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Figure 1: DVR via post-classification. Using a constant step size (i.e., 0.2 voxels) leads to sampling artifacts for high-frequency transfer
functions. Analytic ray splitting (Ours) produces an image indistinguishable from the ground truth (GT) rendering, i.e., on an 8 bit color
display the results are the same, and renders at less time than constant stepping.

Abstract
For direct volume rendering of post-classified data, we propose an algorithm that analytically splits a ray through a cubical cell
at the control points of a piecewise-polynomial transfer function. This splitting generates segments over which the variation of
the optical properties is described by piecewise cubic functions. This allows using numerical quadrature rules with controlled
precision to obtain an approximation with prescribed error bounds. The proposed splitting scheme can be used to find all
piecewise linear or monotonic segments along a ray, and it can thus be used to improve the accuracy of direct volume rendering,
scale-invariant volume rendering, and multi-isosurface rendering.

CCS Concepts
• Computing methodologies → Volumetric models; Parallel algorithms; • Mathematics of computing → Quadrature;

1. Introduction

In direct volume rendering (DVR), the perceived lightness is
determined by considering an optical model, e.g., an emission-
absorption model [DCH88, Lev88, Max95], and computing a nu-
merical approximation of the resulting low-albedo volume ren-
dering integral along the rays of sight [WM92]. In previous
works, error bounds for the used numerical integration rules
have been investigated [NA92, WM92, dBGHM97, CCdF15].
Etiene et al. [EJR+13] study the relationships between integration
step size and accuracy of the results, and they propose a framework
to assess the convergence of DVR algorithms with respect to step
size, pixel size, and grid resolution.

Novins and Arvo [NA92] assume that both an emission and ab-
sorption field is given, i.e., the initial data values are pre-classified
via transfer functions (TFs). When using trilinear interpolation
in the cubical cells of a voxel grid, in each cell the profile of
the interpolated quantities along a ray become cubic polynomi-

als [PSL+98]. For these polynomials, error bounds for the nu-
merical integration have been derived. For isosurface raycasting,
Parker et al. [PSL+98], Neubauer et al. [NMHW02], and Marmit
et al. [MKW+04] propose exact cell-wise ray splitting schemes
based on the zero crossings of the trilinear interpolant. These meth-
ods provide algebraic solutions for ray-isosurface intersections in
the trilinear interpolant.

When post-classification is used, i.e., the initial data values are
first interpolated and then mapped to emission and absorption
via a TF, the error bounds derived by Novins and Arvo break
down. For post-classification and a linear variation of the opti-
cal properties within each cell, Williams and Max show that the
integral can be computed algebraically [WM92]. Pre-integration
[RKE00, EKE01] builds upon the assumption that the data values
between adjacent sample points along a ray vary linearly. Then,
integrals—including post-classification—can be pre-computed and
used depending solely on the values at the sample points. Kniss
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et al. [KIL+03] extend on this finding by demonstrating that un-
der the same assumption of piecewise linearity, multi-dimensional
Gaussian TFs can be algebraically integrated. Scale-invariant vol-
ume rendering by Kraus [Kra05] addresses ray splitting in data
space. The volume rendering integral is split into segments of equal
length over which a piecewise monotonic change of the data values
is assumed.

In the common case where piecewise linear 1D TFs are applied
to the trilinearly interpolated data values, a ray is split into multiple
piecewise cubic segments (see Figure 2). Then, piecewise linearity
or monotony between adjacent sample points can only be justified
for very small step sizes. In general, false classifications can occur
and segments might even be missed entirely if the step size does
not adapt to the segment boundaries.
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Figure 2: (a) In a cell with trilinear interpolation, the data values
along a ray s(t) are described by a cubic polynomial. (b) A piece-
wise linear TF. (c) Applying the TF from (b) to the data values in
(a) results in a piecewise cubic function. Dashed lines indicate the
data values where the TF control points (blue) are hit.

Contribution We propose an algorithm for adaptive step size
control in DVR of post-classified data on a voxel grid. For post-
classification, we consider piecewise linear TFs (Figure 2b). For
cubical cells with trilinear interpolation, this splits a ray into multi-
ple piecewise cubic segments. By determining these segments ana-
lytically, adaptive step size control is achieved. In particular, we

• build upon the algorithm by Marmitt et al. to split a ray through
a voxel grid at all control points of a piecewise defined TF (sub-
section 2.1),
• apply controlled-precision numerical integration of post-

classified data to solve the volume rendering integral on a per-
segment basis (subsection 2.2),
• demonstrate the use of the proposed algorithm to split a ray

into piecewise monotonic segments that are required by scale-
invariant DVR (subsection 2.3).

