
Eurographics Conference on Visualization (EuroVis) 2021
R. Borgo, G. E. Marai, and T. von Landesberger
(Guest Editors)

Volume 40 (2021), Number 3

Supplementary Material to the Publication
Parameterized Splitting of Summed Volume Tables

Christian Reinbold and Rüdiger Westermann

Computer Graphics & Visualization Group, Technische Universität München, Garching, Germany

1. Details of the Heuristic

In our work we did not elaborate on two technical aspects of the
heuristic, namely the interpolation scheme to derive the subarray
size z and the ratio correlation to partition λ into λa and λs. We now
make up for it so that the heuristic can be reimplemented accurately.
Further, we present pseudo code to ease implementation.

1.1. Subarray size

In order to derive the heuristic, we computed sets of optimal pa-
rameter trees via an expensive Branch-and-Bound approach for ar-
rays of small shape. When investigating these, we noticed that the
subarray size parameter at the root node correlates with the fetch
estimate computed for a parameter tree. For instance in Fig 1, all
optimal parameter trees for a binary 2D array of shape 642 are rep-
resented via points (x,y), with x being the fetch estimate and y be-
ing the subarray size parameter at the root node. For all investigated
array shapes, most points roughly follow a logarithmic curve. We
found out that the function

f (λ) :=
log2(2 ·λ/(0.35 ·nk)+1)

log2(2|n|/nk +1)
,

where n is the shape of the input array and k is the split di-
mension, allows to interpolate between the smallest and largest
occurring subarray size z. Clearly, z ≥ 1. Since one can have
up to three subarrays when having only one split position (keep
in mind the conjugate trick, see Sec. 4.2), distributed align-
ment yields maximal subarray sizes of d(nk − 1)/3e. Setting
z = (1− f (λ)) · 1+ f (λ) · d(nk − 1)/3e yields the green curve of
Fig. 1. After rounding to the nearest subarray shape that can ac-
tually arise in distributed aligned splits, we obtain our final esti-
mate of z. The orange curve of Fig. 1 depicts which subarray size
is chosen for which fetch estimate. Note that it roughly follows the
distribution of optimal parameter trees.

1.2. Finding fetch estimates for recursion

Again, by looking at optimal parameter trees, we made the obser-
vation that the fetch estimate of the first aggregate subtree can be
approximated as well. This is easily seen by considering some ra-
tios. Let T be an optimal parameter tree for an input array of shape

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

Figure 1: Scatterplot relating fetch estimates (x-axis) to the subar-
ray size parameter at the root node (y-axis) for all optimal param-
eter trees for a binary 2D array of shape 642. Blue points represent
optimal parameter trees. Curves indicate the heuristic used for es-
timating subarray size from the fetch estimate (green) before and
(orange) after discretization.

n and let Ta be the aggregate subtree of T describing the split hier-
archy of an aggregate array of shape n(a). We noticed that

FETCH(Ta)

FETCH(T)
≈ 2 · |n

(a)|
|n| .

In Fig. 2, optimal parameter trees for a binary 642-shaped array are
represented via points (x,y) where x represents the ratio |n(a)|/|n|
and y the ratio FETCH(Ta)/FETCH(T). The orange curve hints at
the conjectured linear correlation.

Since the control parameter λ of the heuristic represents a thresh-
old for the fetch estimate, it is reasonable that the control parameter
λa is chosen such that the conjectured correlation holds true. This
can be achieved by setting λa := 2 · `/nk ·λ, where ` is the number
of split positions. It can be computed from the subarray size z via
`= d(nk− z)/(2 · z+1)e. As a last step, we round λa to the nearest
integral number and clamp it to the interval [1,min(|n(a)|, λ−1)].
This ensures a) that λa cannot surpass the maximal amount of |n(a)|
fetches for the aggregate array, and b) that both λa and the number
of fetches λs := λ−λa that remain for the subarrays is at least one.
Algorithm 1 depicts the pseudo code of the heuristic after incorpo-
rating the considerations of this section.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0002-2354-5965
https://orcid.org/0000-0002-3394-0731

C. Reinbold & R. Westermann / Supp.: Parameterized Splitting of Summed Volume Tables

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

Figure 2: Scatterplot relating the ratio |n(a)|/|n| (x-axis) to the
ratio FETCH(Ta)/FETCH(T) (y-axis) for all optimal parameter
trees for a binary 2D array of shape 642. Blue points represent op-
timal parameter trees. The orange curve indicates the conjectured
linear correlation between both ratios.

