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Interactive Focus+Context Rendering for
Hexahedral Mesh Inspection

Christoph Neuhauser, Junpeng Wang, and Rüdiger Westermann

Abstract—The visual inspection of a hexahedral mesh with respect to element quality is difficult due to clutter and occlusions that are

produced when rendering all element faces or their edges simultaneously. Current approaches overcome this problem by using focus on

specific elements that are then rendered opaque, and carving away all elements occluding their view. In this work, we make use of

advanced GPU shader functionality to generate a focus+context rendering that highlights the elements in a selected region and

simultaneously conveys the global mesh structure and deformation field. To achieve this, we propose a gradual transition from

edge-based focus rendering to volumetric context rendering, by combining fragment shader-based edge and face rendering with per-pixel

fragment lists. A fragment shader smoothly transitions between wireframe and face-based rendering, including focus-dependent

rendering style and depth-dependent edge thickness and halos, and per-pixel fragment lists are used to blend fragments in correct

visibility order. To maintain the global mesh structure in the context regions, we propose a new method to construct a sheet-based

level-of-detail hierarchy and smoothly blend it with volumetric information. The user guides the exploration process by moving a lens-like

hotspot. Since all operations are performed on the GPU, interactive frame rates are achieved even for large meshes.

Index Terms—Visualization of Hex-Meshes, Real-Time Rendering, GPUs.

✦

1 INTRODUCTION

Hexahedral elements have widespread use in numerical simulation

methods using finite elements and finite volumes. Therefore,

hexahedral mesh generation (hex-meshing) has become a topic of

intense research. However, for all but simple volumetric bodies it

is impossible to construct a deformation-free hexahedral mesh, i.e.,

where the elements are rectilinear cubes (cuboids), that accurately

represents the boundary of the body or aligns with specific material

features in the interior. Thus, it is one of the grand challenges

in hex-meshing to construct meshes with as low as possible

deformations [2], [3], [4].

Visual mesh inspection tools support experts in assessing the

specific deformation characteristics of the output produced by

different meshing techniques. The following mesh analysis tasks

are typically performed:

T1 Assessment of the spatial distribution of the cell defor-

mations, to reveal whether a hex-mesh produces clusters

of cells with large deformations or uniformly distributes

medium deformations across the domain.

T2 Fine-granular inspection of a selected group of cells,

to assess similarities and variations in their geometric

deformations.

T3 Investigation of the relationships between occurring defor-

mations and specific geometric features of the meshed body,

to understand the interplay between object boundaries and

the internal mesh structure.

T4 Assessment of the relationships between simulation results

or accuracy and cell deformations, to shed light on the

effects of different meshing techniques on the simulation

output.
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A visual inspection is difficult, however, since often high deforma-

tions occur in the interior of the volumetric body. In principle, direct

volume rendering techniques for unstructured volumetric meshes

can be used to render the 3D deformation field (Fig. 2 (left)). This

can effectively communicate the spatial distribution of deformations

(T1), yet the cell structure is entirely lost. Since drawing all edges

results in extreme clutter and occlusions, visualization tools for

hex-meshes often restrict the analysis to the boundary faces of the

3D mesh (Fig. 2 (middle)), and provide options to clip subsets of

elements so that interior faces appear (Fig. 2 (right)).

Bracci et al. [5] provides means to peel away layers of elements

from outside to inside, remove cells below a certain deformation

value, and reveal hidden irregular edges via transparency rendering.

This enables an interactive fine-granular visual exploration of

hex-meshes (T2), but since there is no guidance to the important

regions at first hand, the user needs to actively search through

the mesh by successive cell filtering operations. Especially when

low deformation cells are surrounded by high deformation cells,

this procedure can become misleading. Furthermore, successive

filtering makes it difficult to maintain the global mesh structure

and spatial relationships between mesh regions with different

properties. Xu and Chen [6] address this problem by showing

a global topological mesh structure in addition to selected cells

(T3). The spatial distribution of deformations, however, can only

be accessed via animation, i.e., by stepping through the sets of cells

in deformation space, which is problematic because of the required

memorization capabilities and attention shifts [7].

1.1 Contribution

In this work, we extend current visualization techniques for hex-

meshes by a combination of face-based volume rendering with

fragment-based edge rendering. Our goal is to enable users to

focus their visualization efforts on the area of their choice, while

preserving a surrounding context that conveys important positional
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Fig. 1. From left to right: Contextual visualization using face-based volume rendering, fragment-based edge rendering, our proposed focus+context
(F+C) rendering using smooth blending between edge and volumetric rendering including contextual lines. Model courtesy of [1].

cues and hints toward non-explored regions of interest. In the global

context view the deformation field is rendered as a semi-transparent

volumetric field in combination with few contextual edges (T1), so

that important regions and the spatial mesh structure can quickly

be recognized (T3). This enables in particular to simultaneously

visualize the mesh structure and a volumetric field given as scalar

values at the mesh vertices or cells (T4). The detailed focus view

is selected via a user-defined screen space lens with depth focus, in

which edge-based rendering is used (T2).

One of our goals is to obtain a smooth transition from edge-

based focus rendering to volumetric context rendering, which is

important to allow the user to easily infer the relationship between

the focus and context structures. Therefore, we introduce a GPU

renderer for hex-meshes that solely renders cell faces and performs

all operations that change the mesh appearance in a fragment

shader. The shader smoothly blends between different rendering

options depending on where a fragment is located w.r.t. the focus

region and whether a fragment is an edge or interior face fragment.

Furthermore, we incorporate an edge-based level-of-detail (LoD)

structure into the renderer, to adapt the density of rendered mesh

edges depending on cell deformation and distance to the focus

center. The coarser LoDs further serve as shape cues in the context

region. Since all rendering options are performed solely on the

fragment level, a smooth blending from sharp details to a more

fuzzy appearance with embedded characteristic edges as shape cues

can be performed efficiently. Our proposed visualization technique

builds upon the following specific contributions:

• A single-pass GPU renderer with fragment shader-based

edge and volume rendering including transparency.

