
Volume xx (200y), Number z, pp. 1–000

Analytic Ray Splitting for Controlled Precision DVR
– Extended version –

Sebastian Weiss and Rüdiger Westermann

Technical University of Munich, Germany

a) b) c)

Figure 1: DVR via post-classification of the 1283 Marschner Lobb dataset to a 1920x1080 pixel raster. a) Constant stepping with a step size
of 0.25 cells along the view rays at 16ms. b) Same as a) with a step size of 0.02 cells renders at 158ms. c) Our analytic ray splitting algorithm
avoids sampling artefacts and converges towards the ground truth in 156ms.

Abstract
When a transfer function is used to map interpolated scalar values in a volumetric field to optical properties, an accurate ap-
proximation of the direct volume rendering integral becomes difficult. With a constant integration step size, important properties
can be missed, and a very small step size can introduce errors due to numerical precision issues. We propose an algorithm that
analytically splits a ray through a cubical cell at the control points of a piecewise-polynomial transfer function. This splitting
generates segments of varying lengths over which the variation of the assigned optical properties is described by piecewise cubic
functions. This allows using numerical quadrature rules with controlled precision to obtain an approximation with prescribed
error bound. The proposed splitting scheme can be used to find all piecewise linear or monotone segments along a ray, and it
can thus be used to improve the accuracy of direct volume rendering, scale-invariant volume rendering, and multi-isosurface
rendering. In several tests, we compare the results of analytic ray splitting to those using constant stepping and generating
segments via polygonal isosurface rendering.

CCS Concepts
• Computing methodologies → Volumetric models; Parallel algorithms; • Mathematics of computing → Quadrature;

1. Introduction

Over the last decades, direct volume rendering of a three-
dimensional (3D) scalar field under the assumption of an optical
emission-absorption model [Max95,DCH88,Lev88] has been stud-
ied extensively. At the core of direct volume rendering algorithms
is the numerical approximation of the low-albedo volume render-
ing integral [WM92]. The rendering process computes the integral
of emitted light along a ray starting at the eye point and passing
through the field, scaled by the optical distance from the light to
the eye. Most commonly, constant stepping approaches are used
for rendering, which approximate the integral by summing physi-

cal properties over a set of equidistant integration points along the
rays.

For pre-classified data, Novins and Arvo [NA92] derive error
bounds from the trilinear interpolant of the physical quantities in a
cubical cell. When trilinear interpolation is used, the profile of the
interpolated quantity along a ray passing though a cell becomes
a cubic polynomial. This has been exploited for isosurface ray-
casting [PSL+98, NMHW02, MKW+04], to analytically compute
exact ray-isosurface intersection points. To the best of our knowl-
edge, for post-classified data on cubic grids, analytical methods
have not been used so far.

submitted to COMPUTER GRAPHICS Forum (4/2021).

https://orcid.org/0000-0003-4399-3180
https://orcid.org/0000-0002-3394-0731

2 S. Weiss & R. Westermann / Analytic Ray Splitting for Controlled Precision DVR– Extended version –

Under the assumption of piecewise linearity between the val-
ues at consecutive integration points, Kniss et al. [KIL+03] showed
that multi-dimensional Gaussian transfer functions (TFs) can be al-
gebraically integrated. Even though this approach also works when
the step size along a ray varies adaptively, due to the absence of
an algorithm that can automatically adapt the step size according
to the range of TF values, constant stepping was used. The scale-
invariant volume rendering approach by Kraus [Kra05] also relies
on constant stepping, yet it splits the integral in data space instead
of physical space.

In the case where piecewise linear 1D triangular TFs are applied
to the trilinearly interpolated field values in a voxel cell, a ray is
split into multiple piecewise cubic segments (see Figure 2). A tri-
angular TF is peaked at a selected isovalue and linearly falls off
to 0 at a given width r to account for the fuzziness of the selected
surface. The resulting segments can become very small, and false
classifications occur and segments might even be missed entirely if
the step size along the ray does not adapt to the segment boundaries.

texit

0.5
1

t

d

(a) 0.5 1

0.5
1

d

τ

(b) texit

0.5
1

t

τ

(c)

Figure 2: (a) In a voxel cell using trilinear interpolation, the den-
sity along a ray s(t) is described by a cubic polynomial. (b) A piece-
wise linear TF. (c) Applying the TF from (b) to the densitiy function
in (a) results in a piecewise cubic function. Dashed lines indicate
the density values where the TF control points (blue) are hit.