2. A tighter bound for fetch operations

Although the recursive formula for estimating the fetch operations
in Sec. 5.2 is a useful tool for deriving the heuristic, it is not the
actual number we are interested in. Instead, we wish to know the
maximal number of fetch operations we require when querying
an arbitrary prefix sum. Eq. (3) overestimates this number since
it assumes that one has to query a prefix sum from the full ag-
gregate array and a full subarray simultaneously to get the recur-
sion going. This is not quite true in the scenario of Fig. 3 which—
for demonstration purposes—does not utilize the trick of conjugat-
ing subarrays. Here, we have FETCH(Ta) = FETCH(Ts1) = 2 and
FETCH(Ts2) = 1. FETCH(T) evaluates to 4. In the estimate formu-
lation it is assumed that whenever we query into a subarray of size
2, we have to query both aggregates as well. However, we only have
to query aggregates at preceding split positions. Thus, the second
aggregate entry never is fetched as it is not followed by a subarray
of size 2. Consequently, querying into one of the first two subarrays
requires at most 3 fetches. It is only in the case of querying into the
last subarray of size 1 that we require both aggregate entries. But
then querying the smaller subarray requires only one fetch, sum-
ming up to 3 as well. If we query into an aggregate array instead
of a subarray, one would require at most 2 fetches. As a result, one
requires at most 3 fetch operations instead of 4 as indicated by the
fetch estimate.

In order to obtain a tighter bound, we have to make sure that we
only pair fetch operations of a subarray with the fetch operations
that are required to evaluate prefix sums of the aggregate array up
to the preceding split position; or up to the subsequent split posi-
tion in the case of a conjugated subarrays. To resolve this issue,
we introduce a more complex recursion formula P(T,v) that takes
a parameter tree T and a corner v ∈ Nd , and then returns an upper
bound for fetch operations required to retrieve any prefix sum over
a subarray contained in the box of v, that is the volume spanned by
the origin and the corner v. Any box spanned by the origin and a
point in the box of v is called a subbox of v.

Algorithm 1: heuristic for approximately solving the opti-
mal parameter tree problem.

1 FunctionH(control parameter λ, array shape n ∈ Nd):
Output: Parameter tree T with at most λ fetches for

array of shape n

2 T ← new Node();
/* Covering leaf cases */

3 if λ = 1 then // SVT block
4 attach parameter I = {1,2, . . . ,d} to T ;
5 return T ;
6 else if λ≥ |n| then // verbatim block
7 attach parameter I = ∅ to T ;
8 return T ;
9 end

/* Defining split parameters */
10 k← argmaxi(ni);
11 f ← log2(2 ·λ/(0.35nk)+1)/ log2(2|n|/nk +1);
12 zcontinuous← (1− f) ·1+ f · d(nk−1)/3e;
13 z← round zcontinuous to the nearest subarray size that

can occur with distributed aligned splits along a split
dimension of length nk;

14 attach parameters k, z to T ;

/* Creating subtrees via recursion */
15 `← d(nk− z)/(2 · z+1)e;
16 n(a)← n|k=`;
17 n(s1)← n|k=z;
18 n(s2)← n|k=z−1;
19 λa← round(2 · `/nk ·λ);
20 Clamp λa to [1,min(|n(a)|,λ−1)];
21 λs← λ−λa;
22 Ta←H(λa, n(a));
23 Ts1 ←H(λs, n(s1));
24 Ts2 ←H(λs, n(s2));
25 Attach Ta, Ts1 and Ts2 to T ;

26 return T ;

2.1. Leaf nodes

If T consists of a single leaf node, evaluation of P(T,v) is straight-
forward. We just have to compute the number of entries along the
axes for which values have not been cumulated before storing them.
Hence, we read off the I parameter of the leaf node and set

P(T,v) = ∏
i∈{1,...,d}\I

vi.