• A LoD line hierarchy that is extracted from a hex-mesh

using a topological subdivision scheme based on mesh

sheet elements.

• A rendering technique that smoothly blends between focus

and context, by continuously adapting edge density as well

as edge and face appearance.

In Sec. 2 and Sec. 3, we first discuss related work and provide an

overview of our technique. In Sec. 4, we discuss how a smooth

transition between focus and context is achieved via edge- and

face-specific modulations in a pixel shader. Sec. 5 is dedicated to

the extraction of a hierarchical LoD, which is required to convey

important positional cues. Finally, we perform a detailed quality and

performance analysis that justifies the feasibility of our approach

even for meshes comprising millions of elements. The code is

published on https://github.com/chrismile/HexVolumeRenderer.

2 RELATED WORK

J 1.00

0.28

Fig. 2. Conventional hex-mesh visualizations. J is the Jacobian ratio
of each cell. From left to right: Direct volume rendering, the boundary
surface, filtering cells with low deformation. Model courtesy of [3].

Visualization techniques for hexahedral grids can be divided

into surface-based and direct volume rendering techniques. Surface-

based techniques render hexahedral elements as opaque cuboids,

including wireframe rendering and face coloring to emphasize

certain element properties. For a thorough overview of the different

rendering styles that are used in modelling applications, let us

refer to the recent work by [5]. They also introduced novel line-

based visualization options to maintain the overall model structure

and emphasize singular edges in a hex-mesh. For computing the

deformation of cells, our implementation uses the code from [5],

which implements various measures for cell deformation supported

by the Verdict library [8]. A summary and discussion of different

quality metrics for hex-meshes is given by [9]. The code from [2]

is used for loading and processing hexahedral meshes.

Recently, [6] proposed to visualize the mesh structure of hexahe-

dral meshes by using a subset of the most important base-complex

sheets and dual chords, and show their interrelation using adjacency

matrices. We take inspiration from their approach utilizing base-

complex mesh sheets to reduce the structural complexity of a mesh

(cf. Sec. 5). Our approach uses hexahedral sheets [10], [11] instead

of base-complex sheets, and merges sheets for creating a LoD

structure instead of directly visualizing a subset of them. The use

of hexahedral sheets for hex-mesh construction, simplification and

reparameterization is thoroughly discussed in the work by [12].

Direct volume rendering of hexahedral meshes has a long

tradition in volume visualization, and many of the concepts that

are used by more recent works are discussed in the survey by [13].

Our GPU-based approach shares similarities with cell projection

techniques w.r.t. how the cells are rendered and their visibility

order is established. Cell projection techniques exploit the GPU

to efficiently render triangles and perform linear interpolation of

https://github.com/chrismile/HexVolumeRenderer
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per-vertex attributes for each rendered fragment. Cuboids are first

decomposed into tetrahedra, and then rasterized and blended using

the GPU [14], [15], [16], [17]. [15] utilized the GPU for visibility

sorting of rendered fragments, which is conceptually similar to the

approach we employ for visibility sorting using per-pixel fragment

lists [18], a GPU realization of the A-buffer [19] to store the

unordered set of fragments falling into each pixel. These fragments

are then sorted explicitly based on the stored depth information.

Recently, SparseLeap [20] has been introduced as a pyramidal

occupancy map to generate geometric structures representing non-

empty regions, which makes use of per-pixel fragment lists to

determine occupied space and accelerate volume ray-casting.

Related to our visualization technique is the use of transparency

and adaptive primitive density for streamline rendering. When too

many lines are shown simultaneously, occlusions and visual clutter

are quickly introduced. While we address this by smoothly blending

into a volumetric context and using few representative edge se-

quences from coarser LoDs, others have proposed importance- and

similarity-based criteria in screen-space to select the rendered lines

dynamically on a frame-to-frame basis. Screen-space approaches

determine for each new view the subset of lines to be rendered so

that occlusions are reduced and more important lines are favored

over less important ones [21], [22], [23]. The amount of occlusion

is determined by the “overdraw”, i.e., the number of projected

line points [21], [23] or the maximum projected entropy [22] per

pixel. [24] decrease the opacity of non-important foreground lines

using per-frame opacity optimization. A summary and evaluation

of different GPU transparency rendering techniques for large line

sets is given by [25]. [26] build a line hierarchy to continuously

decrease the density of less important lines.

3 METHOD OVERVIEW

Our method renders all hex-faces as a quadrilateral formed by

two triangles. A fragment shader determines the appearance of

each fragment depending on whether it lies in the focus or context

region, and further depending on whether it is an “edge fragment”,

i.e., lying closer to a face edge than a given edge thickness, or a

“face fragment”, i.e., lying too far away from any of the face edges.

This classifies each fragment into 4 different types that determine

how it is shaded (see Fig. 3). While in the context region a more

volumetric appearance with subtle edge accentuation is used, in

the focus region only the edges are clearly emphasized. Edge and

face colors and opacities are made dependent on the importance

measure, i.e., the strength of cell deformation, so that also in the

context region important cells are emphasized. We use the Jacobian

ratio metric as deformation measure [9], which is deduced from

the Jacobian matrix that is related to the transformation of a cuboid

into the deformed cell. Since the importance measure is cell-based,

every vertex gets assigned the maximum importance value of all

cells sharing this vertex. The triangle rasterizer then brings the

interpolated importance values to the fragments. In addition, the

maximum importance value of all cells sharing an edge are made

available in the fragment shader for that edge.

The renderer changes the appearance smoothly from edge-

based to volumetric with increasing distance to the focus center

in screen space, as described in Sec. 4. Therefore, the opacity and

width of edges in focus is smoothly decreased towards the focus

border, and the color is blended towards the face colors used for

rendering the context region. For each pixel, all fragments falling

into that pixel are stored in a per-pixel fragment list on the GPU,

Fig. 3. Left: Classification of fragments depending on whether they are
in focus or context, and whether they are close to a face edge or not.
Right: Depending on the classification, the fragments take on different
appearances. For each fragment, the image shows how the rendering
looks like if only fragments of this type are rendered.

and they are sorted w.r.t. increasing distance to the camera. This

enables opacity-based blending, i.e., α-blending, of fragments in

the correct visibility order. For sorting, we use a GPU-friendly

implementation of priority queues [25].

