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ABSTRACT
In augmented reality applications, consistent illumination between virtual and real objects is important for creating
an immersive user experience. Consistent illumination can be achieved by appropriate parameterisation of the
virtual illumination model, that is consistent with real-world lighting conditions. In this study, we developed a
method to reconstruct the general light direction from red-green-blue (RGB) images of real-world scenes using a
modified VGG-16 neural network. We reconstructed the general light direction as azimuth and elevation angles. To
avoid inaccurate results caused by coordinate uncertainty occurring at steep elevation angles, we further introduced
stereographically projected coordinates. Unlike recent deep-learning-based approaches for reconstructing the light
source direction, our approach does not require depth information and thus does not rely on special red-green-blue-
depth (RGB-D) images as input.
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1 INTRODUCTION
In the past decade, augmented reality (AR)-capable
hardware and virtual reality (VR) devices have become
increasingly available. Successful AR applications
should create an immersive user experience, as immer-
sion in AR is important to prevent a barrier between
the virtual world and real world that can impede
user’s acceptance of AR. To minimise this barrier,
it is important to avoid mismatches between virtual
and real objects, such as illumination deviations. To
achieve consistent illumination between virtual and
real objects, virtual illumination in an AR application
must adapt to the real illumination conditions.

Depending on the illumination model used to render
virtual objects, virtual illumination may consist of an
emissive and reflective light term, known as the ren-
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dering equation (Kajiya, 1986). The reflective term is
an integral over the entire positive hemisphere above a
given point, containing the bidirectional reflectance dis-
tribution function (BRDF) and incident light. To begin
with a simple scenario, we restrict our approach to situ-
ations in which only one infinite point light source illu-
minates the scene. Thus, we neglect the emissive light
term of the rendering equation, more complex lighting
situations (e.g. extended, textured and multiple light
sources) and indirect illumination from other surfaces.
However, with an infinite point light source, we can ob-
tain illumination conditions that contain the most im-
portant elements for three-dimensional spatial percep-
tion. In our study it is thus sufficient to focus on the
light direction to be reconstructed to achieve virtual il-
lumination while providing consistency for an immer-
sive AR experience. We further disregard the intensity
of the light, as it does not affect the illumination unless
it exceeds a certain range, which constitutes a special
case to be addressed in future work.

Illuminated scenes, as perceived by humans, are the re-
sult of the interaction of several parameters present in
a scene. By observing the shading and light reflection
of an object’s surface, the human brain can estimate the
characteristics and shape of the surface. The human
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brain can further estimate the origin of the main light
source illuminating a scene, which is usually the sun.
Deep neural networks (DNNs) can also learn to esti-
mate a light’s origin from visual input (Section 2) and
can even reformat this information to be used as a pa-
rameter in virtual illumination models. Immersive and
responsive AR applications may require updated illu-
mination parameters for each frame; as a result, ap-
proaches with less complex network architectures are
preferable. In addition, classification approaches re-
quire a large number of classes to reconstruct a light’s
origin with satisfactory resolution; therefore, creating
suitable training datasets is a cumbersome task. In
contrast, regression approaches yield continuous output
values and therefore only require as many output neu-
rons as the number of parameters to be reconstructed.

Considering the aforementioned requirements, we pro-
pose a deep-learning-based regression approach to re-
construct the light direction in a scene given as azimuth
and elevation angles (φ ,θ) from RGB input images us-
ing a modified VGG-16 convolutional neural network
(CNN). In addition, we introduce stereographic coordi-
nates (sx,sy) instead of angular coordinates (φ ,θ) to re-
duce inaccuracies due to the coordinate uncertainty oc-
curring at steep elevation angles. Our approach shows
that it is plausible to reconstruct the light direction in a
scene from a single RGB image of the illuminated scene
using a CNN. Our approach does not require additional
depth information and thus can be used on devices with-
out special depth sensors.

The main contributions of our proposed approach can
be summarised as follows:

• Reconstruction of the dominant light source direc-
tion is possible using only RGB input images, and
does not require special RGB-D information.

