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Abstract
Summed Volume Tables (SVTs) allow one to compute integrals over the data values in any cubical area of a three-dimensional
orthogonal grid in constant time, and they are especially interesting for building spatial search structures for sparse volumes.
However, SVTs become extremely memory consuming due to the large values they need to store; for a dataset of n values an SVT
requiresO(n logn) bits. The 3D Fenwick tree allows recovering the integral values inO(log3 n) time, at a memory consumption
ofO(n) bits. We propose an algorithm that generates SVT representations that can flexibly trade speed for memory: From similar
characteristics as SVTs, over equal memory consumption as 3D Fenwick trees at significantly lower computational complexity,
to even further reduced memory consumption at the cost of raising computational complexity. For a 641×9601×9601 binary
dataset, the algorithm can generate an SVT representation that requires 27.0GB and 46 ·8 data fetch operations to retrieve an
integral value, compared to 27.5GB and 1521 ·8 fetches by 3D Fenwick trees, a decrease in fetches of 97%. A full SVT requires
247.6GB and 8 fetches per integral value. We present a novel hierarchical approach to compute and store intermediate prefix
sums of SVTs, so that any prescribed memory consumption between O(n) bits and O(n logn) bits is achieved. We evaluate the
performance of the proposed algorithm in a number of examples considering large volume data, and we perform comparisons
to existing alternatives.

CCS Concepts
• Information systems → Data structures; • Human-centered computing → Scientific visualization;

1. Introduction

Summed Area Tables (SATs) are a versatile data structure which
has initially been introduced to enable high-quality mipmapping
[Cro84]. SATs store the integrals over the data values in quadratic
areas of a two-dimensional orthogonal grid that start at the grid’s
origin. The entries in a SAT can be considered prefix sums, as they
are computed via column- and row-wise one-dimensional prefix
sums. With four values from a SAT the integral over any quadratic
region can be obtained in constant time. The three-dimensional
(3D) variant of SATs is termed Summed Volume Tables (SVTs).
They are of special interest in visualization, since they can be used
to efficiently build adaptive spatial search structures for sparse vol-
umes. In particular, construction methods for kD-trees and Bound-
ing Volume Hierarchies (BVHs) [VMD08, HHS06] can exploit
SVTs to efficiently find the planes in 3D space where the space
should be subdivided.

Fig. 1 shows a temperature snapshot in Rayleigh-Bénard con-
vection flow of size 641× 9691× 9601. To efficiently render this
dataset via direct volume rendering algorithms, some form of adap-
tive spatial subdivision needs to be used to effectively skip empty
space. However, the SVT from which such an acceleration struc-
ture can be computed requires 247.6GB of memory, so that only
on computers with large memory resources all data can be stored

in main memory. While the input field is only of size O(n), the
memory consumption of a SVT is of O(n logn).

Alternative SVT representations such as 3D Fenwick trees
[Fen94, Mis13, SR17] offer a memory-efficient intermediate data
structure from which an adaptive space partition can be con-
structed. 3D Fenwick trees have a memory consumption of O(n)
bits, yet recovering the integral values requires a number of
O(log3 n) data fetch operations. For the example given in Fig. 1,
a 3D Fenwick tree requires only 27.5GB of memory, but to obtain
an integral value for a given volume 1512 · 8 fetches need to be
performed.

For labelled datasets, SVTs can be used as an alternative to hier-
archical label representations like the mixture-graph [ATAS21], to
efficiently determine the number of labels contained in a selected
sub-volume. Furthermore, SVTs can effectively support a statis-
tical analysis of the data values in arbitrary spatial and temporal
sub-domains. As another application of SVTs, we briefly sketch
meteorological data analysis in Sec. 7. This includes the time- or
memory-efficient computation of moving averages over selected
sub-regions and time intervals.

1.1. Contribution

We propose an algorithm to generate SVT representations that can
flexibly trade speed for memory. These representations build upon
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Figure 1: Schematic operation principle of splitting SVTs. A 3D ar-
ray is hierarchically split into multiple high to low precision arrays
(decreasing color saturation indicates decreasing precision), to ob-
tain a data structure from which sums over axis-aligned subarrays
can be computed. For the 641×9601×9601 input volume obtained
by a supercomputer simulation of a Rayleigh–Bénard convection,
the SVT requires 247.6GB. Our algorithm generates SVT represen-
tations at 27.0GB or 71.2GB, requiring respectively 46 or 8 data
fetch operations per prefix sum.

a recursive uni-axial partitioning of the domain and corresponding
partial prefix sums, in combination with a hierarchical representa-
tion that progressively encodes this information. Since partial pre-
fix sums require less bits to encode their values, the overall mem-
ory consumption can be controlled by the number and position of
the performed domain splitting operations. By using different par-
titioning strategies, any prescribed memory consumption between
O(n) bits and O(n logn) bits can be achieved.

In principle, the algorithm proceeds in two phases: Firstly, for
every possible SVT representation of a given volume an abstract
parameter tree is constructed. This tree encodes the uni-axial split
operations in a hierarchical manner, and it allows estimating both
the memory consumption of the resulting SVT representation and
the required data fetch operations for computing an integral value.
Secondly, the tree is translated into the concrete SVT representa-
tion, by traversing the tree and performing the encoded operations.

To find a SVT representation according to a prescribed mem-
ory consumption or number of fetches, we propose a heuris-
tic that generates a parameter tree which adheres to a given re-
source budget. This heuristic provides a close-to-optimal parame-
ter tree for arbitrary budgets, over the entire spectrum ranging from
memory-efficient yet compute-intense SVT representations to stan-
dard memory-exhaustive SVT representations with constant recon-
struction time.

Our algorithm generates SVT representations with equal mem-
ory consumption as 3D Fenwick trees at significantly lower com-
putational complexity. For the example in Fig. 1, we can construct
a SVT representation that requires 27.0GB but requires only as few
as 46 · 8 data fetch operations to retrieve an integral value, a de-
crease in data fetch operations of 97% compared to Fenwick trees.
Our specific contributions are

• an abstract parameter tree representation that translates directly
into a SVT representation,

• a capacity estimator for the memory and compute requirements
of a given parameter tree,
• a heuristic that automatically provides a parameter tree that

matches a prescribed capacity.