The described rendering approach has two limitations: Firstly,

in the focus region there can be many non-important edges that

occlude important ones. Secondly, in the context region the basic

mesh structure gets lost due to increasing volumetric appearance.

To address these limitations, we construct a LoD line structure

(Sec. 5), in which mesh edges are continually removed at coarser

hierarchy levels. Fig. 4 illustrates how the LoD structure is used,

by assigning to every edge the maximum level at which this edge

is still present in the LoD structure. In the focus region, instead

of removing edges with an importance value below a selected

threshold, these edges are rendered if they are also present at some

coarse LoD. We call these edges contextual edges. In the context

region, only contextual edges are rendered to provide an overview

of the shape of the hex-mesh.

Fig. 4. Left: Edges are continually thinned out from level to level in the
LoD hierarchy. Single edges get assigned the level at which they are
last contained. Right: The LoD edge structure for a given hex-mesh.
Greyscales from bright to dark encode LoD levels from fine to coarse.
Model fandisk courtesy of [27].

4 FOCUS+CONTEXT

In the following, we describe how focus and context rendering

is performed, and in particular how a smooth transition between

both is achieved. A detailed discussion of the reference GPU

implementation is given in Sec. 6. The user defines the focus

region by positioning a circular lens with a center and controlled

radius in screen space. The focus is 1 at the lens center and goes

smoothly down to 0 towards its boundary.

Regardless of whether a fragment is finally shaded to appear as

part of an edge or a face, hex-faces are rasterized with two triangles,

and per-vertex attributes like the cell importance are barycentrically
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Fig. 5. Top: Focus edges are smoothly faded out with increasing distance
to the focus center. Left: Edges colored by LoD level. Right: Edges colored
by interpolated per-vertex deformation measure. Model fandisk courtesy
of [27]. Bottom: Decreasing lod from 11 (left) to 8 (right) increases the
density of contextual edges. No focus selected. Model armadillo courtesy
of [29].

interpolated. For every fragment, a fragment shader determines

whether it should appear as an edge or a face. This is performed

by first computing a fragment’s screen space coordinate and its

distance dist to the focus center (normalized to range from 0 at the

focus center to 1 at the focus boundary), and evaluating the focus

as 1− smoothstep(0.7,1,dist).
Then, a fragment’s edge opacity αe, which determines whether

the fragment belongs to a face (αe = 0) or an edge (αe > 0), is

determined as follows:

w = (1+0.3 · f ocus) ·wbase

e f ocus = (dedge ≤ w∧ (elevel ≥ lod ∨ eattr ≥ δ )) ? 1 : 0

econtext = (dedge ≤ w∧ elevel ≥ lod) ? 1 : 0

αe = lerp(econtext ,e f ocus, f ocus)

(1)

Here, wbase is a minimum edge width, dedge is the fragment’s

shortest distance to any of the face edges in screen space, elevel is

the LoD level of the edge (Fig. 4), and eattr is the edge importance.

First, the edge width is decreased with increasing distance to

the focus center. Then, via econtext and e f ocus, respectively, it is

determined whether the fragment belongs to an edge that should

be rendered when lying in the focus or context region. In focus,

an important edge is always rendered, i.e., eattr is greater than a

selected importance threshold δ . An unimportant edge is rendered

only if it is at a user-selected coarse LoD level lod. In context,

every edge with elevel ≥ lod is rendered. The final distance-based

linear interpolation between econtext and e f ocus transitions smoothly

from focus to contextual edges.

The shader renders the focus edges with a thin white depth-

dependent halo [28]. The halo gets thinner with increasing distance

to the focus, and the edge colors are slightly darkened to make

the edges stand out against the halo (Fig. 5 (top)). Focus edges

blend into contextual edges, which are rendered as simple lines

without a halo and colored according to the deformation measure.

To maintain certain contextual edges as spatial cues in the focus

and context region, the user can interactively select the value of

lod (Fig. 5 (bottom)).

Furthermore, fragments in the context that are in close vicinity

to an edge, but are not visible at the selected LoD level, are slightly

accentuated. If such a fragment doesn’t belong to an edge according

to Eqn. 1, se determines how strongly it is emphasized:

se = dedge ≤
2

3
·wbase ? s : 1 (2)

se is used to enhance the face opacity α f (see Egn. 4). Since α f

depends on the distance to the focus center (Eqn. 3), accentuated

edges fade out accordingly. Fig. 6 demonstrates varying accentua-

tion of contextual edges by variation of the accentuation strength s.

Fig. 6. Weakly (s = 1.5) and strongly (s = 3) accentuated edges according
to Eqn. 2. No focus selected. Model bunny courtesy of [1].

Both parameters αe and se are used to assign the fragment

opacity that emphasizes certain edges and smoothly blends between

focus edges and contextual edges with increasing distance to the

focus center. The edge colors are set via a color table that maps the

edge importance values to colors Ce (see Sec. 4.2). Since unshaded

lines impact the ability to correctly observe spatial relations when

looking at a still image (cf. Fig. 22), slightly desaturated fragments

are drawn further away from the camera in the focus region. The

user can further activate a circular lens boundary to indicate the

currently selected focus point and area.

4.1 Contextual Face-Based Volume Rendering

If a fragment is not classified as part of an edge, it is rendered

as part of a face to generate a volumetric appearance that hints

to important mesh regions. In principle, once the face fragments

are rendered and sorted in a fragment list, direct volume rendering

using α-compositing of cell contributions can be used (Fig. 7 (left)).

This gives a continuous volumetric appearance, as if the object is

filled with a scalar-valued quantity, yet the mesh structure is mostly

lost.

Fig. 7. Left: Volume rendering using cell contributions. Right: Face-based
volume rendering. The Jacobian ratio (from low to high) is mapped linearly
to color (from blue to red) and opacity. Model bunny courtesy of [1].