• A stereographic coordinate representation signifi-
cantly improves the estimation results.

Our approach exceeds existing learning-based ap-
proaches for inferring light direction from images (Kán
and Kaufmann, 2019) in that it enables reconstruction
from RGB images. This is achieved by increasing the
amount of training data and using pre-trained model
weights, which has been successfully applied to a
similar problem (Marques et al., 2018), and infer-
ring the light direction in a stereographic coordinate
representation.

2 STATE OF THE ART
Classical image processing approaches reconstruct
the location of a visible light source within an image
(Laskowski, 2007) or determine the light direction
with additional user input (Lopez-Moreno et al.,

2009). However, this is impractical for immersive AR
applications.

More recent approaches utilise DNNs to reconstruct
light source parameters, such as the direction, loca-
tion or intensity of the light. Using the association be-
tween an object and its shadow, it is possible to de-
termine the screen space light direction (Wang et al.,
2020), which can be converted into world space coor-
dinates with additional camera parameters. In addition,
generative adversarial networks are useful tools to di-
rectly create artificial content. They also can add miss-
ing shadows to marked virtual shadowless objects in
real scene images (Liu et al., 2020) and output a com-
plete AR scene image. AR content can also be cre-
ated with image-based lighting (IBL) renderers, which
utilise environment textures containing the illumination
details of a scene. Real scene environment textures
can be derived from RGB input images using regres-
sion (Gardner et al., 2017) and continuously loaded into
video memory to match illumination changes in the real
scene. LeGendre et al. (2019) extended this concept by
deriving more detailed textures for IBL renderers from
RGB images using an encoder-decoder network. Garon
et al. (2019) introduced a DNN that uses an RGB image
and an image location to estimate a fifth order spherical
harmonic representation of the lighting, which can be
used to illuminate virtual objects placed at this location.
A more straightforward approach to create AR content,
is to simply place a virtual light source in the virtual
scene that is combined with the real scene. To deter-
mine where to place the virtual light source to match
the real illumination conditions, either the location or
direction of the light source is required. The light di-
rection can be reconstructed by classifying real-scene
RGB images into directional classes using a neural net-
work (Pemasiri et al., 2015).

Marques et al. (2018) used a similar concept in their
approach to overlay a VR scene with an image of a
user’s hand pose. Because the real illumination con-
ditions were embedded in the hand pose image, it was
more practical to simply adjust the virtual illumina-
tion to match the real conditions. To achieve this, the
authors trained a residual CNN (ResNet) starting with
initial model weights pre-trained on the ImageNet and
COCO datasets to classify the point light source in the
VR scene that was most suitable for producing simi-
lar illumination. With 100 possible point light sources
available in the virtual scene, their network achieved a
top 1 accuracy of approximately 82% in classifying the
correct point light source.

Kán and Kaufmann (2019) proposed a regression model
to reconstruct continuous azimuth and elevation angle
values indicating the dominant light direction in real
scenes using RGB-D input images for their ResNet.
They also conducted experiments using the RGB com-
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ponents of their RGB-D dataset; however, their network
failed when it relied solely on these three colour chan-
nels. They integrated their network into an AR appli-
cation and achieved a mean angular error of approxi-
mately 28 ◦and an inference time of approximately 380
ms while running on a central processing unit.

Both approaches used ResNet to avoid exploding or
vanishing gradients and both trained their networks
with synthetic training data. In contrast, Marques et al.
(2018) generated images of hand poses that were illu-
minated from different angles with the Unreal Engine,
Kán and Kaufmann (2019) rendered five different ob-
jects illuminated from different angles using a Monte
Carlo path tracing renderer. Kán and Kaufmann (2019)
further attempted to include real training images; how-
ever, their network performed best when trained purely
with synthetic data. Apart from the additional image
channel and generation process, the main difference be-
tween the training data used in these approaches was the
dataset size. Kán and Kaufmann (2019) used a small
synthetic training set of 23,111 images. In addition,
they had 5,650 real images available that were omit-
ted for training. Marques et al. (2018) had a synthetic
dataset of 83,799 images, from which they used 54,471
images as training data for their pre-trained ResNet.