2.2. Split nodes

If the root of T is an internal node, computations become more in-
volved. We differentiate between upper bounds of fetches for each
subarray shape n(s) arising in the split operation via an operation
Ps(T,v,n(s)). Similarly, we define a function Pa(T,v) that returns
an upper bound of fetches if one queries into an aggregate array.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

C. Reinbold & R. Westermann / Supp.: Parameterized Splitting of Summed Volume Tables

2 x

Memory

I = {Ø} I = {Ø} I = {Ø}

10 01 01 1

12 10 1

12 10 1

Figure 3: Decomposition of a 1D array of size 7 according to a
parameter tree describing a single split with subarray size 2. All
entries at leaf nodes are stored verbatim.

Clearly, P(T,v) can be computed by taking the maximum over the
value of Pa and the value of Ps for each subarray shape. In the sce-
nario of Fig. 3, Ps evaluates to 3 for both subarray shapes and Pa
evaluates to 2. Thus, P evaluates to the maximum of 3 as well.

From now on let us assume that T is an internal node with
an aggregate subtree Ta and one or more subarray subtrees T i

s ,
i ∈ {1,2, . . . ,#subarray shapes}. The split dimension of T is de-
noted by k. Further we assume a fixed array F of shape n that splits
into an aggregate subarray Fa of shape na and subarrays F i

s of dif-
ferent shapes ni

s such that the subarray subtree T i
s relates to shape

ni
s.

2.2.1. Query to aggregate arrays

Pa(T,v) is computed as follows: First, the index of the last split
position contained in the box of v is computed. In the notation of
Sec. 4 of the paper this is i = max({m | cm ≤ vk} ∪ {0}). By
Eq. (1), the box of v |k=i resembles the region in Fa that has to be
queried in order to compute a prefix sum of a subbox of v in F .
Since we do query into an aggregate array, the subarray offset j
of Eq. (1) and thus the number of fetches to evaluate the second
summand in Eq. (1) always is 0. By the definition of P, we can set

Pa(T,v) = P(Ta,v |k=i).

Note that P now depends on Pa, which itself depends on P again,
but invoked on a subtree. Hence, we have setup a recursion formula.

Now we address the evaluation of Ps(T,v,ni
s) for a subarray

shape ni
s. We simplify notation by fixing the i for which Ps is evalu-

ated and leave out the superscript, that is Fs =∧ F i
s , ns =∧ ni

s and so on.
A subarray S is called complete, if all its entries projected to the
split dimension are contained in the box of v. In other words, S is
complete if and only if for each voxel w covered by S it holds that
wk ≤ vk.

2.2.2. Query to complete subarrays

First, we consider the case of querying into a complete subarray of
shape ns. W.l.o.g. we can assume that the queried subarray is the
"last" complete subarray Slast which is most distant from the ori-
gin and thus has the highest number of preceding split positions. If
we would query into another subarray S, we can query into Slast
instead and would obtain an upper bound at least as high as when

querying into S. The upper bound of fetches for the second sum-
mand of Eq. (1) remains the same, and the upper bound of fetches
for the first summand can only become bigger to due more preced-
ing split positions. Now, we set i to the index of the split position
preceding Slast. If Slast is not going to be conjugated, we compute

pcomplete = P(Ta,v |k=i)+P(Ts,v |k= j),

where j := (ns)k is the subarray size along the split dimension. If
Slast is going to be conjugated, Eq. (2) instead of Eq. (1) is used for
prefix sum computation, which is why we then have

pcomplete = P(Ta,v |k=i+1)+P(Ta,v |k= j)

instead. Note that i is incremented by one.

2.2.3. Query to incomplete subarrays

Second, we discuss the case of querying into an incomplete sub-
array of shape ns, if there is any. Clearly, there can be only one of
them and it has to follow the last complete subarray Slast. Let us call
it Sinc and, again, denote by i the index of its preceding split posi-
tion. In comparison to the complete case, we cannot set j := (ns)k
anymore, but have to keep in mind that we query only those voxels
of Sinc that are also contained in the box of v. Hence, we set j to the
size along the split dimension obtained after intersecting Sinc with
the box of v. If Sinc is not going to be conjugated, then it holds that

pincomplete = P(Ta,v |k=i)+P(Ts,v |k= j).

If, on the other hand, Sinc is going to be used as a conjugated sub-
array in Eq. (2), we have to keep in mind that even if the width j is
only one, we have to sum over the whole subarray due to flipping.
Hence, then we have

pincomplete = P(Ta,v |k=i+1)+P(Ta,v |k=(ns)k
).

