. When trying
to predict the dominant light direction of a scene,
considering a wide or even global area of the input

scene may be beneficial, leading to the hypothesis
that a deeper convolutional section may improve the
regression result. This hypothesis is investigated by
using a fully convolutional network (FCN), which adds
two additional convolutional blocks, each consisting of
one convolutional and one max-pooling layer, to the
convolutional section and completes the network with
a single linear layer with two output neurons (Fig. 5).
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Figure 5: Diagram of the FCN architecture.

Analysing the extracted features this way does not rely
on a subjective interpretation of feature content, but on
neutral metrics, such as the receptive field of a certain
feature map.

3.1 Training LFANs and FCNs
Since LFANs and FCNs share architecture elements
with Netsx,sy , synthetically and mixed pre-trained
weights are available to be used for transfer learn-
ing. Hence, the same training process used for
Netsx,sy applies, meaning the training is split into
hyperparameter-tuning (where needed) and fine-tuning.
During hyperparameter-tuning, the convolutional
section inherited from VGG-16 is disabled for training.
Then, convolutional block C5 is enabled for training
during fine-tuning and the learning rate is reduced
to a thousandth. Due to the FC block only being
replaced by a single linear layer, LFAN training
solely requires fine-tuning and is performed with the
same hyperparameters used to train Netsx,sy (Section 3,
mentioned optimizer, batch size and learning rate).
Training the FCNs requires hyperparameter-tuning
prior to fine-tuning in order to find suitable parameter
values, such as the number of filters in both the first
and second added convolutional layer, whether to use a
bias in these layers, the optimizer to use, the learning
rate and the batch size. To tune the hyperparameters,
the Bayesian optimisation module of Keras Tuner2

2 After a comparison of Keras Tuner (https://github.com/keras-
team/keras-tuner), Optuna (Akiba et al., 2019) and Ta-
los (http://github.com/autonomio/talos), Keras Tuner was se-
lected due to its tuning performance compared to the required
tuning time.



Figure 6: Given an input sample (left most), the convolutional section of mixed trained Netsx,sy extracts abstract
feature chunk samples (remaining images).

Hyperparameter FCNSYNTH FCNMIXED

optimiser Adam RMSProp
learning rate 1.5e−4 6.1e−5

batch size 16 64
filters1 682 1371
filters2 1347 64

use_bias false false
Table 1: Best hyperparameter combinations for FCNs
with synthetic (FCNSYNTH) and mixed (FCNMIXED) base
weights of Netsx,sy .

is used over 50 trials, training for five epochs each
and identifying the best hyperparameter combinations
(Table 1). Further, all trainings are conducted with
the same datasets, synthetic and mixed, Miller et al.
(2021) used to train Netsx,sy due to comparability.
Additionally, the influence of data augmentation is
investigated by conducting each training with enabled
and disabled augmentation, i. e. the variation of image
brightness, image translation and image zoom. All
trained networks are predicting the dominant light
direction in stereographic coordinates.

4 DATASETS
To investigate the influence of CG rendering techniques
on the prediction performance of Netsx,sy , DNNs using
the same architecture and hyperparameters (Section 3,
first paragraph) as Netsx,sy are trained on datasets with
varying rendering techniques and tested on TSYN and
TREAL (Section 2, first paragraph).

The datasets are generated with combinations of vary-
ing rendering techniques, each combination consisting
of technique selections from three categories: diffuse
reflections, specular reflections and shadows. Generat-
ing the datasets is realized in a dedicated application,
using OpenGL and NVidia OptiX (Parker et al., 2010)
and implementing rendering techniques for each cat-
egory. As common CG rendering techniques for dif-
fuse illumination, the Lambertian (Lambert, 1760) and
Oren-Nayar (Oren and Nayar, 1994) reflectance mod-
els are implemented. Phong-Blinn (Blinn, 1977) and
Cook-Torrance (Cook and Torrance, 1981) reflection
models are implemented for specular reflections. Shad-
ows of varying quality are evaluated by implementing