We analyze our proposed approach with respect to memory
consumption and data fetch operations, and compare the results
to those of alternative SVT representations. By using differently
sized datasets, we demonstrate lower capacity requirements and
improved scalability of our approach compared to others.

The paper is structured as follows: We first discuss approaches
related to ours in the light of memory consumption and computa-
tional issues. After a brief introduction to the concept of SATs, we
introduce the versatile data structure our approach builds upon. We
demonstrate in particular the parameterization of this data structure
to enable trading memory consumption for computational access
efficiency. In Sec. 6, we then describe how to realize a concrete
SVT representation that adheres to a user defined performance or
memory budget. We evaluate our design choices and compare the
obtained representations to alternative approaches in Sec. 7. We
conclude our work with ideas for future work.

2. Related Work

SATs have been introduced by Crow [Cro84], as a data struc-
ture to quickly obtain integral values over arbitrary rectangular
regions in 2D data arrays. Since then, SATs have found use in
many computer vision and signal processing tasks such as ob-
ject detection [BTVG06, VJ04, GGB06, Por05], block matching
[FLML14], optical character recognition [SKB08] and region fil-
tering [HPD08, Hec86, BSB10].

In computer graphics, SVTs are used to realize gloss effects
[HSC∗05], and in particular to accelerate the creation of spatial
search structures for sparse scene or data representations. Havran et
al. [HHS06] build a BVH / SKD-Tree hybrid acceleration structure
for mesh data by discretizing the 3D domain and finding kd-splits in
expected O(log logn). A SVT over the discretized domain is then
used to evaluate the split cost function in constant time. Similarly,
Vidal et al. [VMD08] propose to use SVTs to speed up cost func-
tion evaluations in a BVH construction process for voxelized vol-
ume datasets. In their work, the cost function requires the computa-
tion of bounding volumes over binary occupancy data. By running
binary search on a SVT, this task can be solved in O(logn) in-
stead of O(n3), where n is the side length of the volume. Ganter &
Manzke [GM19] propose to use SVTs to cluster bounding volumes
of small size before assembling them bottom-up into a BVH for
Direct Volume Rendering (DVR). SVTs also allow to compute sta-
tistical quantities for arbitrarily large axis-aligned regions in con-
stant time [PSCL12]. Thus, they facilitate interactive exploratory
tasks in large scale volume datasets. The major drawback of SVTs
is their memory consumption. Since prefix sums may span up to n
elements, where n is the number of entries in a d-dimensional ar-
ray, SVT entries require up toO(logn) bits precision. This yields a
total memory consumption of O(n logn), where the original array
is only of size O(n).

In Computer Graphics, classical Mip Mapping [Wil83] (or Rip
Mapping in the anisotropic case) has been used for decades to ap-
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proximately compute partial means (or equivalently sums) of tex-
tures in constant time and O(n) memory. Partial means of boxes
with power of two side length are precomputed and then interpo-
lated to approximate boxes with arbitrary side length. Belt [Bel08]
proposes to apply rounding by value truncation to the input array
before computing its corresponding SVT. By reducing the preci-
sion of the input, the SVT requires less bits of precision as well. To
compensate for rounding error accumulation, the rounding routine
is improved by considering introduced rounding errors of neigh-
boring SVT entries. Clearly, this scheme cannot be used to reduce
memory requirements for arrays of binary data. Although approx-
imate schemes may suffice for imaging or computer vision tasks
where small errors usually are compensated for, they are inappro-
priate in situations where hard guarantees are required (e.g. the sup-
port of a BVH has to cover all non-empty regions).

Exact techniques such as computation through the overflow
[Bel08] or the blocking approach by Zellmann et al. [ZSL18] en-
force a maximal precision bound per SVT entry and, thus, avoid
the logarithmic increase in memory. The former approach simply
drops all except for ` least significant bits and hence stores prefix
sums modulo 2`. As long as queried boxes are small enough such
that partial sums greater or equal than 2` are omitted, this method
is exact. This approach excels in filtering tasks with kernels of pre-
scribed box size. However, it is not applicable in situations where
box sizes are either large or not known in advance.

Zellmann et al., on the other hand, brick the input array into
323 bricks and compute a SVT for each brick separately, hence
they dub their method Partial SVT. As each prefix sum cannot sum
over more than 323 elements, the amount of additional bits per en-
try is limited to 15 bits. However, when computing sums along
boxes which do not fit into a single 323 brick, one value has to
be fetched from memory for each brick intersecting the queried
box. Since there still areO(n/(323)) =O(n) many bricks, this ap-
proach scales equally poorly as summing up all values by iterating
over the input array directly. More generally, any attempt to store
intermediate sums with a fixed precision PREC scales poorly. In
order to recover the "largest" possible sum of all array elements,
one would have to add up at least O(n)/2PREC factors of maximal
size 2PREC. To circumvent this issue, the authors propose to build
a hierarchical representation of partial SVTs where the largest en-
tries of each partial SVT form a new array that again is bricked and
summed up partially. However, the authors admit that all bricks that
overlap only partially with the queried box have to be processed at
their current hierarchy level. Hence, the number of touched bricks
reduces to the size of the box boundary. In the best case of cubes
as boxes, the complexity still is O(n2/3)—which is impractical for
n≥ 10243.

Ehsan et al. [ECRMM15] propose a technique that allows to
compute arbitrary prefix sums by fetching a constant number of
four values only through replacing each third row and column of
a 2D array by their corresponding high precision SAT entries. By
either adding an array entry to preceding SAT entries, or subtract-
ing it from subsequent ones, the full SAT can be recovered. Their
approach directly generalizes to 3D, requiring eight values instead.
As a consequence, they only have to store 19 out of 27 SVT entries
in high O(logn) precision, reducing memory consumption by up

to 30%. However, total memory consumption still is in O(n logn)
and does not scale well.