All operations involved in analytic ray splitting have been im-
plemented on the GPU to provide interactive frame rates even for
large data sets. We have made our implementations available on
GitHub†, so that all findings can be reproduced. A video showing
the method and results in animation is available on YouTube‡.

2. Solving the Volume Rendering Integral

We assume a low-albedo emission-absorption model for volume
rendering [Max95]. Let τ : [0,1] → R+

0 be the absorption due

† https://github.com/shamanDevel/Ray-Splitting-for-DVR
‡ https://youtu.be/bOLqIJd6dsw

to a given density v along a ray s(t) – d(t) = v(s(t)) –, and
C : [0,1]→ R+

0 the assigned color, both specified via a TF. With
g(v) = τ(v)C(v) being the self-emission, the light intensity reach-
ing the eye along the ray segment from t = a to b is computed as

L(a,b) =
∫ b

a
g(v(s(t)))exp

(
−

∫ t

a
τ(v(s(u)))du

)
dt. (1)

We assume that the data values are given at the vertices of a
voxel grid v. Within a cell, the data values are trilinearly interpo-
lated, so that the data profile v(s(t)) along a ray through a cell is a
cubic polynomial [PSL+98]. As a consequence, there are between
zero and three locations along a ray in a single cell where a se-
lected data value θ can be hit. These locations are given by the
roots of v(s(t))−θ = 0 ∈ [tin, tout]. Marmitt et al. [MKW+04] and
Neubauer et al. [NMHW02] have proposed numerical schemes to
extract these roots. To avoid catastrophic cancellation when isolat-
ing the extrema of the cubic polynomial via the roots of its deriva-
tive, we use a numerically stable formulation [PTVF88, p. 184].

For cell-by-cell ray marching, we use the voxel traversal algo-
rithm by Józsa et al. [JTC14], a stable reformulation of the algo-
rithm by Amanatides et al. [AW+87, Hoe16]. Both the accumula-
tion of numerical errors and errors due to rounding are reduced, so
that even for large data sets the ray traversal routine does not intro-
duce any perceivable errors. The algorithm provides the sequence
of visited cells in front-to-back order, as well as the per-cell entry
and exit points [tin, tout]. Note that this algorithm reports multiple
roots either as no intersection or two separate intersections with
two single roots, eliminating special handling of this case.

2.1. Transfer Function-Based Ray Splitting

In contrast to previous works, our proposed ray splitting scheme
needs to consider the mapping of data values via a TF. We as-
sume that the TF is given as a function satisfying two constraints:
First, it is defined piecewise, i.e., specified by a finite number of
control points with closed-form interpolation in between. This al-
lows splitting the ray in data space at the control points so that
no peaks are missed. Second, the absorption between two control
points τ(v(s(u))) has to be analytically integrable. This is required
to evaluate the inner integral in Equation 1 analytically and, thus,
reduce the nested volume rendering integral to a single integral.
The latter constraint holds, e.g., for all cell-wise polynomial inter-
polations. Specifically, we assume piecewise linear TFs as shown
in Figure 2b. Absorption and emission values are given at a dis-
crete set of N data values 0 = d1 < d2 < ... < dN = 1. We call these
the TF control points. Each control point i stores the absorption
τi and color Ci, with linear interpolation in between. If absorption
and color are given as separate piecewise linear functions, they are
combined into a single piecewise function in a pre-processing step.

Given the TF, all points where the ray takes on the values of
the TF control points need to be found.We subsequently call these
points, solutions of the cubic polynomial d(t)− di, the split points
along a ray. For example, Figure 2 illustrates a situation where con-
trol point 1 has three intersections at t1, t4, t5, and control point 3

has one intersection at t7. Thus, multiple segments can occur within
a single cell, and these segments need to be sorted efficiently. Note
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that depending on the data values at the cell vertices and the number
and width of the selected TF, up to 3N intersections can occur.

Furthermore, ambiguous cases regarding the occurrence of inter-
sections need to be resolved. Such cases occur if no other intersec-
tion is in between two intersections for the same control point. Fig-
ure 3 illustrates all possible cases regarding the order in which these
intersections can occur. Cases IIIa and IIIb are ambiguous since just
from the data values at two consecutive intersections along a ray the
order cannot be established. Such a case occurs in Figure 2a, where
control point 2 has intersections at t2 and immediately again at
t3. To modulate the density polynomial with the transfer function,
however, it is important to know if the segment from t2 to t3 visits
the TF segment 2 – 3 (case IIIa) or 1 – 2 (case IIIb).