The rendering equation (Section 1) suggests all re-
quired information to be present in an RGB image to
reconstruct the illumination origin in a scene, how-
ever, given the unsuccessful experiment of Kán and
Kaufmann (2019) using only RGB information, we
begin with a simple scenario to investigate if RGB
images provide enough information to reconstruct the
dominant light direction. Considering the different
dataset sizes and training strategies of Kán and Kauf-
mann (2019) and Marques et al. (2018), a DNN with
model weights pre-trained on a large dataset as initial
values for training and a large number of training ex-
amples appears to be a reasonable basis for a regression
approach that aims to reconstruct the dominant light di-
rection from RGB images.

3 LIGHT DIRECTION INFERENCE
In our proposed approach, we aim to reconstruct the az-
imuth and elevation angles (φ ,θ) of the dominant light
direction from RGB input images. This is similar to
the approach of Kán and Kaufmann (2019); however,
our approach focuses on light direction reconstruction
using only RGB information and explicitly omits the
depth information. We assume that the network is ca-
pable of reconstructing the light direction without ad-
ditional depth information. For this, we use an Ima-
geNet (Russakovsky et al., 2015) pre-trained VGG-16-
like CNN (Simonyan and Zisserman, 2014) as a re-
gression model, and train it with a dataset consisting
of synthetic and real images (Fig. 1). Considering the

real-time requirements for immersive and responsive
AR applications, we decided to use a VGG-16-like net-
work, as this architecture achieved the best performance
relative to its complexity in the ImageNet competition
(Russakovsky et al., 2015). By greatly increasing the
dataset size, we were able to improve the reconstruc-
tion performance of the network for (φ ,θ) using RGB
input images.
We start with a network to predict continuous values
(φ ,θ) for azimuth and elevation in the range (0◦,0◦)
to (360◦,90◦). The influence of the azimuth angle φ

on the prediction error of the network decreases as the
elevation angle θ gradually reaches θ = 90◦, and φ

loses any influence on the prediction error, as θ = 90◦

denotes the pole of the hemisphere. Thus, φ cannot
be properly estimated by the network, leading to an
increased angular error at steep values of θ , as illus-
trated in Fig. 7b. To compensate for this, we convert
(φ ,θ) into stereographic coordinates (sx,sy) ranging
from (−1,−1) to (1,1), and train a second network pre-
dicting the light direction in stereographic coordinates,
as they do not suffer from coordinate uncertainty.

3.1 Stereographic Coordinates
A stereographic representation (sx,sy) of the angular
coordinates (φ ,θ) is introduced to avoid coordinate un-
certainty at θ = 90◦. The coordinate uncertainty refers
to an undefined value of φ at θ = 90◦, as any value of
φ denotes the pole of the sphere, leading to φ not able
to be properly estimated by the network, as φ no longer
has any meaningful influence on the prediction error.
A stereographic projection (Fig. 2) projects spherical
coordinates onto a circular projection plane Ep. The
southern pole S of the spherical coordinate system is the
projection centre, and as such, undefined in the stereo-
graphic domain. However, this is not a problem, as any
light source located in the southern hemisphere would
shade the entire scene, not providing any useful infor-
mation for estimating its direction. From S, a given
point A is projected onto Ep resulting in A′. The dis-
tance m from the origin O′ of Ep to A′ computes (sx,sy)
by scaling cos(φ) or sin(φ), respectively. The spherical
coordinate space can be expressed by its origin O and
radius r. By assuming that the domain region is half of
a unit sphere, one can assume r = 0.5, as it simplifies
the computation of (sx,sy) in

m(θ) = 2 · r · tan
(

90◦−θ

2

)
(1)

= tan
(

90◦−θ

2

)
(2)

sx(φ ,θ) = m(θ) · cos(φ) (3)
sy(φ ,θ) = m(θ) · sin(φ) (4)