3D Fenwick Trees as introduced by Mishra [Mis13] have bene-
ficial properties with regard to both memory consumption and ac-
cess. As shown by Schneider & Rautek [SR17], they require O(n)
memory while allowing to compute prefix sums by summing up
O(log3 n) values. In the 1D case [Fen94] this is achieved by recur-
sively processing subsequent pairs of numbers such that the first
number is stored verbatim; and the second one is summed up with
the first one and then passed to the next recursion level. In the 3D
case, this process generalizes to processing 23-shaped blocks where
one corner is stored verbatim and the other corners are processed
recursively. Note that a complexity of O(log3 n) still yields num-
bers in the thousands for n ≥ 10243 and above. Our approach im-
proves significantly in this regard.

Memory Efficient Integral Volume (MEIV) by Urschler et al.
[UBD13] first computes the full SVT and then partitions it into
bricks of small size (brick sizes of 33 up to 123 were investigated).
For each brick, MEIV stores its smallest prefix sum bo together
with a parameter µ describing a one-parameter model for the brick
entries subtracted by bo. The value of µ is determined by an opti-
mization step performing binary search. Since the model cannot fit
all block entries perfectly, the remaining error per entry is stored
in a dynamic word length storage with smallest as possible preci-
sion. As a result, MEIV is able to decrease memory consumption
exceptionally well with regard to the minimal overhead of fetching
only two values from memory, namely some brick information and
a value from the dynamic word length storage. Its clear downside is
the increased construction time by fitting µ. In the authors’ exper-
iments, constructing the MEIV representation with optimal block
size for the largeRandomVolume dataset takes 75 times longer than
for the regular SVT. Further, MEIV cannot give any memory guar-
antees as the final memory consumption is sensitive to the chosen
brick size as well as the actual dataset. Compared to MEIV, we ob-
tain the same savings in memory by allowing 6 instead of 2 fetches
from memory, and—more importantly—memory requirements of
our approach are known before actual encoding. Further, our ap-
proach is able to flexibly adapt memory requirements in the full
range of O(n) to O(n logn) respecting the user’s need, and thus
still can be used whereas other approaches (especially Ehsan and
MEIV) run out of memory.

3. Summed Volume Tables

We now briefly describe the basic concept underlying SVTs. For
the sake of clarity, we do so on the example of a SAT, the 2D coun-
terpart of a SVT, before we extend the concept to an arbitrary num-
ber of dimensions. Note that we use 1-based indexing whenever
accessing arrays during the course of the paper.

Given a two-dimensional array F of scalar values, an entry (x,y)
of its corresponding SAT is computed by summing up all values
contained in the rectangular subarray that is spanned by the indices
(1,1) and (x,y), that is

SATF [x,y] := ∑
x′≤x, y′≤y

F [x′,y′].

© 2021 The Author(s)
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If the values of a SAT are precomputed, partial sums of F for
arbitrary rectangular subarrays can be computed in constant time,
by making use of the inclusion-exclusion principle. Instead of read-
ing and adding up values of F along the whole region spanned by
(x1 +1,y1 +1) and (x2,y2), it suffices to read the SAT-values at the
corners of the selected subarray. It holds that

∑
x1<x′≤x2, y1<y′≤y2

F [x′,y′] =SATF [x1,y1]+SATF [x2,y2]−

SATF [x1,y2]−SATF [x2,y1]

with SATF (x,y) set to zero if x = 0 or y = 0. Thus, SATs reduce
the summation of (x2−x1) ·(y2−y1) values to a summation of four
values. The concept of SATs extends to any number of dimensions.
Given a d-dimensional array F , the corresponding d-dimensional
SVT is realised by

SVTF [v1,v2, . . . ,vd ] := ∑
v′i≤vi

F [v′1,v
′
2, . . .v

′
d ].

Partial sums of hyperboxes (line segments in 1D, rectangles in 2D,
cuboids in 3D, and so on) can be computed by evaluating a SVT at
the 2d corner points of that hyperbox. In the special case of d = 1,
a SVT stores prefix sums of a 1D array. The entries in a SVT can
be interpreted as d-dimensional prefix sums regarding axis-aligned
volumes.

4. Hierarchical SVT data structure

We now introduce a hierarchical approach that allows identifying
the intermediate representation to store a SVT so that a prefix sum
can be computed with as little as possible additional compute un-
der a prescribed memory budget. Here we assume that the input ar-
ray F stores non-negative integral numbers. Thus, negative entries
need to be eliminated by appropriate shifting, and floating point
values need to be rescaled. While shifting does not affect accuracy,
since the sign bit can be reused, floating point numbers cannot be
rescaled to integers in a reasonable way if their value range is too
large. In this case, however, computing partial sums even with the
plain SVT is likely to fail due to numerical errors introduced by
adding and subtracting potentially large prefix sums.

We require the following notation: An array F is said to
have shape n ∈ Nd if and only if it is d-dimensional of shape
n1 × n2 × ·· · × nd . We define the size of n by |n| := ∏

d
i=1 ni. In

particular, an array of shape n has |n| elements. Further, for any
multi index v ∈ Nd and integers k ∈ {1, . . . ,d}, i ∈ N, we denote
by v|k=i the multi index that is obtained by replacing the k-th com-
ponent of v by i. When accessing array elements via a multi index,
F [v] is a shorthand notation for F [v1, . . . ,vd ].

Our proposed intermediate representation (i.e, a data structure)
evolves around the concept of splitting the input array F of shape
n ∈Nd into a small array Fa of precomputed, high precision aggre-
gates and a set {Fs0 ,Fs1 , . . .} of low precision subarrays such that
any prefix sum can be efficiently computed from one prefix sum of
the aggregate array and one prefix sum of a single subarray. Fig. 2
illustrates an exemplary split of a 3D input array. The aggregates
are obtained by summing values of F along bands following one
of the d dimensions, let us say the k-th one, which is called the
split dimension. Each band is dissected into multiple segments by
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Figure 2: Splitting a 10× 4× 3 block along the largest dimension
into the aggregate array Fa and three subarrays Fs0 ,Fs1 ,Fs2 . Cut
position are marked in blue. Red blocks and arrows indicate how
two entries of Fa are formed by summation.

cutting at positions c1 < c2 < · · ·< c`, called split positions, along
the split dimension. For each segment, its values of F are summed
to form an aggregate. All aggregates are arranged in the aggregate
array Fa of shape n|k=`. More precisely, it is

Fa[v] =
cvk

∑
i=cvk−1+1

F [v|k=i],

where v ∈ Nd and c0 := 0. The prefix sums of Fa correspond to
prefix sums of F ending at corners v ∈ Nd with vk ∈ {c1, . . . ,c`}.