I II IIIa IIIb

Figure 3: Four cases of consecutive isosurface intersections.

Sorting all computed split points along a ray can be realized in
O(N′ logN′) operations using standard sorting algorithms, where
N′ is the number of control points falling into the data range cov-
ered by the current cell. Ambiguous cases can be decided, in prin-
ciple, by evaluating the polynomial in the middle of the interval
between two consecutive split points, and testing whether the value
is greater or smaller than the data value at the first point. This ap-
proach, however, requires an additional evaluation of the polyno-
mial and should be avoided. The following adaptive ray splitting
algorithm can iterate over the split points in O(N′) operations, and
handles the ambiguous cases directly without extra evaluations.

First, the data value at the cell entry point (t0) is evaluated. Then,
the TF segment (di,di+1) that contains this density value is found
via binary search. In the example in Figure 2, this is the segment
0 – 1 . Now due to continuity, the next split point can only be at the
data values corresponding to these two control points. W.l.o.g. let
the next split point at t1 be at the data value of control point 1 , the
case for the lower control point di follows similarly by symmetry
considerations. Since this data value is approached from a lower
data value, the next intersection at t2 can only be at the same data
value at control point 1 again or at the next larger data values at
control point 2 . The latter situation is shown in the example. Simi-
larly, for t3 the data values at control points 2 and 3 are tested, but
now the data value at 2 is visited again. This indicates case IIIa and
the search direction is changed. The next split can now only occur
according to the data value at 1 (case II) or 2 (case IIIb), as we ap-
proach them from a larger data value. This process is repeated until
all split points are processed and the ray exits the cell at texit. For
each ray segment that is computed, the volume rendering integral
is solved via quadrature, and the resulting color values are blended
in front-to-back order.

2.2. Controlled Precision DVR

Novins and Arvo [NA92] propose various quadrature schemes for
a single cell and a single linear transfer function. For a piecewise

a) b)

Figure 4: a) Scale-invariant DVR with a step size of 0.1 voxels suf-
fers from artifacts due to under-sampling and erroneously assumed
per-segment monotony. b) Analytic ray splitting finds the exact lo-
cations of piecewise monotonic segments along the rays.

TF, however, their method, cannot be directly applied to the entire
cell. Instead, using our proposed ray splitting algorithm, smaller
segments within a cell bounded by the control points of the TF
are extracted. For each such segment, we apply the algorithm by
Novins and Arvo to evaluate the integral per segment and accu-
mulate the results over the segments and cells. In the benchmarks,
we use Simpson quadrature with a fixed number of 10 quadrature
points to reduce branch divergence in CUDA. Using more quadra-
ture points does not improve the results.

2.3. Scale-Invariant DVR

Kraus [Kra05] introduced a model for scale-invariant volume ren-
dering, in which the volume rendering integral in physical space
is replaced by the scale-invariant integral in data space. This can
be seen as the limit case where infinitely many semi-transparent
isosurfaces are blended (Figure 4). This model builds upon the as-
sumption that the density field is piecewise monotonic within the
interval [a,b] in data space, an assumption that is only fulfilled at
small step sizes.

In our framework, scale-invariant DVR including an adaptive
step size that splits the data into piecewise monotonic segments
can be easily realized. To enforce monotony over each integration
interval, additional split points need to be included at the extrema
of the density profiles along the ray segments. In the root finding
method by Marmitt et al., these split points are computed in-turn
to split a ray segment into sub-segments in which only zero or one
root of the polynomial is located.

3. Evaluation on Synthetic Datasets

We compare the quality and performance of adaptive ray-splitting
to DVR via ray-casting with constant step size and pre-integrated
DVR [RKE00, EKE01] with a 32 bit floating point table of size
5122. The Marschner Lobb dataset [ML94] on a 1283 voxel grid is
rendered to a 5122 viewport. Two triangular TFs with three peaks
of width 0.05 and 0.002, respectively, are used to analyze the sen-
sitivity of the DVR variants to the characteristics of the mapping
function. To generate ground truth images, we use constant step-
ping with a step size of 0.0001 voxels using double-precision floats.