To compare the results of Netsx,sy using stereographic
coordinates to the results of Netφ ,θ , the predicted stere-
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Figure 1: Diagram of network architecture and training and test procedures. The architecture utilises the standard
VGG-16 convolutional blocks and a custom fully connected block and output layer with two neurons. Here the
light direction is inferred from red-green-blue (RGB) input images as (φ ,θ) or (sx,sy), respectively.

ographic coordinate values (sx,sy) can be transformed
back into angular values (φ ,θ) using

m(sx,sy) = l(sx,sy) =
√

s2
x + s2

y ∀ m 6= 0 (5)

θ(sx,sy) = 90−2 · arctan(l(sx,sy)) (6)

φ(sx,sy) = arcsin
(

sy

l(sx,sy)

)
(7)

φ θ

Ep
sx

sy

O

S

O′

A

A′m

r

θA
φA

Figure 2: Depiction of stereographic projection us-
ing example A = (φA,θA) with φA = 0◦,θA = 37◦, re-
sulting in stereographic coordinates A′ = (sxA,syA) =
(0.4986,0).

4 NETWORK ARCHITECTURE AND
TRAINING

We start with a pre-trained VGG-16 CNN in Keras and
modify the fully connected (FC) layers of the network
architecture to meet our requirements. For each of the
two light direction representations, one dedicated net-
work is trained and optimised: the first network Netφ ,θ
is predicting the light direction in angular values of
(φ ,θ) and the second network Netsx,sy is predicting
stereographic coordinates (sx,sy).

Prior to training, well-performing hyperparameter com-
binations are identified. To achieve this, the FC lay-
ers and the soft-max output layer are removed from the
standard VGG-16 architecture, and only the five convo-
lutional blocks are retained. The train flag is disabled
on these five convolutional blocks during training; thus,
all pre-trained weights are kept. After the convolu-
tional blocks, a dynamically generated FC subnetwork
is added, which consists of a FC input layer, a variable
number of hidden layers and a FC output layer contain-
ing two neurons. The dynamically generated subnet-
work is created just before training using parameters
from a range of hyperparameters. Optimisation is per-
formed using Talos1. Talos runs a grid search across the
entire specified set of hyperparameter values, return-
ing a list of hyperparameter combinations and trained
model weights for each FC subnetwork. Each result-
ing subnetwork is trained for a single epoch with a uni-
form learning rate that is automatically adjusted to the
used optimiser on a reduced synthetic training dataset
of 20,000 images. The reduced dataset is split into a
training and validation set with a ratio of 80:20. After
the optimisation process, the two hyperparameter com-
binations and subnetworks with the best estimation per-
formance are selected for further refinement.

To refine the two most accurate networks and determine
the most suitable network architectures, the fifth convo-
lutional block is unlocked to be trained, simultaneously
reducing the learning rate to 1/1,000 of the optimised
rate. Thus, the fifth convolutional block is able to adapt
to the new task while maintaining and improving what
was previously learned by the dynamic FC layers. To
make the network more robust to input images of vary-
ing brightness and representing objects of varying sizes

1 Autonomio Talos [Computer software]. (2019). Retrieved
from http://github.com/autonomio/talos.
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Hyperparameter Netφ ,θ Netsx,sy

optimiser Adam Adam
batch size 32 32

uniform learning rate 2 1
hidden layers 0 0

FC input neurons 4,096 4,096
activation leaky ReLU ReLU

dropout 0.25 0.25
Table 1: Hyperparameters of the resulting networks.

and locations, the training data are augmented before
use in the training process by shifting the images verti-
cally and horizontally, zooming in and out and varying
the brightness. The refinement training is performed
for up to 400 epochs, reducing the learning rate by a
10th if the validation mean absolute error (MAE) did
not decrease over 13 epochs. If the validation MAE
did not decrease over a total of 20 epochs, the train-
ing is stopped. All networks use a mean squared error
loss function. Each network is trained with three differ-
ent datasets: one purely synthetic, one purely real and
one mixed dataset. The synthetic training dataset con-
tains 100,000 images from the synthetic image dataset,
while the real training dataset contains 800 images from
the real image dataset2. The mixed training dataset is a
combination of the real and synthetic image datasets,
containing 800 real and 99,200 synthetic images.