1.1. Our Contribution

We propose an algorithm to accurately consider triangular TFs in
direct volume rendering via ray-tracing, by providing an adaptive
solution for analytic ray splitting in a voxel cell. A ray is split into
segments that are controlled by the composite functions that map
trilinearly interpolated field values to emission and absorption val-
ues. In this way, we achieve adaptive step size control over the en-
tire spectrum of post-classifications, ranging from arbitrarily sharp
TFs to reveal material boundaries (Figure 1a-c) to smooth or con-
stant mappings in a more homogeneous material. Within each ray
segment, piecewise polynomial expressions of the optical proper-
ties are derived, which enables to solve the direct volume integral
with a controlled error.

For ray splitting, we use an extension of the algorithm by Mar-
mitt et al. [MKW+04] to solve for all intersections of a ray with
the control points of the TF, i.e., the data values where the assign-
ment to optical properties changes. For each segment, polynomial
expressions are derived, so that numerical integration schemes can
be applied up to arbitrary precision. Here, we employ and evalu-
ate in particular quadrature schemes with a fixed number of con-
trol points and the adaptive Simpson quadrature code proposed by
Campagnolo et al. [CCdF15] in the context of direct volume ren-
dering.

It is our goal to position the proposed analytic ray-splitting al-
gorithm as a means to generate high-quality baseline images for
direct volume rendering. The results of alternative approaches can
be compared qualitatively and quantitatively, and their strengths
and weaknesses regarding specific TF settings and data modalities
can be revealed. In particular sharp TFs pose a problem for con-
stant stepping approaches. As we demonstrate in section 6, such
approaches do not converge with decreasing step size due to the ac-
cumulation of approximation errors. Our approach can effectively
hint to specific locations where such errors are high, for example by
analyzing the difference between an image rendered using constant
stepping and an image rendered using ray-splitting.

Furthermore, with only minor modifications the proposed algo-
rithm can adaptively split a ray into piecewise monotone segments
required by scale-invariant volume rendering (subsection 4.2).
The direct volume rendering approximation via the rendering and
blending of multiple polygonal isosurfaces [LJKY13] can be seens
as an approximation of our approach. Our algorithm takes the idea
of splitting the ray in data space, but considers precise intersections
that are computed analytically during ray-tracing instead of raster-
izing polygonal isosurfaces. Then, our algorithm uses the surface
in the tri-linear interpolant instead of a piecewise linear approxi-
mation, and the data variation in each segment between two con-
secutive isosurfaces can be considered at high numerical accuracy.
To summarize, we

• build upon the algorithm by Marmitt et al. to split a ray through
a voxel grid at all control points of a piecewiese polynomial TF
(section 4),
• embed controlled-precision quadratures as proposed by Novins

and Arvo [NAS92] to numerically solve the volume rendering
integral on a per-segment basis (section 5),
• demonstrate the use of the proposed algorithm to split a ray auto-

matically into piecewise monotone segments that are required by
scale-invariant direct volume rendering [Kra05] (subsection 4.2).

We have pursued a number of experiments to quantitatively eval-
uate the errors that are introduced by constant stepping approaches,
scale-invariant volume rendering, and multi-isosurface rasteriza-
tion. In these experiments, our method serves as a baseline regard-
ing the numerical error in the volume rendering integral approxima-
tion. The evaluation reveals interesting properties of the considered
approaches regarding quality and scalability.

All operations involved in analytic ray splitting have been im-
plemented on the GPU, to provide interactive frame rates even for
large data sets. Nevertheless, there are scenarios were constant step-
ping approaches give similar quality at higher rendering perfor-
mance. On the other hand, we also demonstrate scenarios where
the performance differences become small and convergence—
irregardless of how small the step size is—cannot be achieved via
constant stepping. We have made our implementations available on
GitHub, so that the findings can be replicated and qualitative as
well as quantitative comparisons with other algorithms can be per-
formed.

submitted to COMPUTER GRAPHICS Forum (4/2021).