If there exists no incomplete subarrays at all, we set pincomplete = 0.
With both complete and incomplete subarrays covered, we can
compute Ps via

Ps(T,v,ns) = max(pcomplete, pincomplete).

2.2.4. Performance considerations

This concludes the formulation of the recursion formula. At this
point, formally proving its upper bound property is a mere exercise
in precise mathematical formulation and rephrasing of the sections
above in a definition-theorem-proof style. However, we still have
to improve performance. If j is the number of different subarray
shapes (in our case j = 2), P has to invoke itself 2 j+1 times with
the aggregate subtree and 2 j times with a subarray subtree. Since
this factors multiply for each level of the tree, computation times
quickly get out of hand. Performance can be improved significantly
by introducing a cache storing results of previous evaluations of P.
In doing so, the algorithm even can be used in the bisection method
that tweaks the control parameter λ of the heuristic. Timings given
in Table 2 include the costs for repeatedly computing the upper
bound as proposed here. Further, note that performance does not
depend on the actual array size because subarray shapes as well as
indices i, j can be derived from split parameters and the input array
shape in constant time. Pseudo code for the complete implementa-
tion is shown in Algorithm 2.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

C. Reinbold & R. Westermann / Supp.: Parameterized Splitting of Summed Volume Tables

Algorithm 2: Computation of a tighter bound for fetch op-
erations respecting queries into subboxes.

Input: Parameter tree T ,
index v ∈ Nd into the input array,
(Optional) cache datastructure C

Output: Upper bound P(T,v) for fetch operations required
to retrieve prefix sums over any subbox of v when
using the SVT representation defined by T

1 Initialize empty cache C if not provided;
2 if (T,v) ∈ C then
3 return cached result P(T,v);
4 end

5 if root node of T is leaf then
6 Read off I parameter from root of T ;
7 result←∏i∈{1,...,d}\I vi;
8 Insert result into C at position (T,v);
9 return result;

10 else
11 Read off split dimension index k from root of T ;
12 i← index of last split position contained in the box of v;
13 upper← P(Ta,v |k=i,C);
14 foreach subarray subtree Ts of T do
15 ns← array shape associated to Ts;
16 Find last complete subarray Slast;
17 i← index of last split position preceding Slast;
18 if Slast is conjugated then
19 p← P(Ta,v |k=i+1,C)+P(Ta,v |k=(ns)k

,C);
20 else
21 p← P(Ta,v |k=i,C)+P(Ta,v |k=(ns)k

,C);
22 end
23 upper←max(upper, p);
24 Search for incomplete subarray Sinc;
25 if Sinc exists then
26 i← index of last split position preceding Sinc;
27 j← size along split dimension k of intersection

of Sinc and the box of v;
28 if Sinc is conjugated then
29 p← P(Ta,v |k=i+1,C)+
30 P(Ts,v |k=(ns)k

,C);
31 else
32 p← P(Ta,v |k=i,C)+P(Ts,v |k= j,C);
33 end
34 upper←max(upper, p);
35 end
36 end
37 Insert upper into C at position (T,v);
38 return upper;
39 end

3. SVT representations store partial sums

When discussing construction costs of the proposed SVT represen-
tations in Sec. 5.4, we assume that each value stored in memory is
a partial sum of the input array F and thus can be sampled from
a SVT of F . This claim is intuitive insofar as values of aggregate

arrays are obtained by summing consecutive values of the array be-
ing split. In the following, we give a formal proof of this claim in
Theorem 3.6. However, we require some additional notation first.

Definition 3.1. Let c = (c1,c2, . . . ,cn) be a sequence of n natural
numbers. We denote by |c| its length n. For another sequence d of
natural numbers such that di≤ n for all i∈N≤|d|, the concatenation
c◦d of c and d is the sequence of length |d| given by (c◦d)i = cdi .
For m ∈ N<|c|, the sequence c� m of length |c| −m is given by
(c� m)i = ci+m.

Definition 3.2. Let c be a monotone sequence of natural numbers.
The range of c at index i ∈ N≤|c|−1 is

range(c, i) =

{
{n ∈ N | ci < n≤ ci+1} if c is increasing
{n ∈ N | ci+1 < n≤ ci} if c is decreasing.