Finally, all resulting fully trained network architectures
and hyperparameter sets are tested on synthetic and real
test sets and the best in each category is selected as the
final architecture and hyperparameter combination (Ta-
ble 1) for Netφ ,θ and Netsx,sy . The test sets consist of
images the networks had not seen before and contain
10,000 synthetic images and 61 real images, respec-
tively. Training and testing are performed on NVidia
RTX 2080 Ti and NVidia Titan XP graphics processing
units.

4.1 Datasets
Kán and Kaufmann (2019) used 23,111 synthetic im-
ages in their training but were unable to achieve a satis-
factory reconstruction using only the RGB components
of their training data. Marques et al. (2018) used a total
of 83,799 synthetic RGB images and achieved satisfac-
tory classification results. Hence, we use a large dataset
in our approach, assuming that approximately 150,000
real and synthetic images (one third to be designated as
test data and two thirds as training and evaluation data)
are sufficient. When creating the datasets, the data are
directly labelled using the angular values (φ ,θ) of the

2 Due to the great effort required to generate real data, we only
have 861 images available thus far, 800 for training and 61
for testing. However, we plan to increase our dataset in the
future.

configured camera and light settings. For the stereo-
graphic network, the angular labels Λφ ,θ are converted
into stereographic labels Λsx,sy (Section 3.1).

4.1.1 Synthetic Dataset
To create the synthetic image dataset, a simple scene is
created using the Unreal Engine that is composed of a
single object placed on a base surface illuminated by
a directional light source. Due to the wide variety of
possible light directions, identifying shadow bias values
that do not produce artefacts is cumbersome. Therefore,
the RTX shadow capabilities of the NVidia RTX 2080
Ti are used for rendering the shadows. Five models of
varying complexity are used as the centre object: a box,
a cone, the Stanford bunny, the Stanford Buddha and
a sphere (Fig. 3). Suitable physically based rendering
(PBR) surface materials (Karis and Epic Games, 2013)
are assigned to the base surface and the models to cap-
ture the material structure of their real-world counter-
parts.
A total number of 1,225 different light directions are
obtained by illuminating the scene with a directional
light source L from angles evenly distributed around
the centre object. The direction values of L (φL,θL)
range from (0◦,5◦) to (360◦,90◦) with a step size ∆L
of (5◦,5◦). Light directions from below are not con-
sidered. Duplicate images at light elevation angles of
θL = 90◦ are omitted. At elevation angles of θL = 90◦,
a single image using an azimuth value of φL = 0◦ is
generated. The camera C is placed in a similar fash-
ion as L at a fixed distance with spherical coordinates
(φC,θC), ranging from (0◦,1◦)3 to (360◦,90◦) with a
step size ∆C of (45◦,30◦), resulting in 32 different cam-
era positions. Using the same camera settings for point-
symmetric objects, such as the sphere, would result in
duplicate images. Therefore, redundant camera settings
are omitted, reducing 32 different camera positions to
four positions placed around the sphere. Though hav-
ing an axis-symmetric model structure, the cone object
appears different from every angle due to its wrinkled
paper surface material and is therefore rendered with
the entire set of camera positions.
Combining camera positions and light directions,
39,200 images of the box, cone, Stanford bunny and
the Stanford Buddha, and 4,900 images of the sphere
are obtained. Therefore, the entire synthetic dataset
contains 161,700 images that are directly captured in
the required resolution of 224×224 pixels. In addition
to capturing the images, we further export the angular
labels of the synthetic dataset Λs = (φL,θL).

4.1.2 Real Dataset
The images in the real dataset are photographed with a
Canon EOS 5D Mark II under controlled light condi-

3 1◦ instead of 0◦ on the first step for visibility reasons, the next
elevation step is 30◦
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Figure 3: Examples of three-dimensional models used.

tions. The laboratory is completely darkened so that no
light source other than the used halogen spotlight would
interfere. A box, a three-dimensional print of the Stan-
ford bunny and a ping-pong ball (Fig. 4) as real-world
representations of their virtual counterparts are placed
on a table with a surface material similar to the base
surface material in our synthetic image dataset.