plain shadow mapping (Williams, 1978) for hard shad-
ows and PCSS (Fernando, 2005) for shadows with vari-
able penumbra. When implementing PCSS, soft shad-
ows are simulated by implementing percentage closer
filtering (PCF), introduced by Reeves et al. (1987), ap-
plying a randomly rotated Poisson disc for each frag-
ment when sampling the shadow map to avoid artefacts
at the edges of the shadow. All shadow mapping tech-
niques are implemented with an adaptive depth bias
(Ehm et al., 2015) to avoid further shadow artefacts.
Additionally to shadow mapping, ray tracing is used
to render shadows. When implementing ray traced
shadows, NVidia OptiX (Parker et al., 2010) is used,
as de-noising is handled automatically by the frame-
work. Both hard and soft ray traced shadows (Boksan-
sky et al., 2019) are implemented by sending shadow
rays from a possibly shaded surface location towards
the light source. Since no real-time requirement applies
to generate the datasets, the naive approaches are im-
plemented. For hard shadows, caused by a point light
source, one single shadow ray is cast; for soft shadows,
up to 256 shadow rays are cast to randomly sample a
spatially extended light source. Additionally, a naive
approach for ambient occlusion (AO) with ray tracing
(Nischwitz et al., 2019) is implemented by sampling
the close proximity of a fragment with fixed length rays
checking for hits with structures and reducing the light
intensity proportionally.

Light directions and camera positions used in the gener-
ated datasets are similar3 to the directions and positions
used in the reference dataset presented by Miller et al.
(2021) to train and test Netsx,sy , ranging from [0◦,360◦[
azimuth and [5◦,90◦] elevation in 5◦ steps each for the
light direction distribution and in steps of 45◦ and 30◦

for azimuth and elevation of the camera positions, re-
spectively.

To avoid an explosion of datasets and trainings re-
quired to be evaluated, the influence of the chosen re-
flection models is investigated systematically by start-
ing out with shadowless combinations of Phong-Blinn
and Lambert, Phong-Blinn and Oren-Nayar, and Cook-

3 Identical, except for the starting value of the elevation angle,
which is 5◦ instead of 1◦ due to visibility. Next iteration of
camera positions is 30◦ instead of 35◦.



Torrance and Lambert, varying the surface roughness
with discrete values of 0.25, 0.5, 0.75 and 1.0 for com-
binations with either Oren-Nayar or Cook-Torrance.
Two additional combinations using Cook-Torrance and
Oren-Nayar with a roughness of 0.5 and 0.75 are be-
ing investigated, after the first evaluation, resulting in a
total of 11 datasets with different illumination. Each of
the illumination datasets is then rendered with a shadow
algorithm: hard shadows with shadow mapping, hard
shadows with ray tracing, soft shadows with PCSS,
ray traced soft shadows with 256 shadow rays and ray
traced soft shadows with ray traced AO (both sampled
with 256 rays). This way, 55 datasets with illumina-
tion and shadows, as well as 11 datasets with illumi-
nation but without shadow, are generated and investi-
gated, resulting in a total of 66 different datasets. The
three datasets that perform the best on TREAL are even-
tually mixed with the same small fraction of real data
used in the mixed data to train Netsx,sy and evaluated
on TSYN and TREAL to determine the dataset with best
performance overall.

5 RESULTS
To remain comparable to results achieved by Netsx,sy ,
all introduced network architectures were tested with
the same synthetic and real reference test dataset as
used in Miller et al. (2021), aforementioned as TSYN and
TREAL.

The reference network Netsx,sy , trained with mixed data,
achieved an average angular error E] of 7.1◦ on TREAL.
When being trained on synthetic data, Netsx,sy achieved
an error of E] = 3.7◦ on TSYN and 25.5◦ on TREAL, re-
spectively. No data was given for Netsx,sy being tested
on synthetic data and trained with mixed data (Table 2).

TSYN TREAL

SYNTH TRAINED 3.7◦ 25.5◦

MIXED TRAINED n/a 7.1◦

Table 2: Netsx,sy reference results.

Each architecture variant, LFAN and FCN, was trained
on different base weights, i. e. the inherited convolu-
tional section was initialized before training with dif-
ferent pre-trained weights: the weights of both the syn-
thetically and mixed trained Netsx,sy , and weights of an
ImageNet pre-trained VGG-16. Using ImageNet pre-
trained base weights did not show any improvement and
thus are not displayed.

Investigating the LFAN architecture performance (Ta-
ble 3), initializing the convolutional section with base
weights of the synthetically trained Netsx,sy improved
the average angular error E] on TREAL from 25.5◦ (pre-
viously achieved by the synthetically trained Netsx,sy )
to 22.8◦ when using synthetic data to train the LFAN.

TSYN TREAL Base Augm.
SYNTH TRAINED 1.6◦ 22.8◦ SYNTH Netsx,sy NO

SYNTH TRAINED 1.7◦ 6.8◦ MIXED Netsx,sy NO

MIXED TRAINED 2.4◦ 18.3◦ SYNTH Netsx,sy NO

MIXED TRAINED 2.4◦ 6.2◦ MIXED Netsx,sy NO

Table 3: LFAN evaluation results. Entries in the column
Augm. indicate whether data augmentation was used.