To enable the computation of any prefix sum of F , ad-
ditional ` + 1 subarrays Fsi ⊆ F of shape n|i=ci+1−ci−1 with
Fsi [v] = F [v|k=ci+vk ] are defined. Here, i ranges from 0 to ` with
c`+1 := nk + 1. Any prefix sum of F up to the corner v ∈ Nd now
can be computed as follows: The index of the last split position not
succeeding v, i.e., i = max({m | cm ≤ vk}∪{0}), and the subarray
offset j = vk− ci are determined. Then it is

SVTF [v] = SVTFa [v |k=i]+SVTFti
[v |k= j]. (1)

Note that due to `+∑
`
i=0(ci+1−ci−1) = c`+1−c0−1= nk, the

number of values stored in F equals the numbers of values stored
in Fa and all subarrays. Since values in SVTs of subarrays arise as
sums over only a fraction of values of F , they require less bits of
precision than values in the SVT of F . Thus, storing SVTs after
applying the splitting operation comes with memory savings at the
cost of one additional memory fetch and addition per prefix sum
query on F . The memory savings can be reinforced at the cost of
more fetches by recursively applying the split process to the newly
acquired arrays Fa and all Fsi until a certain termination condition
holds. Then, each terminal array of small shape is stored by encod-
ing either its entries (verbatim), or the entries of its SVT in fixed
precision. The result is a split hierarchy of which an example is
shown in Fig. 3. To compute a prefix sum from this representation,
Eq. (1) is applied recursively up to the point where a prefix sum can
be derived from a terminal array stored in memory.

4.1. The parameter tree

We describe a specific split hierarchy by means of a parameter tree.
When splitting the input array F , we encode split dimension as
well as split positions into the root node of the parameter tree. If a
newly acquired array (aggregate array or subarray) is split further, a
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Figure 3: Sample split hierarchy of a 10× 4× 3 binary input ar-
ray. We show aggregate arrays and subarrays generated during the
recursive split process. Whenever two or more subarrays of similar
shape form in a split operation, a multiplier in the top left corner of
a block indicates how many arrays of its shape arise. The block’s
filling with numbers matches the first (i.e. leftmost/undermost) of
its associated subarrays. The other subarrays of similar shape may
contain different numbers. As a final step indicated by wavy ar-
rows, each terminal array is processed by computing cumulative
sums according to the leaf parameter I (see Sec. 4.1). The result is
stored in memory.

parameter subtree representing its subsequent split process is built
and attached to the root node. If a newly acquired array is terminal,
a leaf node describing its memory layout is created and attached
instead.

In a naive implementation, the parameter quickly becomes un-
manageable since it is branching with a factor that scales with the
number of subarrays per split. By recursively splitting all subar-
rays of similar shape in the same way, one can collapse all of their
corresponding subtrees to a single one and thus reduce the branch-
ing factor to the number of different subarray shapes occurring in
a split, plus one for the aggregate array. Hence, we constrain the
branching factor by requiring as few as possible different subarray
shapes. This can be achieved by specifying a fixed subarray size
z along the split dimension and placing split positions accordingly
with equal spacing. However, we have to resolve alignment issues
if z+ 1 is not a divisor of the length nk of the split dimension mi-
nus one. Overall, we experimented with three different alignment
strategies:
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Figure 4: Splitting a 13×4×3 array along the longest dimension
into subarrays of size 3 with (a) at_end, (b) distributed and (c) pad
alignment. Split positions are highlighted on the left. The number
and shape of resulting subarrays is shown on the right.

at_end: The last subarray remains "incomplete" and thus has a
size smaller than z along the split dimension.

distributed: A slice is removed from as many subarrays as one
would have to pad in order to expand the last subarray to size z
along the split dimension.

pad: The last subarray is padded with zeros until size z is reached.

Figure 4 depicts the results of all alignment strategies when split-
ting a 13× 3× 3 field with fixed subarray size of 3 along the first
dimension. During our experiments we noticed no difference in
quality when generating SVT representations with either at_end or
distributed aligned splits. Further, both yield subarrays of at most
two different shapes, thus restricting the branching factor of the re-
cursion to 3. Pad alignment incurs an additional memory overhead
of up to 10%. In return it guarantees a unique subarray shape, re-
ducing the branching factor to 2. This property may be favourable
when engineering massively parallel en- & decoding schemes in
future work. In the scope of this paper we decided to utilize dis-
tributed aligned splits.

In summary, a split now is defined by the split dimension k and
subarray size z that allows to infer the split positions according to
the distributed alignment strategy. Both values are encoded into an
internal tree node representing the split. A leaf node, on the other
hand, contains a set of dimension indices I ⊆ {1, . . . ,d} which de-
scribe along which dimensions array values are cumulated before
finally storing each cumulated value in memory. The special cases
of storing verbatim or SVT entries are represented by I = ∅ and
I = {1, . . . ,d}, respectively. Fig. 5 shows the parameter tree de-
scribing the split hierarchy of Fig. 3. Note that a tree node may
represent more than one array by collapsing subtrees of similarly
shaped subarrays. For instance, two arrays of shape 3× 4× 3 are
represented by the "k= 2, z= 1" internal node, and the memory lay-
out of the four terminal arrays of shape 3× 1× 3 is given by the
"I = {1,2,3}" node.
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k = 1, z = 3

k = 2, z = 1

I = Ø I = {1,2,3}

I = {2} I = {2,3}

I = Ø

Figure 5: A parameter tree of depth 2 describing the split hierarchy
of Fig. 3. It has two internal (blue) and five leaf nodes (green). The
leftmost subtree of each internal node describes the split hierarchy
of the aggregate array whereas the remaining subtrees describe the
split hierarchy of subarrays for two different subarray shapes. Text
in nodes indicate encoded parameters. Note that the lower right
leaf node can be chosen arbitrarily since for the 3D shape given
in Fig. 3 there is only one unique subarray shape arising from the
lower split.