Camera C is placed on a height-adjustable tripod fo-
cussing on the centre object O, which is photographed
from three different heights, representing elevation an-
gles in the range [30◦,65◦]. To adjust the view an-
gle of C, O is rotated in the centre of the table, and
photographs are taken from seven different angles. To
vary the light, the height-adjustable tripod with an at-
tached spotlight L is moved to five different locations4

around the table, and photographs of the scene illumi-
nated from four different heights are taken.

This way, by the end of the available time frame, a la-
belled real image dataset is obtained, containing a total
of 861 images (i.e. 403 images of the box, 402 images
of the Stanford bunny and 56 images of the sphere). To
label the images, the vertical and horizontal distances of
the scene are measured before taking the photographs,
and the angular labels Λreal(φ ,θ) are computed using
the measured distances. For the computation, the mea-
sured distances between the following measuring points
are required: O and the base of the camera tripod Cb, O
and C, C and Cb, a freely chosen reference point R and
Cb, O and the base of the light tripod Lb, O and L, L and
Lb, and R and Lb (Fig. 5).

With the measured distances, the spherical coordinates
of C = (ΦC,ΘC) and L = (ΦL,ΘL) can be computed
using the law of cosines as

f^(a,b,c) = arccos
(

a2 +b2− c2

2 ·a ·b

)
(8)

The camera and light azimuth angles ΦC and ΦL
are computed using ΦC = f^(OCb,OR,RCb) and
ΦL = f^(OLb,OR,RLb), respectively. The elevation
angle of the camera ΘC and of the light ΘL are
computed similarly with ΘC = f^(OCb,OC,CCb)

4 Due to space limitations it was not possible to illuminate the
scene from [0◦,360◦]; hence, the scene was illuminated from
directions in the range [≈ 40◦,≈ 270◦].

and ΘL = f^(OLb,OL,LLb). Both C = (ΦC,ΘC) and
L = (ΦL,ΘL) are then used to compute the angular
labels of the real images Λr = (φlbl ,θlbl) with

φlbl =

{
|ΦL−ΦC| if ΦL ≥ΦC

|360−|ΦL−ΦC|| else
(9)

θlbl = ΘC +ΘL (10)

The photographs are taken as RGB images in a resolu-
tion of 2,784×1,856 pixels, cropped to 1,856×1,856
pixels with the object centred to keep the aspect ratio
and then resized to 224× 224 pixels using the default
Keras ImageDateGenerator function before being used
for training.

5 RESULTS
Netφ ,θ and Netsx,sy were tested by estimating the light
direction on the synthetic and real test datasets. To com-
pare the results of the networks (Table 2), the mean an-
gular estimation error was computed as

E] =
1
n

n

∑
∣∣arccos

(
vp

T vt
)∣∣ (11)

over all test images between the predicted direction vp
and the ground truth direction vt . Both vp and vt were
given in spherical coordinates and therefore needed to
be converted to Cartesian coordinates.

Train – Test Netφ ,θ Netsx,sy

synth – synth 7.8◦ 3.7◦

synth – real 99.2◦ 25.5◦

real – real 12.4◦ 8.8◦

mixed – real 16.8◦ 7.1◦

Table 2: Average angular error E] on synthetic and real
test data.

Furthermore, each network was trained with three
different training datasets: a purely synthetic training
dataset (Section 4.1.1), an entirely real training dataset
(Section 4.1.2), and a mixed training dataset consisting
of images from both synthetic and real image datasets.