To also accentuate the mesh structure in the context region, we

refrain from using direct volume rendering. Instead, the faces are

blended in correct visibility order, yet the optical depth through

the cells is neglected and face colors are blended using opacities

that continually increase with decreasing distance to the focus. I.e.,

the face opacity α f is computed by modulating a user selected
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Fig. 8. Final mesh rendering shows a smooth transition from the focus
edges to the context edges and volumetric representation. Model grayloc
courtesy of [30].

face opacity α̂ f using the distance to the focus center and the edge

accentuation factor as

α f = α̂ f ·dist4. (3)

Blending a discrete set of faces generates accentuated jumps

in the final colors whenever there is a change in the number of

faces falling into adjacent fragments (Fig. 7 (right)). Increasing

opacity artificially increases these jumps in the context region and

makes them more noticeably. The face colors C f are generated by

interpolation of per-vertex importance values by the rasterizer.

We decided to use a dark background, because the rendering,

combined with bold saturated colors, tends to stand out. A white

background shines through and affects the line colors. However,

our visualization tool also allows switching to a white background

if desired (cf. Fig. 21).

4.2 Blending Focus and Context

Each fragment obtains an edge and a face color (Ce,C f ), and in

addition computes the values αe, se and α f according to Eqns. 1, 2

and 3. The fragment shader blends the edge colors (focus and

contextual edges) and face colors (face colors and accentuated

lines) according to

C = αeCe +(1−αe)seα f C f

α = αe +(1−αe)seα f .
(4)

Thus, focus and context information is blended as shown in Fig. 9.

Via front-to-back α-compositing, all fragments falling into a pixel

are finally merged. The context factor has a lower slope for lower

distances in order to get a smoother transition in the beginning than

for the sharper focus edges.

0.0 0.2 0.4 0.6 0.8 1.0
dist

0.0

0.5

1.0

1 - smoothstep(0.7, 1, dist)
dist4

Fig. 9. Blend factors for focus (blue) and context (red).

Fig. 8 shows the final F+C look. An accentuated edge in the

context takes on the color of the face, brightened a little, and its

opacity is increased by about 50%. In addition, white exterior

Fig. 10. A hexahedral sheet (left), and the three sets of topologically
parallel edges (in red) of a hexahedral element [10]. Model courtesy
of [35].

and interior screen-space silhouettes are added to improve the

perception of the mesh shape [31], [32], [33]. Therefore, the mesh

boundary surface is rendered, and fragments along sharp edges in

the depth buffer are emphasized.

5 LEVEL OF DETAIL STRUCTURE

In the following, we describe the construction of the LoD edge

structure for a given hex-mesh using topological simplification. Our

approach builds upon the concept of hexahedral sheets. Hexahedral

sheets were introduced by Borden et al. [11], and further formalized

by [10] as a set of hex-elements which are connected to each

other via their topologically parallel shared edges. In Fig. 10, we

reproduce images from Woodbury et al. to illustrate the relationship

between these two topology-based groups. In a number of works,

the concept of hexahedral sheets has been utilized for hex-mesh

construction and simplification [34], as well as re-meshing [12].

We make use in particular of sheet-based topology simplification,

by successively collapsing pairs of neighboring sheets.

We use the approach proposed by [10] to extract each single

sheet: Upon selecting the start edge, all elements incident to the

edge are found and added to the sheet (if not done already). For

each of the newly added elements, the three edges topologically

parallel to the original edge are determined, and the edges are

updated with the newly found edges. This process is repeated until

there is no new element found. During the extraction of a single

sheet, all visited element edges are recorded. Then, an unvisited

edge is selected for computing a new sheet until no such edge is

left. In this way, the set of sheets covering the entire hex-mesh

is extracted. Finally, we define for each sheet a sheet component

consisting of all elements belonging to this sheet.

5.1 Merging Sheet Components

In an iterative process, pairs of sheet components are merged into

a joint component until no components can be merged anymore.

Therefore, for all pairs of sheet components, their neighborhood

relation is classified analogously to the work by [6] as

• adjacent (or tangent),

• intersecting,

• hybrid (i.e., tangent and intersecting),

• none.

Fig. 11 illustrates the different constellations. In our design, sheet

components are neighbors only if they share at least one boundary

face that is no longer on the boundary after merging.

In addition to the neighborhood relation, for each pair of neigh-

boring components a weight is computed. The weights are used in

an iterative merging process to determine the priority of merging

for each neighboring component pair. Building upon [6], where

the weights consider the percentage of merged boundary faces to
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Fig. 11. From left to right, the different topological relations (adjacent,
hybrid, intersecting) of neighboring hexahedral sheets. Similarity to the
constellations by [6] is intentional. Model courtesy of [35].

the overall number of boundary faces in the two components, the

weights are computed as

wi, j =
∂Ci ∩∂C j

| ∂Ci |+ | ∂C j |
·

1

|Ci |+ |C j |
(5)

Here, ∂Ci ∩∂C j is the number of boundary element faces shared

by the pair of neighboring components Ci and C j, and | Ci | + |
C j | is the number of cells in Ci and C j. Different to [6], the

weights consider the topological size (i.e., the number of cells) for

merging to reduce the potential ’jumps’ in the LoD structure, i.e.,

neighboring pairs with smaller topological sizes are favoured at

similar ratio between boundary faces. Even though we favour a

purely topological measure in this work, alternatively one could

also opt to use the face areas and cell volumes.

The adjacency information is stored in a priority queue, with

the weights serving as the priority measure. Pairs of components

with highest priority are merged first, yet adjacent sheets always

have a higher priority than hybrid sheets, and hybrid sheets always

have a higher priority than intersecting sheets. During merging,

the two matching components are removed from the component

queue, and a new component is inserted. The edges on the shared

boundary faces of these components are identified and marked as

invisible on this level (Fig. 12). Then the side element faces of the

new component are recomputed, and the adjacency information

as well as the priority of neighboring components is updated in

the component queue. A next coarser LoD level is established as

soon as the number of cells of the merged component is at least

more than twice as large as the number of cells of the (merged)

components on which the last LoD level starts. The merging process

is repeated until only one single component is left.