S. Weiss & R. Westermann / Analytic Ray Splitting for Controlled Precision DVR– Extended version – 3

2. Related Work

Direct volume rendering (DVR) refers to the generation of an image
of a volumetric material with certain optical properties directly, i.e.,
without using an intermediate surface representation as in indirect
methods [LC87]. In DVR via ray-casting, the perceived lightness
is computed by considering an optical model, e.g., an emission-
absorption model [DCH88, Lev88, Max95], and computing a nu-
merical approximation of the resulting low-albedo volume render-
ing integral [WM92]. Studies have been performed both with re-
spect to achieving computational efficiency using hierarchical ac-
celeration structures [DH92] and GPUs [KW03], and investigat-
ing error bounds for the used numerical integration rules [NA92,
WM92, dBGHM97]. Regarding the latter, Etiene et al. [EJR+13]
study the relationships between integration step size along the rays
and integration results. They propose a framework to assess the
convergence of volume rendering algorithms with respect to step
size, pixel size, and voxel resolution. Campagnolo et al. [CCdF15]
propose an iterative, adaptive Simpson quadrature scheme to eval-
uate the volume rendering integral up to a certain accuracy. How-
ever, to avoid arbitrary many subdivisions when sharp peaks in the
TF occur, an upper bound on the number of subdivisions needs to
be considered.

Novins and Arvo [NA92] assume that both an emission and ab-
sorption field is given, i.e., the initial scalar field values are pre-
classified via transfer functions (TFs), and they derive error bounds
from the interpolant of both quantities in each element of a voxel
grid. In this way, the variations of the quantities in each cell are
restricted by the used polynomial per-cell interpolation scheme.
For trilinear interpolation in a voxel cell, the profile of the inter-
polated quantity along a ray in that cell becomes a cubic polyno-
mial. For isosurface raycasting, Parker et al. [PSL+98], Neubauer
et al. [NMHW02], and Marmit et al. [MKW+04] propose exact
cell-wise ray splitting schemes based on the zero crossings of the
trilinear interpolant. These methods provide exact algebraic solu-
tions for ray-isosurface intersections in the trilinear interpolant, yet
they lack the capability of displaying dense volumetric materials.
Attempts as by Kanodia et al. [KLH05] have been made to enrich
the rendering of isosurfaces by some indication of the volumetric
structure.

Novins and Arvo [NAS92] further propose a recursive refine-
ment procedure using interval arithmetic, where segments of the
ray with the highest estimated error are selected and refined. In this
way, large uniform segments can be skipped, however, it requires an
estimate of the minimum and maximum intensity and transparency
per segment. This renders the approach unsuitable for the use of
high-frequent TFs, as the intervals stored per cell become a very
crude approximation once optical properties are mapped via high-
frequency TFs.

When post-classification is used, i.e., the initial scalar field val-
ues are first interpolated and then mapped to emission and absorp-
tion via a TF, the error bounds derived by Novins and Arvo break
down. For post-classification and one-dimensional (1D) transfer
functions that vary linearly along the ray segments within each grid
cell, Williams and Max show that the integral can be computed
algebraically [WM92]. Kniss et al. [KIL+03] extend on this find-
ing by demonstrating that under the same assumption of piecewise

linearity, multi-dimensional Gaussian TFs can be algebraically in-
tegrated. Scale-invariant volume rendering by Kraus [Kra05] ad-
dresses ray splitting in data space. The volume rendering integral is
split into segments of equal length over which a piecewise mono-
tone change of the data values is assumed. All these approaches use
an equidistant step size along a ray. We will subsequently refer to
such approaches as constant stepping approaches. Thus, piecewise
linearity or monotony between adjacent sample points can only be
justified for very small step sizes. Lindholm et al. [LJKY13] gen-
erates segments of varying length along the view rays, by selecting
values in data space and rendering for each value a polygonal iso-
surface. The values correspond to the control points in the applied
TFs, i.e., the data values where the assignment to optical properties
changes. While this approach adapts the segments to the selected
data intervals, it assumes a piecewise constant variation of the data
in these intervals.