4.2. The conjugate trick

To reduce the numbers of split positions and thus the number of
high precision aggregates by one half (without changing the subar-
ray size), we are generalizing the technique described by Ehsan
et al. [ECRMM15]. Instead of adding up a subarray prefix sum
and the aggregate prefix sum at the preceding split position as in
Eq. (1), one can obtain the same result by subtracting the prefix
sum of a flipped subarray from the aggregate prefix sum at the sub-
sequent split position. If Fsi is the (i+ 1)-th subarray with entries
Fsi [v] = F [v|k=ci+vk ], we denote with F∗si its conjugate that is ob-
tained by shifting by one and mirroring along the split dimension,
i.e. F∗si [v] = F [v|k=ci+1+1−vk ]. Then we have

SVTF [v] = SVTFa [v |k=i]−SVTF∗si−1
[v |k= j], (2)

where i = min{m | cm ≥ vk} and j = ci− vk.

By replacing every second subarray by its conjugated version,
one out of two split positions become superfluous. An exemplary
split resulting from this process is shown in Fig. 6. Whenever a
corner v is located in a subarray with odd index, Eq. (2) is used to
compute the prefix sum, and Eq. (1) otherwise. If the last subarray
of a split is a conjugate one, a split position at nk (the last possible
position) is added to ensure that a subsequent split position always
exists. Allowing for both addition and subtraction and thus halv-
ing the size of Fa generally improves the final SVT representation
by a more shallow split hierarchy and/or smaller block sizes at leaf
levels. This is advantageous as smaller SVT leafs require less pre-
cision per entry, and smaller verbatim leafs require less additions
to obtain a prefix sum.

5. Analysis of the parameter tree

If the shape of the input array F as well as its largest possible en-
try (usually of the form 2#bits− 1) is known in advance, all rele-
vant properties of a SVT representation of F can be derived via
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Figure 6: Splitting a 10× 4× 3 array by permitting subtraction.
Compared to Fig. 2, the first split position is introduced after two
subarrays instead of one, and the second (red) subarray is conju-
gated by first shifting by one and then flipping. Note how the boxed
1 changes position. Subarrays in green are not conjugated.

a top-down-top traversal of the corresponding parameter tree de-
scribing the split hierarchy. When descending the tree, information
about shapes and largest possible entries is propagated according
to the split parameters k, z. Note that whereas the largest possible
entry for subarrays can be taken over from the array being split, for
aggregate arrays, an additional factor of 2z+ 1 has to be applied.
It matches the number of values that are summed up to compute
a single entry of the aggregate array when utilizing the conjugate
trick (see Sec. 4.2).

5.1. Memory requirements

Let T be the parameter tree. If T consists of a single, terminal node
with dimension indices I, the largest possible entry that will be
stored in memory is given by m ·∏i∈I ni, where n is the array shape
at the terminal node and m is the array’s largest possible entry. Con-
sequently, we have

MEM(T ) = |n| · dlog2(1+m ·∏
i∈I

ni)e.

If the root node of T is an internal node, let Ta be the subtree
describing the representation of the aggregate array Fa, and let Ts1

and Ts2 be the two subtrees describing representations for the two
distinct subarray shapes. Then, the memory consumption can be
computed as

MEM(T ) = MEM(Ta)+λ1 ·MEM(Ts1)+λ2 ·MEM(Ts2),

where λi is the number of subarrays with shape represented by Tsi .

The memory required for storing the parameter tree itself is neg-
ligible. Even for large datasets of GB-scale, the whole parameter
tree is of KB-size. If the parameter tree is fixed beforehand and
baked into the encoding & decoding algorithm, it does not need to
be stored at all.

5.2. Estimation of fetch operations

The parameter tree T exposes an upper bound for the number of
fetch operations required to compute a prefix sum. We call this
bound the fetch estimate for T and denote it by FETCH(T ). If the
root node of T is terminal with dimension indices I, we require

FETCH(T ) = ∏
i∈{1,...,d}\I

ni
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fetches to compute a prefix sum, with n being the array shape at the
terminal node. If the root node of T is internal, we have

FETCH(T ) =FETCH(Ta)+

max(FETCH(Ts1),FETCH(Ts2))
(3)

with the same notation as in Sec. 5.1. Since computing a pre-
fix sum according to Eq. (1, 2) is performed by querying a prefix
sum of the aggregate array and one subarray, the fetch estimate is
an upper bound for the number of fetch operations—however, not
necessarily the minimal one. In the appendix, we present a method
for computing a tighter bound that in our experiments is lower by
3% on average and 24% at most. All fetch counts presented in this
paper are computed with the tighter bound instead of the fetch es-
timate.

A very coarse upper bound for the number of compute opera-
tions per prefix sum can be given by four times the number of
fetches. Since memory access is of magnitudes slower than sim-
ple arithmetic operations, we conclude that computing prefix sums
is memory-bound. Hence, we use the number of fetch operations as
performance indicator.

5.3. Update costs

Whenever a value of F is modified, a single aggregate of Fa as well
as one value of the subarray containing the modified value have
to be updated. Hence, the cost UPDATE(T ) for updating the SVT
representation can be described by the same recursion formula (3)
as for the fetch estimate. At terminal nodes however, update costs
are computed by

UPDATE(T ) = ∏
i∈I

ni

since an entry of a terminal array of shape n can be part of up to
∏i∈I ni sums stored in memory.

5.4. Construction costs

In the supplement, we show that each value stored in memory by
our SVT representation is a certain partial sum of the input array
F . Hence, all stored values can be efficiently determined by com-
puting the classical SVT of F for instance via GPU computing,
and then sampling a partial sum from the SVT for each stored
value. Since our representation stores n values at leaf nodes, and
SVTs can be computed in O(n) and sampled in O(1), the over-
all runtime-complexity of the construction algorithm is O(n). Due
to the fundamental assumption that O(n logn) of main memory is
not available, we propose to realize the classical SVT via bricking
strategies falling back to larger, but slower memory (e.g. persistent
storage). After construction, partial sums can be queried by fetch-
ing data from the constructed SVT representation that is stored in
(fast) main memory.