Lemma 3.3. Let c be a monotone sequence of natural numbers and
d be an increasing sequence of natural numbers such that c ◦ d is
defined. Then for all i ∈ N≤|d| and m ∈ N0 it holds that

di+1−1⋃
j=di

range(c, j) = range(c◦d, i)

range(c, i+m) = range(c� m, i)

Proof. Follows immediately from the definition of range.

Definition 3.4. Let c be a finite (that is |c| <∞) monotone se-
quence of natural numbers with. The inverse ¬c of c is the mono-
tone sequence given by (¬c)i = c|c|+1−i.

Lemma 3.5. Let c be a finite monotone sequence of natural num-
bers. Then for all i ∈ N≤|c|−1 it holds that

range(¬c, i) = range(c, |c|− i).

Proof. Follows immediately from the definition of the inverse and
range.

Theorem 3.6. Let A be an array of shape n ∈ Nd arising in a
split hierarchy of the input array F. Then there exist d monotone
sequences a(1), . . . ,a(d) of length |a(i)|= ni +1 such that

A[v] = ∑
v′i∈range(a(i),vi)

F [v′],

where v ∈ Nd is any multi index indexing into A. In particular, A[v]
is a partial sum of a hyperbox of F that starts at the corner

(min(a(1)v1 ,a(1)v1+1)+1, . . . ,min(a(d)vd ,a(d)vd+1)+1)

and ends at

(max(a(1)v1 ,a(1)v1+1), . . . ,max(a(d)vd ,a(d)vd+1))

Proof. The second claim immediately follows from the definition
of range. The first claim is proven via induction regarding the num-
ber of performed split operations before arriving at A. For the initial
case, A = F and the claim holds true by setting a(i) = (0,1, . . . ,ni).

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

C. Reinbold & R. Westermann / Supp.: Parameterized Splitting of Summed Volume Tables

Next, the inductive step is shown. Assume that A arises by split-
ting the array B of shape m ∈ Nd along split dimension k and split
positions

0 = c0 < c1 < · · ·< c` ≤ mk

with the array B being split. By the induction hypothesis, B can be
written as

B[v] = ∑
v′i∈range(b(i),vi)

F [v′]

with appropriate monotone sequences b(i).

Case 1: A is the aggregate array returned by the split process. We
define the monotone sequence d of length `+1 via dm = cm−1 +1.
Then, by Lemma 3.3, we have

A[v] =
cvk

∑
i=cvk−1+1

B[v |k=i]

=

dvk+1−1

∑
i=dvk

∑
v′k∈range(b(k),i)

∑
v′j∈range(d(j),v j)

j 6=k

F [v′]

= ∑
v′k∈range(b(k)◦d,vk)

∑
v′j∈range(d(j),v j)

j 6=k

F [v′]

Thus, the claim holds true by setting a(k) = b(k) ◦d and a(j) = b(j)

for all j 6= k.

Case 2: A is a non-conjugated subarray returned by the split pro-
cess. Choose i such that ci is the last split position preceding A. By
Lemma 3.3, it is

A[v] = B[v |k=ci+vk]

= ∑
v′k∈range(b(k),ci+vk)

∑
v′j∈range(b(j),v j)

j 6=k

F [v′]

= ∑
v′k∈range(b(k)�ci,vk)

∑
v′j∈range(b(j),v j)

j 6=k

F [v′]

Again, the claim holds true by setting a(k) = b(k) � ci and
a(j) = b(j) for all j 6= k.

Case 3: A is a conjugated subarray returned by the split process.
Choose i such that ci is the first split position succeeding A. By
Lemma 3.3 and 3.5, it is

A[v] = B[v |k=ci+1−vk]

= ∑
v′k∈range(b(k),ci+1−vk)

∑
v′j∈range(b(j),v j)

j 6=k

F [v′]

= ∑
v′k∈range(¬b(k),mk−ci+vk)

∑
v′j∈range(b(j),v j)

j 6=k

F [v′]

= ∑
v′k∈range(¬b(k)�(mk−ci),vk)

∑
v′j∈range(b(j),v j)

j 6=k

F [v′]

The claim holds true by setting a(k) = ¬b(k) � (mk − ci) and
a(j) = b(j) for all j 6= k. Note that mk ≥ ci.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