3. Background

In the following, we first review the foundations underlying DVR
using an optical emission-absorption model. Our focus is in partic-
ular on the assumptions and consequences that lead to a controlled-
precision DVR algorithm.

3.1. Field Representation and Interpolation

Let V ∈ R3 → [0,1] be a 3D field of scalar densities. We assume
that the densities are given at the vertices vi of a rectangular grid,
and per-vertex densities are obtained via V (vi).

Let s(t) = x0 + tω̄ be a ray starting at x0 into the unit direction
ω̄ with ray parameter t ≥ 0. We employ a voxel traversal algorithm
[AW+87, Hoe16] to step along the ray cell-by-cell. The traversal
algorithm provides the sequence of visited cells in front-to-back
order, as well as the per-cell entry and exit points represented by
[tin, tout].

Within a cell, the densities are trilinearly interpolated with basis
functions Ni, i.e., at a point x ∈ [0,1]3 in the local cell coordinate
space the density is computed as

v(x) =
8

∑
i=1

V (vi)Ni(x). (1)

Each basis function Ni is linear in the three coordinates x =
(x,y,z)T . The density profile along a ray through a cell is obtained
by replacing x in Equ. 1 with the ray equation, i.e., by enforcing x
to be on the ray. This yields a cubic polynomial

v(s(t)) = At3 +Bt2 +Ct +D. (2)

We refer to Parker et al. [PSL+98] on how to efficiently compute
the coefficients of this polynomial expression.

3.2. Analytical Isosurface Intersection

An isosurface for the isovalue θ is defined as

Θθ = {x ∈ R3 : v(x) = θ}. (3)

Since the density profile along a ray within a cell is a cubic polyno-
mial, between zero and three intersections can occur between the

submitted to COMPUTER GRAPHICS Forum (4/2021).

4 S. Weiss & R. Westermann / Analytic Ray Splitting for Controlled Precision DVR– Extended version –

ray and an isosurface. These intersections are given by the roots
of v(s(t))−θ = 0 ∈ [tin, tout]. Efficient isosurface intersection algo-
rithms are needed to split the ray at the control points of the transfer
function, which are given at certain density values, see section 4.

Several closed-form solutions for the roots of the cubic equation
exist, such as Cardano’s formula using cubic roots [Sch13, LC96],
and Viète’s formula using trigonometric functions [Nic06]. How-
ever, these closed-form solutions turn out to be inefficient due
to many complex arithmetic function evaluations (see our exper-
iments in Appendix A), and they are prone to numerical instabili-
ties. Therefore, we employ numerical schemes to extract the roots,
such as proposed by Marmitt et al. [MKW+04].

Regular root-finding algorithms like Newton’s method or the Se-
cant method find a root of the function, but they do not necessarily
find the first root in an interval [tin, tout]. The algorithm by Mar-
mitt et al. guarantees to find the first intersection using the follow-
ing observation: If the interval is split at the two extrema of the
function, the resulting one to three segments contain exactly zero
or one root. Per segment, repeated linear interpolation, a variation
of the Secant method as presented by Neubauer et al. [NMHW02],
is then used to find this root, if it exists. To isolate the extrema, the
roots of the derivative of the cubic density profile, i.e. a quadratic
polynomial ax2+bx+c = 0, needs to be found. This step is crucial
and care has to be taken as to how to solve for the roots. In practice,
the polynomials can be degenerate, so that the standard formula

x0,1 =
−b±

√
b2−4ac

2a
, (4)

leads to catastrophic cancellation when b2 is large, 4ac approaches
zero and the square-root has the same sign as b. Therefore, in our al-
gorithm we use a numerically more stable reformulation [PTVF88,
p. 184]

x0 =
−b− sign(b)∗

√
b2−4ac

2a
x1 = c/(ax0),

(5)

which essentially catches the critical cases via the sign bit. We use
this method to find all roots of the cubic polynomial within one cell
that are generated by applying the composite post-shading function
to the initial density values. Note that this method reports double
intersection either as two intersections an epsilon apart or no inter-
section, depending on rounding errors in the floating-point compar-
isons.