6. Identification of optimal parameter trees

Our split hierarchy design opens up a high-dimensional search
space for SVT representations, with the parameters trees being el-
ements in the space of parameters defining the hierarchy. Ideally,
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Figure 7: Schematic illustration of parameter tree search spaces.
Each dot represents a parameter tree of certain fetch count and
memory consumption. Optimal parameter trees are colored in
green and define the memory-performance trade-off curve shown in
black. By restricting the search space in one quantity and optimiz-
ing for the other, the optimum is uniquely determined (highlighted
dot).

querying this search space for SVT representations yields a param-
eter tree instance that minimizes both the fetch count and the mem-
ory consumption with respect to input arrays of fixed shape and
precision. However, representations with low fetch count have a
high memory consumption and vice versa. To obtain a well defined
optimization problem, we restrict the search space to representa-
tions that do not exceed a prescribed budget of either the number
of fetch operations or the memory consumption, and then ask for
the SVT representation that minimizes the respective other quan-
tity. The resulting parameter trees follow a memory-performance
trade-off curve as shown in Fig. 7.

The parameters which define a parameter tree are all discrete
quantities, so that we are facing a combinatorial optimization prob-
lem. Even though we do not give a formal proof here, we believe
that this problem is NP-hard. Thus, we propose a heuristic H that
receives the shape n of the input array as well as a control parameter
λ and returns a parameter tree H(λ,n) that is close to the mem-
ory-performance trade-off curve. Increasing [decreasing] λ typi-
cally results in parameter trees with higher [lower] fetch count and
lower [higher] memory consumption. In particular, this design al-
lows finding a beneficial parameter tree for a prescribed budget B
of either fetches or—more interestingly—memory. It is achieved
by defining the function

f (λ) =

{
FETCH(H(λ,n))−B if fetch budget
MEM(H(λ,n))−B if memory budget

and applying a root-finding method such as the bisection method
to find λ with f (λ) ≤ 0 being close to zero. Then, H(λ,n) is a
parameter tree that, on the one hand, minimizes the unconstrained
quantity, and exhausts the given budget on the other hand.

In the algorithmic formulation of the heuristic, λ represents a
threshold for the fetch estimate described in Sec. 5.2. It is guar-
anteed that the fetch estimate of H(λ,n) does not exceed λ. We
achieve this by the following procedure: If λ equals one, the heuris-
tic returns the parameter tree representing a classical SVT; that is
a single leaf node with I = {1, . . . ,d}. If, on the other hand, λ is
at least as large as the shape product |n|, it returns a single leaf
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node with setting I = ∅—that is the verbatim representation. For
1 < λ < |n|, the heuristic builds an internal node. The split di-
mension k is chosen such that nk = max(n1, . . . ,nd). The subar-
ray size z is derived from λ according to an interpolation function
that is manually defined to match the structure of optimal param-
eter trees for small array shapes. These were computed once by a
Branch-and-Bound strategy that performs an exhaustive search.

The split parameters k and z define the shapes n(a), n(s1), n(s2) of
the aggregate array and the subarrays. Thus, we can use the heuris-
tic recursively to compute the subtrees of the internal node. To do
so, we define control parameters λa, λs and set the aggregate sub-
tree to H(λa,n(a)) and both subarray subtrees to H(λs,n(s1)) and
H(λs,n(s2)) respectively. By requiring λa,λs ≥ 1 and λa +λs ≤ λ,
we assure that the recursion terminates and that the fetch estimate
of the final parameter tree does not exceed λ. This is due to Eq. (3)
and the assumption that the heuristic already satisfies this guaran-
tee for recursive calls. In order to find a reasonable choice for λa
and λs, we again analyzed optimal parameter trees and noticed that
the ratio of the fetch estimate FETCH(Ta) of the aggregate subtree
to the fetch estimate FETCH(T ) of the whole tree correlates to the
ratio of the number of split positions (n(a))k to the length nk of the
split dimension. While the latter ratio can be computed from the
split parameters, the first is unknown yet. However, by assuming
that the observed correlation applies for arbitrary array shapes, we
can derive an estimate for the first ratio. Now, the exact value for
λa is obtained by matching λa/λ to the estimate of the first ratio.
Then, λs is computed by subtracting λa from λ. Pseudo code for
the heuristic is given in the appendix.

7. Evaluation

The following evaluation sheds light on a) the quality of the heuris-
tic to find an optimal parameter tree (Sec. 6) and b) on the proper-
ties of our derived SVT representations compared to alternative ap-
proaches, such as MEIV by Urschler et al. [UBD13], 3D Fenwick
Trees by Mishra [Mis13], Partial SVTs by Zellmann et al. [ZSL18],
and the approach of Ehsan et al. [ECRMM15].

All our experiments were run on a server architecture with 4x
Intel Xeon Gold 6140 CPUs with 18 cores @ 2.30GHz each. Al-
though we do not exploit any degree of parallelism, the genera-
tion of parameter trees with the proposed heuristic requires be-
tween 8.5s seconds for the smallest and 45.4s for the largest dataset
(see Table 1). Timings reflect convergence speed of the bisection
method used during parameter tree search as well as the cost for
evaluating the heuristic in each bisection step. Parameter tree gen-
eration for single digit fetch counts is fast since the runtime of the
heuristic correlates with the size of the parameter tree—and trees
are very shallow in that scenario.

As the parameter tree has to be created only once for a fixed ar-
ray shape and precision, we consider the runtime of the heuristic
as negligible. Finding globally optimal parameter trees, however, is
not tractable even for MB-scale datasets. The Branch-and-Bound
strategy for precomputing optimal parameter trees already takes
12.5 hours for a 643 dataset, clearly necessitating the use of a
heuristic.

100 101 102 103 104 105
32KB

200KB

400KB

608KB

Figure 8: Memory-performance curves for a binary 643 volume,
when (blue) solving the global combinatorial optimization prob-
lem of parameter trees, and when (green) utilizing parameter trees
returned by our heuristic. The x-axis shows number of fetch opera-
tions. The y-axis shows memory consumption. Black lines indicate
lower and upper bounds for the memory consumption of SVT rep-
resentations.