To obtain insights as to where approximation errors occur, the
Marschner Lobb is rendered using different DVR algorithms (see
Figure 5). At a peak width of 0.05, the transitions between the fea-
tures in the image are smooth, yet constant stepping already shows
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Figure 5: Comparison of different DVR algorithms. (a) Ground
truth, (b,c) and (d,e) constant stepping and pre-integration, respec-
tively, with a step size of 0.1 (b,d) and 0.01 (c,e) voxel, (f) adaptive
step size with Simpson quadrature. The first and third row show the
rendering, the second and forth row the per-pixel L2-norm of the
color difference to the baseline, scaled using a power norm of x0.3.
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Figure 6: Accuracy statistics and timings for the Marschner Lobb.

noticeable pixel errors over the whole image. Analytic ray splitting
with Simpson quadrature produces significantly lower numerical
errors below the perceivable tolerance. When narrowing the peaks
to 0.002, the errors introduced by constant stepping become unac-
ceptably high. Constant stepping with a step size of 0.1 fails to re-
solve the thin structures, which can be improved to some degree by
decreasing the step size to 0.01. Pre-integration quality is affected
by sampling artifacts, discretization errors in the pre-integration
table, and interpolation accuracy in the GPU texture units. Adap-
tive ray splitting generates results that are visually indistinguishable
from the ground truth rendering, and it seems en par with constant
stepping with a step size of 0.01 voxel. However, Figure 6 shows
so-called regression error characteristic (REC) curves, which indi-
cate the percentage of pixels within a certain allowed error. It can
be seen that ray splitting achieves higher accuracy than all alterna-
tives. Table 1 shows the error metrics for the images in Figure 1.

All DVR algorithms have been implemented in CUDA, and per-
formance measures were taken on a NVidia RTX 2070 GPU. Tim-

Dataset Thorax Human Carp
Simpson e 4.69e-5 1.13e-4 6.60e-4
Simpson t 7.72e2 5.34e2 2.49e2
Stepping s 2.14e-3 1.56e-2 4.93e-4
Stepping e 3.24e-4 7.47e-4 6.08e-4
Stepping t 6.76e3 9.06e3 5.46e4

Table 1: Error and timing statistics for the data sets in Figure 1. s,
e and t, respectively, indicate step size in constant stepping, mean
square pixel error compared to the baseline rendering, and render-
ing time in milliseconds.

ings are averaged over 10 different frames of resolution 5122, by
moving the camera randomly around the datasets. No acceleration
structure is used. The timings in Figure 6 show the linear perfor-
mance scale of constant stepping approach in the step size. Adap-
tive ray splitting lies between constant stepping with a step size of
0.1 and 0.01. Profiling shows that by far the most time is spent in the
solve step—to accurately determine the points along the ray where
the data values selected by the TF control points are taken—and the
procedure that builds the piecewise polynomials.

4. Real-World Datasets

We further evaluate the quality and performance of the DVR algo-
rithms on three CT scans (Figure 1): A human thorax at a size of
5122×286, a full scan of the human body at a size of 5122×1884,
and a carp at size 5123, rendered at resolution 1920× 1080. We
compare the ray-splitting algorithm with Simpson quadrature to ray
tracing with a constant step size and measure the mean absolute er-
ror to the baseline and the execution time. For constant stepping,
the step size is halved until the rendering has converged, i.e. the
output does not change within an error of 1/256 per pixel anymore.
Table 1 reports the final step size, timings and error to the baseline.
As one can see, adaptive ray splitting is 1-2 magnitudes faster at a
lower or similar error than converged constant stepping.

5. Conclusion

We have presented an algorithm that analytically splits rays through
a post-classified emission-absorption volume at the data values
given by the control points of a piecewise linear transfer function.
This allows for solving analytically the absorption integral and nu-
merically the emission integral up to a user-defined precision. Our
evaluations have shown that the performance of analytic ray split-
ting can be even higher than that of constant stepping when trian-
gular TFs with rather narrow peaks are used. We consider the pro-
posed renderer as baseline for comparative purposes as well as a
framework to integrate alternative rendering options such as scale-
invariant DVR and multi-isosurface rendering.

In the future, we will in particular investigate the use of analytic
ray splitting for differentiable volume rendering including post-
classification. Ultimately, we plan to develop algorithms for con-
verting physical fields in situ into a compact latent code that can
be interpreted by a renderer to produce a meaningful visual repre-
sentation. This requires differentiable renderers that can compute
per-pixel derivatives with respect to the post-classification process.
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