3.3. The Volume Rendering Integral

In our work, we assume a low-albedo emission-absorption model
for volume rendering [Max95]. Let τ : [0,1]→ R+

0 be the absorp-
tion due to a given density, and C : [0,1]→ R+

0 the assigned self-
emission, both specified via a TF (see subsection 3.4). Then, the
transparency of the line segment from t = a to b is written as

T (a,b) = exp
(
−

∫ b

a
τ(v(s(t)))dt

)
. (6)

The transparency is 1 if the medium between a and b does not ab-
sorb any light and approaches zero for complete absorption. Then,
the light intensity reaching the eye is

L(a,b) =
∫ b

a
g(v(s(t)))T (a, t)dt, (7)

were g(v) = τ(v)C(v). Usually, the emission is not given as a sin-
gle scalar intensity, but as an RGB tuple. In this case, Equation 7
becomes a vector equation.

3.4. Piecewise Defined TFs

We assume that the TF is given as a function satisfying two con-
straints: First, it is defined piecewise, i.e., specified by a finite num-
ber of control points with closed-form interpolation in between.
This allows splitting the ray in data space at the control points to
guarantee that no peaks are missed. Second, the interpolation func-
tion between two control points—after applying the TF to the cu-
bic density polynomial—has to be analytically integrable. This is
required to evaluate the transparency integral (Equation 6) analyt-
ically and, thus, reduce the nested intensity integral (Equation 7)
to a single integral. This constraint holds, e.g., for all polynomial
interpolations.

In the following, we assume piecewise linear TFs as one of
the most commonly used forms of TFs (see Figure 2b). Absorp-
tion and emission are given at a discrete set of N density values
0 = d1 < d2 < ... < dN = 1. We call these the TF control points.
Each control point i stores the absorption τi and color Ci, with lin-
ear interpolation in between. If absorption and color are given as
separate piecewise linear functions, they are combined into a sin-
gle piecewise function in a pre-processing step.

4. Ray Splitting Algorithm

As illustrated in Figure 2, applying a piecewise linear TF to the
cubic density profile along a ray segment results in a piecewise
cubic polynomial along that segment. With constant stepping along
the ray, peaks in the TF can be missed, and the resulting emission
and absorption profiles can be vastly over- or under-estimated. By
splitting the ray in the data domain at the control points of the TF,
i.e., at the data values where the TF changes, arbitrarily wide and
narrow peaks in the TF can be represented accurately. The resulting
segments can be integrated independently to high precision.

We use the root finding method of Marmitt et al. to split a ray
through a cell at the points where the ray takes on any of the data
values given by the TF control points. We will subsequently call
these points the split points along a ray. When applied to the initial
density values, the method yields between zero and three intersec-
tions between a ray and a selected data value. The resulting emis-
sion and absorption profiles between each pair of split points are
cubic polynomials.

4.1. Transfer Function-Based Splitting

In our scenario, the proposed ray splitting algorithm needs to con-
sider the mapping of density values via a TF. First, this means to

submitted to COMPUTER GRAPHICS Forum (4/2021).

S. Weiss & R. Westermann / Analytic Ray Splitting for Controlled Precision DVR– Extended version – 5

find all points where the ray takes on the values of the TF con-
trol points. For example, Figure 3 illustrates a situation where con-
trol point 1 has three intersections at t1, t4, t5, and control point 3

has one intersection at t7. Thus, the number of occurring segments
within a single cell can be vastly increasing, and these segments
need to be sorted efficiently. Note here that depending on the den-
sity values at the cell vertices and the number and width of the
selected TF, up to 3N many intersections can occur in principle.
This can happen in particular in cells spanning a large range of data
values, i.e., where the gradient is high, and when multiple narrow
peaks are selected in the TF.

0.5 1

0.5

1

0 1

2

3
4

5 6
d

τ

(a) 0 1 2 3 4 5 67 89

1

0

1
2
3

45

t

d

(b)

Figure 3: Detailed analysis of the isosurface intersection (b) at the
density values specified by the transfer function (a). The segments
in (b) are colored based on the cases later described in Figure 4.