7.1. Quality of the heuristic

We now evaluate how closely the parameter trees returned by the
heuristic match the optimal parameter trees. The optimal mem-
ory-performance curve for a binary 643 volume is shown by the
blue curve in Fig. 8. A point (x,y) on the curve indicates that there
exists an optimal parameter tree with x fetches and y bits of mem-
ory consumption, i.e., if memory is constrained to y bits, our hier-
archical data structure principally allows to reduce the number of
required fetches to x, and vice versa. The green curve indicates the
characteristic of our proposed heuristic. By measuring the shift in
x-direction, one can determine the fetch operation overhead of the
heuristic for a fixed memory threshold. Compared to the optimal
solution, roughly 1.5 times the optimal amount of fetches are re-
quired. Note that due to the logarithmic scale of the x-axes, a shift
translates to a factor instead of an offset. Vice versa, measuring the
shift in y-direction yields the memory overhead of the heuristic, as-
suming a fixed budget of fetches. Here we can clearly see that the
heuristic performs quite well except for the number of 4 fetches,
where memory consumption is increased by 25%.

Note that although the memory-performance curve given by the
heuristic is not guaranteed to be monotone, it shows a clear falling
trend. Thus, when using the bisection method w.r.t. λ to achieve a
certain memory threshold, close to perfect results can be expected.
We are also confident that the heuristic has not been manually over-
fitted to the validation scenario. In the design phase, optimal param-
eter trees for various 1D to 4D arrays with at most 9.000 elements
were investigated, while the volume used in the evaluation contains
262.144 elements. On the other hand, due to this we cannot ensure
that the results of the evaluation generalize to GB-scale arrays.

7.2. Comparative study

In this study, we compare the SVT representations found by our
heuristic to the approaches proposed by Ehsan et al. [ECRMM15],
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Table 1: Performance statistics for various SVT representations. Each group of three rows contains results (memory consumption, fetch count)
for different approaches using the same volume. For each volume, theoretical lower and upper bounds for SVT representations are given.
The Reference column shows results for the reference approaches by others. The Ours columns show results and timings for parameter tree
computation for our SVT representations under varying constraints. Either memory or fetch count is constrained according to the reference
in the same row. Note that the non-constrained quantities (in bold) are significantly lower than the corresponding reference quantities.

Volume Reference Ours (Memory ≤ Ref. Memory) Ours (Fetch ≤ Ref. Fetch)
Name Memory Fetch Memory Fetch Timing Memory Fetch Timing

256 × 256 × 256 Ehsan 36.6MB 8 35.1MB 3 20ms 14.9MB 8 41ms
Size: 2MB Part. SVT 32MB 512 27.0MB 4 25ms 3.9MB 476 8.0s
SVT: 50MB Fen. Tree 8.0MB 512 8.0MB 38 8.5s 3.9MB 476 8.1s
1024 × 1024 × 1024 Ehsan 2.8GB 8 2.7GB 3 23ms 1.2GB 8 52ms
Size: 128MB Part. SVT 2GB 32K 1.5GB 5 147ms 170.1MB 27.5K 31.4s
SVT: 3.9GB Fen. Tree 511.6MB 1000 511.6MB 40 6.9s 252.7MB 952 20.5s
2048 × 2048 × 2048 Ehsan 24.3GB 8 24.2GB 3 26ms 10.3GB 8 56ms
Size: 1GB Part. SVT 16GB 256K 12.7GB 5 161ms 1.2GB 255.8K 33.5s
SVT: 34GB Fen. Tree 4.0GB 1331 4.0GB 39 9.7s 1.9GB 1294 17.3s
641 × 9601 × 9601 Ehsan 176.6GB 8 168.1GB 3 30ms 71.2GB 8 51ms
Size: 6.9GB Part. SVT 110.1GB 1.8M 86.7GB 5 157ms 7.5GB 1.7M 40.4s
SVT: 247.6GB Fen. Tree 27.5GB 1521 27.0GB 46 11.8s 11.8GB 1468 34.6s
8192 × 8192 × 8192 Ehsan 1.8TB 8 1.8TB 3 51ms 725.5GB 8 40ms
Size: 64GB Part. SVT 1TB 16M 892.8GB 5 100ms 67.9GB 10.6M 39.1s
SVT: 2.5TB Fen. Tree 256.0GB 2197 252.7GB 46 10.7s 114.4GB 2188 45.4s

Mishra [Mis13], Zellmann et al. [ZSL18] and Urschler et al.
[UBD13]. Table 2 summarizes the qualitative features supported
by the varying approaches. For a quantitative analysis, we manu-
ally compute the memory consumption as well as the number of
fetch operations for all reference methods except for Urschler et
al., which will be covered later. We use binary volumes of shape
2563 and 1K3, to reproduce the results of the alternatives from
other works. To demonstrate the scalability of our approach, ad-
ditional results using large scale binary datasets from 2K3 to 8K3

are presented. The results of these experiments are given in Table 1.
They generalize to arrays with elements of arbitrary precision p, by
adding an offset of (p−1) ·n to all memory footprints of both our
and reference methods.

It can be seen that our proposed heuristic performs significantly
better than any other approach relying on intermediate sum com-
putation. In all cases, we can achieve an improvement of more than
a factor of 2.5 in memory consumption or number of fetch oper-
ations while matching the budget regarding the respective other
quantity. Notably, while it seems that the approach by Ehsan is in
all scenarios only this factor behind us, it cannot reduce the mem-
ory consumption any further. Thus, where Ehsan requires 1.8TB,
our SVT variant can go down as low as 64GB. In comparison to
Partial SVTs, we can trade almost all fetch operations for the mem-
ory requirement of 67.9GB, and can reduce the memory require-
ment about more than 90% at the same number of fetch opera-
tions. Compared to the 3D Fenwick Tree, our SVT representation
requires only 2% of the number of fetch operations at similar mem-
ory consumption.

It is fair to say, however, that the improvements over Partial
SVTs with respect to memory requirement become less significant
with increasing sparsity of the volume. Partial SVTs first split the

3D array into subarrays of size 323, so that empty subarrays can be
pruned and do not need to be stored. Even though the so generated
sparse structure requires a certain overhead to encode the sparsity
information, it is likely that at extreme sparsity levels the Partial
SVTs become competitive with respect to memory consumption. It
is, on the other hand, not the case that the number of fetch opera-
tions decreases similarly, since indirect memory access operations
are required to step along the sparse encoding.