Fig. 12. Sheet neighborhoods in a 2D quad mesh. Bold orange lines
become invisible after merging. From left to right: Adjacent sheets, hybrid
sheets, intersecting sheets. No edges become invisible when sheets
intersect.

An exception to the rules is made for so-called singular edges.

Singular or irregular edges are those edges which do not have

exactly 2 (on the boundary) or 4 (in the interior) incident cells

[34]. These edges form curves which separate the hex-mesh into

its regular parts, and they serve as important visual cues regarding

the global mesh topology. In particular, valence 1 edges are never

set to be invisible, and singular edges of all other valences are only

invisible at the coarsest LoD level.

Fig. 13. From left to right: LoD levels 0, 2, 3 and 4 of a hex-mesh. Model
fandisk courtesy of [27].

Fig. 13 and Fig. 14 show the extracted LoD structures of two

hex-meshes. The former shows the model from Fig. 4, yet now

the edges at different LoD levels, i.e., with elevel equal to 0, 2, 3,

and 4, are shown separately to better demonstrate the sequence

of merging steps. The same representation is used for the latter

examples, yet the edges with elevel equal to 0, 3, 5 and 6 are shown.

In both cases, the greyscale encoding of LoD levels as in Fig. 4 is

used.

5.2 LoD Symmetry

An interesting question is whether the LoD construction process

maintains certain properties of the initial mesh, such as symmetry.

When consecutively merging multiple topologically symmetric

pairs of sheet components, the symmetry usually remains intact

in the LoD edge structure. This is due to the used LoD transition

strategy, where the next coarser LoD is only started when the

number of merged cells is two times larger than the number of cells

the last LoD level was started with. However, multiple properties

must be fulfilled.

First of all, a pair of sheet components that is merged must not

have a higher merging priority with neighboring components after

merging than another pair of sheet components symmetric to this

pair. Otherwise, symmetric pairs of components might be missed,

and the construction process advances to the next LoD level before

these pairs are merged. There is no guarantee for this to be true, but

the chance that this situation occurs is significantly decreased by

the merging process according to Eqn. 5. As merged components

in general have a higher number of cells, and thus a lower merging

priority, the approach didn’t result in any failure in the examples

we have used.

Secondly, if we have symmetry with an uneven number of

topologically symmetric sheet components, the symmetry property

can be lost after merging. This is because the algorithm always

merges pairs and not, for example, triples of sheet components. If

there is an even number of more than two topologically symmetric

sheet components next to each other in a periodic topology, the

order in which they are merged is arbitrary and dependent on

the order of the edges in the mesh data. In order to make sure
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Fig. 14. From top to bottom: LoD levels 0, 3, 5 and 6 of a hex-mesh.
Model eight courtesy of [36].

that symmetry is not lost, a perfect matching strategy for sheet

component pairs with equal matching weights is used instead of

consecutive greedy matching. For example, the symmetric sheet

components (A, B, C, D, E, F) are then guaranteed to be merged

to, e.g., (AB, CD, EF), while otherwise they might get merged to

(AB, C, DE, F) and symmetry is broken.

6 GPU IMPLEMENTATION

Our reference implementation uses the functionality provided by

OpenGL 4.5. All data required for rendering is kept on the GPU,

so that no CPU-GPU communication is required during rendering

and user interaction. Since the fragment shader always performs all

computations described in Sec. 4, the user can arbitrarily change the

size of the focus lens without affecting performance. All constant

parameters in Eqns. 1, 2 and 3 are issued via constant shader

parameters that can be changed interactively by the user.

In order to make the single-pass face-based rendering of faces

and edges possible, we use programmable vertex pulling [37]. We

use a variant called programmable attribute fetching, where a fixed-

function element array is used for indexed primitive rendering, but

all vertex attributes are loaded manually from a dedicated buffer.

For each cell face, we create two triangles with shared vertices

only between these two triangles. Then, by using the vertex ID

the fragment shader computes which face a vertex belongs to, and

loads the correct face data. A geometry representation where all

vertices are shared between faces is not possible, as vertices need

to pass different data to the fragment shader depending on the

current face. Thus, the renderer cannot utilize the post-transform

cache of indexed vertices between faces, letting the pure geometry

throughput fall slightly below the GPU limit.

The fragment shader uses the vertex positions of all four

face corner points to compute the shortest distance to any of

the face edges. When rendering edges with per-edge constant color,

star-shaped patterns occur at edge intersections (Fig. 15a). Since

smoothly interpolated per-vertex colors are rendered, these patterns

are hardly visible (Fig. 15b). Only when two edges intersect

and one is not rendered (Fig. 15c), the pattern is clearly visible.

This is avoided by letting the shader ignore edges in the distance

calculation which are not visible (Fig. 15d).

To keep track of the fragments falling into the same pixel, we

employ GPU per-pixel linked lists [18]. All generated fragments

(a) (c) (d)(b)

Fig. 15. Edge rendering in 2D. (a) Four edges meet in one vertex and
form an arrow-like shape. (b) We linearly interpolate colors in order to
make the arrow-like shapes disappear. (c) Making edges invisible creates
holes. (d) An approach for closing these holes is ignoring lines with a low
opacity in the calculation of the closest edge.

are stored in a linked list over all pixels, and a fragment shader

sorts these fragments w.r.t. their screen space depth. Here it is

assumed that the GPU buffers used for storing the fragments along

with a reference to the next neighbor in the global fragment list are

large enough. We demonstrate in Sec. 7 that even for hex-meshes

with a few million elements this is case. For scenes with high

depth complexity, however, the number of fragments is so large

that sorting can become a performance bottleneck. For instance,

for the largest hex-mesh used in our experiments about 340 million

fragments are generated per frame. Therefore, we use a GPU

version of priority-queues using a binary tree implementation as

search structure [25], which reduces the time required for sorting

to slightly more than half of the overall frame time.