Secondly, ambiguous cases regarding the occurrence of intersec-
tions need to be resolved. These cases occur if two intersections
with the same data value (i.e., given by the same TF control point)
occur right after each other without another intersection falling in
between. Figure 4 illustrates all possible cases regarding the or-
der in which these intersections can occur. Cases IIIa and IIIb are
ambiguous, since just from the data values at two consecutive in-
tersections along a ray the order cannot be established. Such a case
occurs in Figure 3a, where control point 2 has intersections at t2
and immediately again at t3. To modulate the density polynomial
with the transfer function, however, it is important to know if the
segment from t2 to t3 visits the TF segment 2 – 3 (case IIIa) or 1 – 2

(case IIIb).

I II IIIa IIIb

Figure 4: Four cases of consecutive isosurface intersections.

Task one – sorting all computed split points along a ray – can be
realized in O(N logN) using standard sorting algorithms, where N
is the number of control points falling into the data range covered
by the current cell. Task two – ambiguous cases – can be decided, in
principle, by evaluating the density polynomial in the middle of the
interval between two consecutive split points, and testing whether
the value is greater or smaller than the data value at the first point.
This approach, however, requires an additional evaluation of the
density polynomial, which can be avoided as shown below.

In the following, we present a ray splitting algorithm that can
iterate over the split points in order O(N), and handles the ambigu-
ous cases directly without extra evaluations. The pseudocode of the
algorithm can be found in Algorithm 1.

Algorithm 1 Analytic ray splitting algorithm
1: input: density polynomial d(t), entry and exit t0, t1, control point val-

ues d0, ...dN−1
2: roots = List[N] . an array of length N, each entry is a list with

maximal three entries for the roots of that di
3: Compute all isosurface intersections with the control points

d0, ...dN−1, store in roots[0] to roots[N−1]
4: Find i such that d(t0) ∈ [di,di+1], the initial control point interval
5: ilast =−1
6: loop . Loop until no more intersections are found
7: tlower = top(roots[i]) or∞ . query next intersection, if it exists
8: tupper = top(roots[i+1]) or∞
9: if t1 < tlower and t1 < tupper then . exit the cell

10: EMITINTERVAL(i, i+1, t0, t1)
11: return
12: else if tlower < tupper then . lower isovalue first (with index i)
13: pop(roots[i])
14: if i = ilast then
15: EMITINTERVAL(i, i+1, t0, tlower) . case IIIa
16: else
17: EMITINTERVAL(ilast, i, t0, tlower) . case II
18: end if
19: ilast = i, t0 = tlower, i = i−1
20: else . upper isovalue first (with index i+1)
21: pop(roots[i+1])
22: if i+1 = ilast then
23: EMITINTERVAL(i+1, i, t0, tupper) . case IIIb
24: else
25: EMITINTERVAL(ilast, i+1, t0, tupper) . case I
26: end if
27: ilast = i+1, t0 = tupper, i = i+1
28: end if
29: end loop

First, the density at the cell entry point along the ray (t0) is eval-
uated. Then, the TF segment (di,di+1) that contains this density
value is found via (binary) search. In the example in Figure 3,
this is the segment 0 – 1 . The next split points can now only be
with the data values corresponding to these two control points and,
thus, only those have to be tested. Let the next split point at t1 be
with respect to the data value at control point 1 , the case for the
lower control point di follows immediately by symmetry consider-
ations. Now, since this data value is approached from a lower den-
sity value, the next intersection at t2 can only be with the same data
value at control point 1 again or with the next larger data values at
control point 2 . The latter situation is shown in the example. Simi-
larly, for t3 the data values at control points 2 and 3 are tested, but
now the data value at 2 is visited again. This indicates case IIIa,
line 15 in Algorithm 1, and the search direction is changed. The
next split can now only occur according to the data value at 1 (case
II) or 2 (case IIIb), as we approach them from a larger density
value. This process is repeated until all split points are processed
and the ray exits the cell at texit.

In the pseudocode (Algorithm 1), for each ray segment that is
computed by the algorithm the procedure EMITINTERVAL is called.

submitted to COMPUTER GRAPHICS Forum (4/2021).