TSYN TREAL Base Augm.
SYNTH TRAINED 1.4◦ 32.4◦ SYNTH Netsx,sy NO

SYNTH TRAINED 1.4◦ 6.5◦ MIXED Netsx,sy NO

MIXED TRAINED 1.3◦ 7.3◦ SYNTH Netsx,sy NO

MIXED TRAINED 1.4◦ 5.7◦ MIXED Netsx,sy NO

Table 4: FCN evaluation results. Again, entries in the
column Augm. indicate whether data augmentation was
used.

This could be further improved to 18.3◦ by training
the LFAN with mixed data. On TSYN, these syntheti-
cally based LFANs achieved an error of 1.6◦ using syn-
thetic and 2.4◦ with mixed training data. Using the base
weights of mixed trained Netsx,sy , the average angular
error E] = 7.1◦ on TREAL (achieved by mixed trained
Netsx,sy ) could be improved to 6.8◦ when training the
LFAN with synthetic data and to 6.2◦ with mixed train-
ing data. When tested on TSYN, similar values as before
with 1.7◦ with synthetic and 2.4◦ with mixed training
data are achieved.

Compared to the synthetically trained Netsx,sy , the pre-
diction performance of the FCN architecture improves
to E] = 1.4◦ from 3.7◦ on TSYN using synthetic train-
ing data and synthetic base weights, but decreases from
25.5◦ to 32.4◦ on TREAL (Table 4). Using synthetic base
weights and mixed training data, similar behaviour is
shown, as the prediction performance improves to 1.3◦

on TSYN and declines to 7.3◦ on TREAL from 7.1◦ origi-
nally. Contrary to that, when using mixed base weights,
the FCN architecture achieves 1.4◦ on TSYN with both
synthetic and mixed training data. Also, using mixed
base weights improves the prediction performance of
this FCN variant with synthetic training data to 6.5◦ and
with mixed training data to 5.7◦ on TREAL.

After investigating the various datasets, the dataset
DSRTS (Fig. 7a) using Cook-Torrance as specular,
Oren-Nayar as diffuse reflection model and ray traced
soft shadows without AO performed the best. Though
not containing any shadow, dataset DSNoS (Fig. 7b)
using Cook-Torrance and Oren-Nayar without AO
performed second best. To distinguish the models,
the DNNs trained with DSRTS and DSNoS are named
NetRTS and NetNoS, respectively, though they use the
same architecture and hyperparameters as Netsx,sy , as
well as ImageNet pre-trained weights. When trained
solely on synthetic DSRTS images, NetRTS achieves an
average angular error of E] = 20.2◦ on TREAL and 35.5◦

on TSYN. Mixing DSRTS with the small real training set



(a) Dataset DSRTS: ray traced soft shadows, Cook-Torrence specular and Oren-Nayar diffuse illumination with roughness 0.75.

(b) Dataset DSNoS: No shadows, Cook-Torrance specular and Oren-Nayar diffuse illumination with roughness 1.0.

Figure 7: Dataset samples of the two best performing datasets.

used by Miller et al. (2021), the thereby mixed trained
NetRTS achieves an error of 4.4◦ on TREAL and 23.4◦

on TSYN, indicating a significant domain gap between
DSRTS and TSYN (Table 5). Similar behaviour is shown

TSYN TREAL Augm.
SYNTH NetNoS 35.5◦ 20.2◦ YES

SYNTH NetRTS 32.1◦ 20.2◦ YES

MIXED NetNoS 38.5◦ 5.7◦ YES

MIXED NetRTS 23.4◦ 4.4◦ YES

Table 5: Evaluation results of the dataset investigation.
Prefixes in front of the network names indicate the used
training dataset. Entries in the column Augm. indicate,
whether data augmentation was used.

by DSNoS, though accuracy is worse overall compared
to DSRTS. NetNoS, when trained solely with synthetic
images of DSNoS, achieves an angular error of 20.2◦

on TREAL and 35.5◦ on TSYN. Adding the small real
training images to DSNoS and training NetNoS with this
mixed dataset achieves an error of 5.7◦ on TREAL and
38.5◦ on TSYN, again indicating a significant domain
gap between DSNoS and TSYN.

It is noteworthy that both LFAN and FCN architec-
tures perform best exclusively without data augmenta-
tion, whereas DNN architectures with FC elements per-
formed best with data augmentation enabled.