7 RESULTS AND ANALYSIS

All our results were rendered on an NVIDIA RTX 2070 GPU

with 8GB of on-chip memory. Only the construction of the LoD

hiearchy was performed on the CPU, i.e., a workstation running

Ubuntu 20.04 with an AMD Ryzen 9 3900X @3.80GHz CPU and

32GB RAM. We use different viewport sizes to demonstrate the

scalability of the rendering approach in the number of pixels, and

in particular to show that even for large hex-meshes and viewports

the memory required by per-pixel fragment lists does not exceed

the GPU memory. All timings are averages over 128 frames with

different camera views where the data sets cover almost all of the

screen. The accompanying video shows one of the camera paths

we have used to record the performance data.

Table 1 lists the number of hex-elements of each of the test

data sets, the GPU memory that is required to store these data sets

on the GPU, and the time required to build the LoD structures. We

have in particular included the data sets ”example3” and ”cubic128”

(Fig. 20) to demonstrate that even large data sets with millions of

cells can be stored entirely on the GPU and processed in a short

time.

Data Set #Cells Mesh Buffer Size LoD Creation Time

fandisk 1,774 0.5 MiB 0.01s
eight 5,428 1.4 MiB 0.05s

dragon 14,009 3.5 MiB 0.2s
grayloc 24,344 5.9 MiB 0.4s

armadillo 29,935 7.2 MiB 0.5s
anc101 a1 73,976 17.3 MiB 2.1s
example3 589,040 135.9 MiB 16.3s
cubic128 2,097,152 476.5 MiB 23.0s

TABLE 1
Data set statistics. Model fandisk courtesy of [27], eight courtesy of [36],
dragon, armadillo and dancingchildren courtesy of [29], grayloc courtesy

of [30], anc101 a1 courtesy of [1], cognit courtesy of [3], example3
courtesy of [38], model cubic 128 is a twisted Cartesian grid of size 1283.
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Data Set Viewport FPS F+C PPFL Mem. PPFL

grayloc
1280x720 154 FPS 2.2ms 4.3ms 0.21 GiB
1920x1080 85 FPS 3.9ms 7.8ms 0.47 GiB
2560x1440 52 FPS 6.5ms 12.7ms 0.84 GiB

anc101 a1
1280x720 96 FPS 4.1ms 6.3ms 0.37 GiB
1920x1080 51 FPS 6.7ms 12.9ms 0.83 GiB
2560x1440 32 FPS 11.0ms 20.3ms 1.48 GiB

cognit
1280x720 127 FPS 3.2ms 4.6ms 0.20 GiB
1920x1080 74 FPS 4.6ms 8.8ms 0.45 GiB
2560x1440 49 FPS 6.6ms 13.8ms 0.80 GiB

example3
1280x720 44 FPS 13.0ms 9.8ms 0.64 GiB
1920x1080 26 FPS 17.8ms 20.6ms 1.45 GiB
2560x1440 17 FPS 23.6ms 33.6ms 2.57 GiB

cubic128
1280x720 11.9 FPS 37.3ms 46.9ms 1.19 GiB
1920x1080 6.8 FPS 45.8ms 101.5ms 2.68 GiB
2560x1440 1.8 FPS 152.7ms 196.8ms 1.19 GiB*

TABLE 2
Performance statistics for selected data sets at different viewport sizes:
Frames per second (FPS), times required by the F+C rendering stage

(F+C) and the stage that sorts and blends the fragments in the per-pixel
fragment lists (PPFL), and the memory consumed by the fragment lists

(Mem. PPFL). In the last row, the viewport was split into 4 tiles of
1280x720 and the data set was rendered consecutively into each tile.

Rendering to the full viewport requires 4.8 GiB and is not possible due to
OpenGL buffer restrictions to 4 GiB.

Table 2 provides a performance statistics, distinguishing be-

tween the rendering stage used to determine the F+C look, and the

rendering stage that sorts and blends the fragments in the fragment

lists. In addition, the memory requirements of the fragment lists

are given. It can be seen that the advantage of not having to

store any per-cell adjacency information to render the elements in

correct visibility order comes with additional computational load

and memory requirements for handling the fragment lists. For the

largest data set with 2 million elements, the frame rate drops down

to 6.8 fps at Full HD screen resolution. It can further be seen that

the fragment shader consumes the vast amount of the total frame

time. The time for resolving the per-pixel fragment lists is between

43% and 72% of the total rendering time, and it is dependent on

the depth complexity of the data set, i.e., the number of cells falling

into the single pixels.

At high screen resolution, the fragment lists can become so

large that the OpenGL buffer restriction of 4 GiB is reached. This

can be overcome by subdividing the screen into disjoint regions

and rendering to each region sequentially in multiple rendering

passes (see last row of Table 2). This approach requires processing

each cell multiple times in the geometry and rasterization stage,

but it does not increase the number of fragment shader operations

and effectively reduces the required GPU memory. By splitting the

2560x1440 viewport into four tiles of size 1280x720, cubic128 can

then be rendered with roughly 1.8 fps.

Screen-tiling also gives rise to an efficient implementation of a

sort-first parallelization strategy when using a multi-GPU cluster.

In sort-first, each GPU holds the entire mesh and renders into

a disjoint screen region, so that only the corresponding fraction

of the per-pixel linked list is required on each GPU. If also the

geometry buffers storing mesh vertices and indices exceed the

buffer limit, theses buffers can be tiled as well and rendered

consecutively. Anticipating that merging screen tiles to form the

final image requires by far less time than rendering, this approach

scales effectively in the number of cells. Furthermore, it enables

to visualize very large data sets on current clusters comprising

multiple high-end GPUs with up to 24GB on-chip memory.