To determine whether it is theoretically possible to es-
timate the light direction from images given only RGB
information, the synthetically trained Netφ ,θ was tested
on synthetic test data images, as this test dataset does
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Figure 4: Examples of real image dataset displaying the real-world models – a box, a Stanford bunny and a sphere.
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Figure 5: Illustration of measured points in a real scene.
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Figure 6: Box-and-whisker diagram of the angular es-
timation error distribution of Netφ ,θ and Netsx,sy . The
median of the distribution is displayed as a green
dashed line, the mean as red line, and outliers as cir-
cular marks.

not suffer from noise interference, leading to distorted
results. In this test, Netφ ,θ achieved a mean angular
error of E]φ ,θ = 7.8◦. This result indicates that recon-
structing the light direction from only RGB images is
reasonable; however, it requires further refinement. The
synthetically trained Netsx,sy tested on the synthetic test
dataset had the best performance, achieving an error of
E]sx,sy = 3.7◦. Considering the angular error distribu-
tion of the synthetically trained networks on synthetic
test data (Fig. 6, blue graphs), introducing the improve-
ments of Netsx,sy not only reduced the estimation error,
but also decreased the range of the outlier deviation.

To evaluate the difficulties in predicting the light di-
rection in spherical coordinates (φ ,θ), the estimation
errors of the networks depending on the elevation an-
gle θ (Fig. 7) were investigated. While E] of Netsx,sy

remained fairly constant over all angles of θ , the er-

rors of Netφ ,θ did not reveal any clear trend (Fig. 7a).
Therefore, the mean error of the estimated azimuth
angle Eφ of Netφ ,θ (Fig. 7b) was investigated, reveal-
ing an increasing error on steep elevations θ , as ini-
tially expected. Considering the scale, the estimation of
the light direction in stereographic coordinates (sx,sy),
performed by Netsx,sy only revealed a minor deviation
(Fig. 7a, green bars). This observed behaviour supports
the initial concept of introducing a stereographic rep-
resentation, as the results indicate that a network using
(sx,sy) can avoid this inherent error. Because only a
small real test dataset could be provided that contained
no examples of steeply illuminated objects, this partic-
ular case was investigated using only the synthetic test
dataset to obtain statistically useful information.

The synthetically trained networks were tested on real
image data to investigate whether they would be ef-
fective for real data without any necessary adjustment.
However, the domain gap between the synthetic and
real datasets appears to be large, as Netφ ,θ failed com-
pletely with a mean angular error of E]φ ,θ = 99.2◦.
With an error of E]sx,sy = 25.5◦ (Fig. 6, orange graphs),
Netsx,sy achieved reasonable estimation performance.
To determine whether the small real image training
dataset would be sufficient to obtain reasonable esti-
mation performance, the networks, which were trained
with real image data, were tested on the real image
dataset. In this test run, Netφ ,θ improved its perfor-
mance with a mean angular error of E]φ ,θ = 12.4◦;
Netsx,sy outperformed the other network with E]sx,sy =
8.8◦ (Fig. 6, green graphs). Trained with mixed image
data, the networks were tested on real test data to inves-
tigate how the small fraction of real image data would
benefit from being augmented with the synthetic train-
ing set. With a fraction of 0.8% (i.e. a total of 800
real images), the networks achieved a mean angular er-
ror of E]φ ,θ = 16.8◦ and E]sx,sy = 7.1◦ (Fig. 6, purple
graphs). Unlike Netφ ,θ , Netsx,sy improved its prediction
results by being trained on a mixed dataset as opposed
to being trained on a purely real, but small dataset.
Augmenting the real dataset with synthetic images ap-
pears to worsen the performance in this case, since the
synthetically trained Netφ ,θ tested on real images per-
formed poorly whereas Netsx,sy performed reasonable.

As images of different models were used in the training
process, we investigated whether the networks learned
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Figure 7: Estimation errors of Netφ ,θ and Netsx,sy depending on elevation θ .

a model preference when estimating the light direc-
tion. Hence, the mean angular error E] for each model
(Fig. 8) was computed and examined for any signifi-
cant deviation. Despite having different error ampli-
tudes from each other, the synthetically trained and
tested networks only display minor deviations on the
model-dependent E] (Fig. 8a). Trained with mixed im-
age data and tested on the real dataset (Fig. 8b), Netφ ,θ
and Netsx,sy display a similar behaviour of the model-
dependent E]. Thus, the networks do not appear to
favour a certain centre model when estimating the light
direction.