In summary, the previous state of the art with an error
of 7.1◦ (mixed trained Netsx,sy ) on TREAL is improved to
6.2◦ with a mixed trained LFAN. It could be further im-
proved to 5.7◦ with a mixed trained FCN. Both DNN ar-
chitectures were pre-trained with mixed trained Netsx,sy

base weights. Mixed trained NetRTS with an error of
4.4◦ achieves the best performance (Table 6).

6 DISCUSSION
In conclusion, this study demonstrates successful use
of XAI meta information to systematically improve the

TREAL

MIXED Netsx,sy 7.1◦

MIXED LFAN 6.2◦

MIXED FCN 5.7◦

MIXED NetRTS 4.4◦

Table 6: Summary of results gathered from tables 2 to 5.

prediction performance of the recently published re-
gression model Netsx,sy , which predicts the dominant
light direction in a given scene, from an average angular
error E] = 7.1◦ to an error of 6.2◦ using the presented
LFAN architecture. Eventually, the improvement goes
down to an error of 5.7◦ with FCNs on real reference
test data TREAL by deriving architectural adjustments
from aforementioned meta information.

An investigation of the influence of CG rendering tech-
niques on the prediction result of Netsx,sy reveals that
the dataset rendered with techniques that most accu-
rately approximate reality, i. e. Oren-Nayar for dif-
fuse, Cook-Torrence for specular illumination and ray
traced soft shadows without the naive AO implemen-
tation, achieved the best result with the mixed trained
NetRTS on the real reference test set TREAL, achieving an
average angular error E] = 4.4◦ and outperforming the
mixed trained FCN using mixed base weights as best
performing architecture adjusted DNN. Though DSNoS
does not contain shadows, the reconstruction perfor-
mance of mixed trained NetNoS is noteworthy, as this
DNN may have learned to reduce the domain gap be-
tween DSNoS and TREAL from few training examples.
Similar behaviour of Netsx,sy is presumably shown on
TREAL, since the edge between the two tables (Fig. 6,
left most image) appears to be extracted by the convo-
lutional section as a distinctive feature (Fig. 6, image in
the middle). However, this interpretation may be inac-
curate and misleading due to the findings of Adebayo
et al. (2018) and Sixt et al. (2020).



While analysing features in different layers is a com-
mon and reasonable approach to optimise the prediction
results of a network, deriving conclusions from meta
information, such as relevance conservation and bias
analysis, as shown in this work, appears to be unprece-
dented, as other approaches, despite analysing the con-
servation of relevance across the layers of a network, do
not derive information in a similar way as described in
this work.

However, a major drawback of the LFAN and FCN
architectures are their inherent lack of regularisation,
such as dropout, and thus their inherent possibility to
overfit, which becomes most likely apparent in the FCN
variant using synthetic base weights of Netsx,sy and syn-
thetic training data, considering the angular average er-
ror E] of 1.4◦ on synthetic test data compared to an er-
ror of 32.4◦ on real test data. Additionally, the derived
LFAN and FCN architectures are likely to be less robust
when regressing from images with deviating bright-
ness, as well as sufficiently non-centred or zoomed ob-
jects, as this appears to be too difficult when mapping
the extracted features linearly to the output neurons.
One indication for this is that both architectures per-
form worse when being trained with data augmentation
enabled, which produces training images with accord-
ing changes. Another indication is that, despite taking
global features into account (Fig. 8), FCNs are affected,
nonetheless.

A fundamental problem when applying LRP in the
investigated situation occurs when investigating re-
gressed values of sx,sy = (0,0). Propagating a value
of 0, meaning a relevance value R j = 0 (eq. 1), would
not yield a meaningful result, despite the fact that re-
gressing values of sx,sy = (0,0) are valid stereographic
coordinates, denoting a light direction coming right
from above in a given scene.

7 FUTURE WORK
Considering the improvements achieved by adding con-
volutional blocks to the FCN architecture, we intend
to investigate whether applying attention-based DNNs
may further improve the reconstruction performance.

Another opportunity for subsequent work is the investi-
gation of possibilities to incorporate regularisation into
the derived architectures and thus reduce the inherent
potential to overfit. Furthermore, it is worth to in-
vestigate whether the FCN architecture may regain the
ability to perform better when being trained with aug-
mented data while maintaining its prediction perfor-
mance when again adding a FC layer to map the ex-
tracted features to the output layer. Moreover, combin-
ing the FCNs architecture and further improvements to
it with the datasets in this work may further improve the
prediction results, too.

With larger real image data, containing more complex
and diverse scenes, we will further investigate the ro-
bustness of the presented architectures.

Eventually, the presumed ability of Netsx,sy to gener-
alise on unknown data (Section 6, end of second para-
graph) may be investigated by applying further XAI
methods.
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