In the following, we show results of interactive visual in-

spections of some of the test data sets using the proposed F+C

renderer. In all examples, the per-cell scaled Jacobian ratio is

Data Set Viewport FPS Mem. PPFL Mem. Geom.

parts1
1280x720 9.5 FPS 0.44 GiB

2.09 GiB1920x1080 5.4 FPS 0.98 GiB
2560x1440 3.4 FPS 1.75 GiB

bumpy torus
1280x720 4.6 FPS 0.68 GiB

4.27 GiB1920x1080 2.5 FPS 1.52 GiB
2560x1440 1.7 FPS 2.71 GiB

TABLE 3
Performance statistics for rendering numerical simulation grids with 24
(parts1) and 50 (bumpy torus) million hexahedral finite elements using
face-based volume rendering: Frames per second (FPS), the memory

consumed by the fragment lists (Mem. PPFL), and the memory
consumed by the geometry data (Mem. Geom.).

mapped to color (from blue to red) and opacity (from 0 to 1).

Fig. 18 and Fig. 19 show the use of F+C rendering to obtain an

overview of the spatial locations of regions with highly deformed

cells, and to select a particular focus region for a more detailed

analysis. One can see that due to the combination of contextual

lines with volumetric face-based rendering and accentuated edges,

the user quickly understands the basic structure of the mesh and

its subdivision into multiple regular components. Once a focus

region is selected, a detailed analysis of the cells in that region is

performed via close-up views and interactive navigation. During

inspection, LoD levels, transfer functions for edge and face colors

and opacities, as well as edge thickness can be changed interactively

to enhance the visual representation.

Fig. 20 (left) shows a deformed Cartesian grid comprised of

1283 cells. The deformed grid is created by performing a Finite

Element analysis with a specific boundary condition to let the

mesh twist. High deformations occur in the orange regions, yet the

cells are so small that the mesh structure cannot be seen. Via the

edges from a selected coarse LoD level, the basic mesh structure

is preserved, and the user can now zoom at a high deformation

region and use focus rendering to investigate the deformations

in more detail. Fig. 20 (right) shows a rendering of a hex-mesh

that was generated via the method from [38]. As can be seen,

the meshing approach creates many singular edge columns, i.e.,

cells with higher deformations are laid out along straight vertical

structures, while the remaining parts of the mesh show almost zero

deformation. The focus view reveals the structure of the cells with a

deformation larger than a selected threshold in the selected region.

To further demonstrate the capabilities of our tool regarding

task T4, we use two large simulation data sets comprising 24 and

50 million elements, respectively (see Table 3. Both data sets have

been generated by discretizing the interior of a surface model into

hexahedral finite elements, which are then used in an elasticity

simulation w.r.t. external loads [39]. Due to the applied loads,

the simulation elements deform. The occurring stresses (using

the scalar von Mises stress norm) are assigned to each vertex as

an additional attribute. Rendering the meshes is performed using

face-based volume rendering (see Fig. 26, 25% faster than F+C

rendering), using a 2D color table to distinguish between regions

with only deformation, only high stress, or both. For the 50M

elements data set, the geometry data consumes more than 4 GiB

of memory, but since the data is split into separate vertex and

index buffers the 4 GiB OpenGL buffer limit is not reached. At the

largest viewport resolution of 2560x1440, the two data sets render

at frame rates of 3.4 and 1.7 FPS, respectively. Note here that due

to the aspect ratio of the data set, about 1/4 of the pixels are not

covered and, thus, the fragment lists remain under the 4 GiB limit.
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7.1 Evaluation

We performed an informal expert evaluation with the goal to

obtain feedback concerning the strengths and weaknesses of our

tool compared to the one by Bracci and co-workers [5]. We let

two geometric modelling experts, two experts from computational

science, and two experienced computer graphics students work with

both tools. With each tool, the users visualized three different hex-

meshes. The users were asked to comment on how effectively they

understand the overall shape of the objects, determine the regions

with highly deformed cells, and assess the spatial relationships

between regions with different deformation strengths and the

concrete deformation characteristics of cells in regions containing

highly deformed cells. Visual comparisons to HexaLab [5] and

the main sheet extraction method of Xu et al. [6] are given in

Fig. 22, 23, 24 and 25. In the expert evaluation we did not consider

the method by Xu et al., since its focus is on a topological mesh

analysis and not on the visualization of cell deformations. The

major findings are as follows:

Global view Experts appreciate that the global context is always

visible when using our tool. Due to the use of face-based volume

rendering with deformation strength-based classification in the

context region, all regions with high deformation cells can be

perceived in relation to each other (T1). The visualization hints at

all potentially interesting regions. With only face-based volume

rendering, however, users sometimes loose the depth perception

and feel that the global mesh structure cannot be understood well.

This limitation is remedied by blending coarse-scale edge structures

into the context region, which enhances the understanding of the

global mesh structure without introducing clutter (T3). HexaLab,

in comparison, supports the rendering of singular edges in filtered

mesh regions and a transparent mesh outline to maintain some

global context. Users perceived as a minor limitation the resulting

sparseness of regions in which cells are filtered out (cf. Fig. 22).

LoD structure Unlike when using slicing, peeling and quality-

based cell filtering, where cells are removed entirely based on a

binary decision criterion, users appreciate the smooth LoD-based

transition from focus to context and high to low deformations

provided by our tool. This effectively reveals how the cell quality

changes globally, and whether these changes are rather smooth or

occur abruptly (T1).

Edge-based rendering When inspecting regions via the screen

space lens and edge rendering, users were able to quickly access

both the embedding of deformed cells into the surrounding and the

variations of the cell deformations (T2). Both was deemed difficult

with opaque face rendering, since only the front-most faces are

shown and context information is increasingly removed.

Scalar field visualization The two users from computational

science found it appealing that also scalar values given per vertex

or cell can be visualized in turn using face-based volume rendering

(T4). In particular when hex-meshes are used as simulation

grids, the option to visualize the relationships between simulation

accuracy and deformation of simulation cells provides new insights

into the simulation.

Interactive visual parameter modification It was perceived very

supportive of a detailed mesh analysis that all rendering parameters

could be changed interactively, and, thus, groups of elements could

be quickly (de-)emphasized while enabling less and more attention

on the global mesh structure.

Fig. 16. Contextual volume rendering of meshes from an octree-based
meshing approach. Due to the highly irregular topological structure, many
short line segments are created. Models courtesy of [40].