6 S. Weiss & R. Westermann / Analytic Ray Splitting for Controlled Precision DVR– Extended version –

a) b)

Figure 5: a) Scale-invariant DVR with a constant step size of
0.1 cells suffers from sampling artifacts and erroneously assumed
monotony of the density in each segment. b) Analytic ray splitting
finds the exact locations of piecewise monotone segments along the
rays.

This procedure performs the per-segment numerical quadrature of
the volume rendering integral (see section 5). The resulting color
and opacity values are blended in front-to-back order with accumu-
lated per-ray color and opacity, implemented in EMITINTERVAL.

4.2. Scale-Invariant and Multi-Isosurface DVR

Kraus [Kra05] introduced a model for scale-invariant volume ren-
dering, in which the volume rendering integral in physical space is
replaced by the scale-invariant integral in data space. This can be
seen as the limit case where infinitely many semi-transparent iso-
surfaces are blended. With this model, the scale-invariant volume
rendering integral over an interval [a,b] in physical space becomes

L(a,b) =
∣∣∣∣∫ v(s(b))

v(s(a))
g(x)exp

(
−
∣∣∣∣∫ x

v(s(a))
τ(x′)dx′

∣∣∣∣)dx
∣∣∣∣ . (8)

This model builds upon the assumption that the density field is
piecewise monotone within the interval [a,b] in physical space.
Kraus uses constant stepping and argues that this assumption is ap-
proximately fulfilled. However, if the step size is too large, the as-
sumption is violated and rendering artifacts occur (see Figure 5a.)

In our framework, scale-invariant DVR including an adaptive
step size that adheres to the underlying assumption can be eas-
ily realized (Figure 5b). To enforce monotony over each integra-
tion interval, additional split points need to be included at the ex-
trema of the density profiles across the segments. These split points,
however, are computed already by the algorithm proposed by Mar-
mitt et al. (see subsection 3.2), which splits each per-cell interval
at the extrema of the density function to obtain zero or one root per
sub-interval. As the additional split points do not interfere with the
mapping via the selected TFs, they can be considered in the pro-
cedure EMITINTERVAL in addition to the current interval bounds.
Per segment, the ray splitting algorithm provides the cubic polyno-
mial of the absorption and color that is obtained by splitting with
respect to the piecewise TF. The additional splits with respect to the
extrema of the density allow dropping the absolute values from the
inner integral in Equation 8, while the polynomials for absorption
and color are not affected.

The proposed splitting scheme can also be used directly to render
multiple semi-transparent isosurfaces in front-to-back order. There-
fore, the determination of ambiguous cases in Algorithm 1 can be
avoided. Instead, whenever a split point is computed, a procedure

is called that shades the point using gradient information from the
density field, and blends its contribution with the already accumu-
lated color and opacity. Additionally, sharp isosurfaces with trans-
parency and soft tissue in between can be rendered jointly (see the
accompanying video for a demonstration).

5. Controlled Precision DVR

We now describe the use of the proposed ray splitting algorithm for
controlled precision direct volume rendering. While the quadrature
schemes for a single cell and a single linear transfer function were
already proposed by Novins and Arvo [NA92], to our best knowl-
edge, a consistent formulation regarding the integration along an
entire ray and, in particular, including numerical quadrature on the
post-classified quantities using piecewise linear transfer functions
for both the emission and absorption is missing.

5.1. Mapping Density

When the cubic polynomial of the density per cell v(s(t)) is inserted
into the piecewise linear absorption τ(d), the result is a piecewise
cubic polynomial τ(v(s(t))) (Figure 2c). Similarly, g(v(s(t))) re-
sults in a piecewise polynomial of degree six.

Now we consider a single segment [t0, t1] with the TF control
points a,b, as extracted by the ray-splitting algorithm. Let τ(d) be
defined by the two control points τ(da) = τa and τ(db) = τb with
linear interpolation in between. Then, τ(v(s(t))) is given by

τ(t) := τ(v(s(t))) = b0 + tb1 + t2b2 + t3b3

b0 = τa +α(a0−da),b1 = αa1,b2 = αa2,b3 = αa3

with α =
τa− τb
da−db

,

(9)

where the coefficients ai come from the cubic form of v, i.e.,
v(s(t)) = a0 + ta1 + t2a2 + t3a3, Similarly, C(v(s(t))) can be com-
puted, and g(t) := τ(v(s(t)))C(v(s(t))) is obtained by polynomial
multiplication.