Another comparison we perform is against MEIV of Urschler
et al. [UBD13], by reusing the array shapes and precision of the
datasets used in the authors’ work. We set the lowest achieved
memory consumption achieved by MEIV as fixed memory bud-
get and compute the parameter tree according to Sec. 6. For the
smallRandomVolume dataset of shape 5123 and a maximal possible
entry of 1023 we require 6 fetch operations and 311MB of mem-
ory (compared to 319MB by MEIV). For the largeRandomVolume
dataset of shape 1K3 and a maximal possible entry of 512 we
again require 6 fetch operations, but 2491MB of memory (com-
pared to 2544MB by MEIV). In the case of the realCTVolume
dataset with shape 512× 512× 476 and a maximal possible entry
of 1023, MEIV achieves roughly 350MB of memory consumption.
We achieve 304MB while requiring 5 fetch operations. Clearly, we
achieve results of equal quality compared to MEIV without having
its limitations as described in Sec. 2.

7.3. Meteorological use case

In meteorological and climatological research, historical weather
data such as the publicly available ERA5 data set [HBB∗20] con-
taining global, atmospheric reanalysis data is often analyzed us-
ing statistical measures like mean and variance over spatial sub-
domains and time intervals. These measures indicate trends and can
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Table 2: Properties of different SVT representations where n is the number of data values in the volume. Besides memory consumption, we
show runtime-complexities for reconstructing an arbitrary partial sum, reconstructing an actual data value, single-threaded construction
of the data structure, and updating the representation after a single data value is changed. Further, we indicate if memory consumption
can be predicted before constructing the representation, if construction is straightforwardly parallelizable, and if representations can be
modified to exploit sparsity in datasets. For our approach, we present lower and upper complexity bounds for all achievable representations.
(*) Average runtime-complexity is shown. Worst Case complexity is O(log3 n). (**) Our approach reconstructs data values with the same
amount of fetches as required for partial sum reconstruction by regarding data values as partial sums over hyperboxes of size 1. (***) Update
performance heavily depends on the actual parameter tree (see Sec. 5.3).

Verbatim SVT Ehsan Part. SVT Fen. Tree MEIV Ours

Memory consumption O(n) O(n logn) O(n logn) O(n)
large const.

O(n) O(n logn)
better in practice

O(n) – O(n logn)

Read partial sum O(n) O(1) O(1) O(n)
small const.

O(log3 n) O(1) O(1) – O(n)

Read data value O(1) O(1) O(1) O(1) O(1) * O(1) O(1) – O(n) **

Construction time – O(n) O(n) O(n) O(n) O(n)
large const.

O(n)

Data value update O(1) O(n) O(n) O(1) O(log3 n) O(n) O(1) – O(n) ***
Predictable memory

X X X X X x X
consumption
Parallelizable construction – X X X X X X
Can exploit sparsity X x x X x x ?

be used to reveal correlations between observed physical quantities
at different sub-domains and times.

As a use case, we utilize the 2m temperature field of the ERA5
hourly data on single levels from 1979 to 2020 [HBB∗18]. Data
is rescaled to 8bit integers according to Sec. 4 and hourly data
is aggregated per day, yielding an 8bit precision dataset of size
1440× 721× 15404. We use our parameterized SVT representa-
tion to plot the mean temperature progressions over different in-
teractively selected, spatial sub-domains of 150× 50 grid points
(roughly matching the extend of the Sahara) in a line plot. Assum-
ing a horizontal resolution of 200 pixels, we partition the user cho-
sen time range in 200 equally large intervals and compute one ag-
gregate for each pixel. When viewing the whole temporal domain,
each aggregate thus describes a sub-domain of 150× 50× 77 grid
points and requires 577.500 fetches from the verbatim dataset of
size 14.9GB. A SVT requires only 8 fetch operations but 78.2GB
of memory. In contrast, by employing our parameterized SVT rep-
resentation using 22.8GB of memory, we can still perform the com-
putation of mean values per any sub-domain using 31 · 8 fetch op-
erations, facilitating an interactive visual analysis of arbitrary sub-
regions.

8. Conclusion and future work

We have proposed a versatile data structure and heuristic for gener-
ating SVT representations that can flexibly trade speed for memory.
Hence, SVT representations that are specifically built for a fixed
memory or compute budget can be utilized. In a number of experi-
ments on large scale datasets we have compared the resulting SVT
representations to those by others, and we have demonstrated sig-
nificantly reduced memory consumption at similar decoding per-
formance, or vice versa.

In the future, we intend to address the following issues: Firstly,
we will engineer cache-aware and/or GPU-accelerated encoding
and decoding schemes, so that a) decoding can further benefit from
massive parallelism and b) encoding can be realised in timings sim-
ilar to state-of-the-art SAT encoding. [CWT∗18, EFT∗18, HSO07]
Secondly, we will apply our approach to build spatial acceleration
structures such as BVHs for large-scale mesh or volume datasets.
Further, we plan to efficiently build implicit BVH structures for
DVR that optimize for low variance in density per bounding vol-
ume. By using the technique described by Phan et al. [PSCL12],
our technique allows to compute variances in constant time with-
out running out of memory. Note that memory efficient SVT im-
plementations are especially important in this regard, because the
SVT that is used for computing second order moments is created
from an input of double precision than the dataset. Third, we will
investigate potential optimizations for sparse data. Here we will ad-
dress how much memory used by our data structure can be saved by
pruning empty subarrays, and whether the heuristic can be adapted
to respect empty regions in the dataset.

Further, we plan to extend our approach to nominal data, that is,
computing SVTs of histograms instead of scalar entries. Applica-
tions are in any research field processing segmented volumes such
as neuroscience or material science. For instance, Al-Thelaya et
al. [ATAS21] perform sub-volume queries over nominal data to en-
able real-time computation of local histograms over user selected
regions. However, due to arranging histograms in a Mip Map struc-
ture, their approach requires an additional footprint assembly step
that quickly becomes unfeasible if very large regions are selected.
By replacing the Mip Map architecture with our SVT scheme, we
believe it will be possible to build a sophisticated mixture graph
that allows to skip the footprint assembly step entirely.

© 2021 The Author(s)
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