7.2 Limitations and improvements

Among the experts there was consensus regarding some general

limitations of the proposed F+C technique:

Deformation assessment In cases where the variation of the

geometric cell deformations is high, some users found it difficult to

grasp the deformations effectively using edge-based rendering. In

particular, the assignment of edges to cells could not be accessed

accurately (see Fig. 22). In these cases, users wished for the

possibility to alternate between edge and cell rendering to further

support a fine-granular inspection of the cell clusters. We have

included this rendering option into the tool, in combination with

a smooth fading of opaque faces with increasing distance to the

focus center (see Fig. 8, 19, 20, 22).

Occlusions Since all elements along the viewing cone are put into

focus when using a screen space lens, in some situations clutter was

perceived and some important regions were occluded. To overcome

this limitation, we have added an object space lens (cf. Fig. 19).

The user picks a pixel, and the lens is automatically centered at

the closest mesh point along the viewing ray through that pixel.

The lens can then be moved along this ray into the object using the

mouse wheel. When the user moves the camera, the object space

center-point of the lens remains unchanged.

LoD construction When a meshing technique produces meshes

with a very high number of singularities (e.g., octree-based meshing

techniques, cf. Fig. 16), the LoD structure is cluttered as well and

becomes less useful. This drawback also affects tools like HexaLab

[5], which renders singular edges in regions where cells are filtered

out. Xu et al. [6] also state regarding their method that “it is still

hard to show the structure of an octree or tet-split hex-mesh due to

the overly complex structure and a large number of extracted main

sheets”. Similarly to octree-based meshing techniques, meshes cut

out of Cartesian grids also produce a large amount of singular

edges on the mesh boundary. Anisotropic meshes, on the other

hand, like meshes with adapted scaling close to boundaries for

CFD simulations, can be handled well (cf. Fig. 17).

8 CONCLUSION AND FUTURE WORK

In this paper, we have introduced an interactive F+C rendering

technique for hex-meshes using fragment-based edge and face

rendering. We have demonstrated that even high-resolution meshes

can be rendered at high visual quality by using a carefully

designed combination of detailed cell information and surrounding

contextual information. To achieve this, we have introduced the

use of hexahedral sheets for extracting a hierarchical LoD edge

structure that provides important shape cues in the context region.

This allows reducing occlusions and visual clutter. By using
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Fig. 17. F+C rendering of a grid mesh (128x128x32) with tanh stretching
in y direction near simulation boundaries. The LoD construction algorithm
can also handle anisotropic meshes well.

a purely fragment-based rendering approach, which smoothly

transitions between highly detailed edge rendering and volumetric

face blending, interactive rendering of data sets comprised of

up to a few millions of elements is achieved on current GPU

architectures. Our results indicate the potential of the proposed

rendering technique for an interactive visual inspection of hex-

meshes, supported by an automated guidance to important mesh

regions.

In the future, we will consider the integration of approximate

rendering techniques for transparent fragments that can avoid the

use of per-pixel fragment lists (see [25] for an overview) Such

techniques do not render the fragments in correct visibility order,

yet since our approach uses transparency mostly in the context

region with more emphasis on closer mesh structures, they might be

able to provide a meaningful approximation. Additionally, we will

investigate the implementation of a distributed memory sort-first

parallelization strategy on a multi-GPU cluster to visualize very

large meshes. We further envision an AR-based stereoscopic inspec-

tion of hex-meshes to provide an improved spatial understanding of

shape variations. Here it will be interesting to analyse whether

a purely fragment-based approach is suitable for stereoscopic

rendering. Furthermore, we will investigate means to visualize

topologically irregular hex-meshes, e.g., as generated by octree-

based techniques, to avoid the resulting clutter. Finally, we intend

to extend the rendering technique to perform volume rendering

of physical fields given at the hexahedral cells or vertices. This

includes in particular the use of extended barycentric interpolation

for deformed hex-cells and the rendering of implicit isosurfaces

going through the cells.
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Fig. 18. The first F+C view shows a selected mesh sub-structure with highly deformed cells (framed region) in its global surrounding. Zoom-in and
focus size adjustment enables a fine granular cell analysis. Surrounding cells with high deformation are still present in the context. Model anc101 a1
courtesy of [1].

Fig. 19. In the first F+C view, important regions are effectively revealed. Framed region shows sub-structures that have been selected via the focus
lens. Zoom-in and focus size adjustment enables a fine granular cell analysis. Surrounding cells with high deformation are still present in the context.
Model grayloc courtesy of [30].

Fig. 20. Left: F+C rendering of cubic128. Right: F+C rendering of example3 reveals mostly elongated sub-structures with high deformations. Model
courtesy of [38].
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Fig. 21. Comparison of black and white background. Model anc101 a1 courtesy of [1].

Fig. 22. Top: F+C visualization. Bottom: Same model and views with opaque surface rendering and quality-based cell filtering. Model motor tail
courtesy of [41]. Unlike the opaque surface renderer, the F+C renderer is able to retain the context around and the topological embedding of regions
of interest.

Fig. 23. From left to right: Contextual volume rendering (ours). Fully opaque surface rendering. Slicing with oblique slicing plane. Additional slicing
plane removing front elements. Quality-based cell filtering. Opaque surface rendering requires multiple operations to reveal the interesting mesh
structures, and context information is often lost. Model cube carved courtesy of [41].
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Fig. 24. Comparison of different rendering techniques. From left to right: F+C visualization with focus on woman’s head (ours). Visualization in
HexaLab [5] with slicing. Main sheet visualization by [6]. Rightmost image courtesy of [6]. Model fertility courtesy of [42].

Fig. 25. From top left to bottom right: F+C visualization (ours). Slicing in HexaLab [5] with singular edges. Fully opaque surface rendering. Slicing.
Quality-based cell filtering. Model anc101 a1 courtesy of [1].

Fig. 26. Face-based volume rendering of parts1 (left, 24M cells) and bumpy torus (middle, 50M cells) using the color map on the right.
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