6 DISCUSSION
Considering the performance of the synthetically
trained networks on synthetic test data, the results
demonstrate that it is possible to reconstruct the dom-
inant light direction (φ ,θ) in a scene from RGB input
images using a VGG-16-like CNN, without requiring
additional depth information or relying on special
RGB-D images. The light direction reconstruction
performance could be further improved by introducing
the estimation of stereographic coordinates (sx,sy) with
Netsx,sy .
On real test data, the lower prediction accuracy of
Netφ ,θ and Netsx,sy are likely to be caused by a domain
gap between the synthetic training dataset and the
real test dataset, as the prediction performance of
the synthetically trained networks on real test data
significantly improved by adding even a small fraction
of real image data to the training dataset. Considering
this domain gap, the prediction performance of Netsx,sy

on real test data is satisfying, even when synthetically
trained.
The small number of real images for testing the net-
works is a problem, because most of the real images

were required for training to improve the prediction
performance on real test data, leaving only 61 images
available for testing our CNNs, which is critical for ob-
tain statistically useful information. However, the real
dataset is sufficient to demonstrate the general feasi-
bility of our proposed approach. Generating the real
dataset was a cumbersome task, because to label the
images, it was necessary to measure all required dis-
tances for each photograph and then prepare the scene
for the next scene image, which was time-consuming.
Labelling the photos afterwards was not possible, as the
labels would have been mere estimates lacking the ac-
curacy necessary for training.

Because we were using a halogen spotlight, which is a
spotlight source with small extent in a finite distance
in terms of the rendering equation, to illuminate the
real scene when taking photographs, there was a struc-
tural illumination difference between the directional
light used in the synthetic dataset and the extended spot-
light in a finite distance in the real dataset. As a direc-
tional light source represents a light source, infinitely
far away, it is difficult to recreate such a light source
in real scenes, as the light source in the scene can not
be placed infinitely far away. With increasing distance
from an object, however, light from a real source grad-
ually becomes more parallel, transforming into an infi-
nite light source. Considering the distance of the spot-
light, which varied between 2 and 3 m, the size of the
real models and the input resolution of the CNNs, we
considered the difference between the synthetic direc-
tional light and the real light source to be negligible.
Furthermore, the directional light source in the syn-
thetic dataset did not have a spatial extent, resulting in
an umbra without a penumbra, which we attempted to
address in our real dataset by using a very small halo-
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Figure 8: Mean angular errors of E] of Netφ ,θ and Netsx,sy depending on the depicted model.

gen spotlight that was powerful enough to illuminate
the scene.
Summarising our contribution to advance the state of
the art decribed in Section 2, our findings demonstrate
that RGB images are sufficient to estimate the direction
of the dominant light source, and that RGB-D images
are not required, although they may improve results,
which we will investigate in future work. Furthermore,
we demonstrated that a stereographic representation of
the light direction avoids the coordinate uncertainty of
the azimuth angle φ at steep elevation angles θ , leading
to significantly improved estimation results.

7 FUTURE WORK
We plan to considerably extend our small real dataset to
achieve statistically stronger results on real test data. In
addition, this extended real dataset can be used to test
the proposed approach and additional approaches for
different real scene setups. To reduce the effort required
to extend the dataset, the generation and labelling pro-
cess can be automated by a robotic device.
As gathering real image datasets even with an auto-
mated device may still require significant effort, we
will also pursue the concept of using a semi-real im-
age dataset. We will create such image data by aug-
menting distinct real scene photographs with synthetic
billboards displaying green-screen extractions from im-
ages of real objects.
Our long-term goal is illumination reconstruction with
DNNs trained on synthetic image datasets that are aided
by as little real image data as possible to close the gap
between virtual and real scene illumination. Not re-
quiring many real image samples is crucial, as gather-
ing labelled real image data is cumbersome and some-
times not possible. Hence, in the future, we will focus

on gaining a better understanding of which details in
synthetic training images are important to improve the
results achieved by mixed training data. We will first
investigate the influence of specific illumination com-
ponents on the estimation performance, including the
surface shading, appearance and presence of a shadow,
and indirect lighting. Finally, we will investigate, which
DNN architecture and input data in addition to the RGB
information can further improve the estimation results.
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