The linear interpolation from Equation 9 is only defined for
da 6= db, i.e., the data values at the interval points come from differ-
ent TF control points. However, this is not directly the case for the
cases IIIa and IIIb in Figure 4, were the density polynomial visits
the same data value (i.e., control point) again with no other control
point “in between”. We can, however, make use of the following
observation: Let da be the current control point and the segment
boundaries at t0 < t1, i.e., d(t0) = d(t1) = da. We also know that
all values in (t0, t1) are greater than da (case IIIa) or lower than da
(case IIIb). Then, we can use the next (previous) control point da+1
(da−1) for the linear interpolation, although the ray never hits the
density value of these control points, but returns to da. This case is
handled in Algorithm 1 in lines 15 and 23, so that the linear interpo-
lation (Equation 9 and the following quadrature (subsection 5.2)—
which are both implemented in EMITINTERVAL— do not need to
handle this special case.

5.2. Numerical Quadrature

Once a ray has been split into segments and the per-segment poly-
nomials have assembled, for each segment a cubic polynomial de-
scribing the absorption τ(t) and a sextic polynomial describing the

submitted to COMPUTER GRAPHICS Forum (4/2021).

S. Weiss & R. Westermann / Analytic Ray Splitting for Controlled Precision DVR– Extended version – 7

emission g(t) in some interval [t0, t1] is given. In this section we de-
scribe how to solve T (t0, t1) = exp(−

∫ t1
t0 τ(t)dt) (Equation 6) ana-

lytically, and L(t0, t1) =
∫ t1

t0 g(t)T (t0, t)dt (Equation 7) numerically.
The final output color is then computed by combining the individ-
ual contributions using front-to-back blending.

Since τ(t) is a cubic polynomial, we can evaluate the integral for
the transparency analytically:

T (t0, t1) = exp
(
−

∫ t1

t0
τ0 + τ1t + τ2t2 + τ3t3dt

)
= exp(Tt0(t1)).

(10)

The integral for the light intensity is given by

L(t0, t1) =
∫ t1

t0
g(t)exp(Tt0(t))dt. (11)

Novins and Arvo [NA92] state that integrals of the form∫ b
a g(x)ep(x)dx cannot be solved analytically and present various

numerical quadrature schemes – trapezoid rule, Simpson rule, and
using the power series – with bounds on the precision.

For the trapezoid and Simpson rule, the number of required
quadrature steps for a given error bound can be computed using
bounds on the second or fourth derivative of f , respectively. We
show in Appendix B how to compute those bounds during ray-
tracing, but this increases the computation time by a factor of 10x
to 100x. Furthermore, in Table 1 (Appendix B) we show that for
Simpson quadrature, typically only around 10 quadrature steps are
needed. Hence, it often suffices to fix the number of quadrature
steps to a constant. As we shown in a number of qualitative and
quantitative evaluations (section 6), already with a low number
of quadrature steps the volume rendering integral can be almost
perfectly solved. This is because the ray-splitting algorithm en-
sures that no sharp peaks in the TF are missed. Alternatively, we
have also used the iterative adaptive Simpson scheme by Campag-
nolo et al. [CCdF15] to evaluate the emission integral up to a cer-
tain error bound. Our tests in subsection 6.4 have shown, however,
that in the current scenario no further quality or performance in-
creases can be achieved.

6. Evaluation and Results

In the following, we perform a number of tests and comparisons
of the analytic ray splitting algorithm and alternative volume ren-
dering approaches. In particular, we compare the quality and per-
formance to constant stepping DVR via ray-casting with different
step sizes, as well as multi-isosurface rendering via polygon sur-
face rasterization [LJKY13]. For instance, "stepping 0.1" refers to
constant stepping with a step size of 0.1 cells. Multi-isosurface ren-
dering renders one isosurface for each data value given by the TF
control points, and blends the rasterized fragments in correct visi-
bility order. Blending assumes a piecewise constant approximation
of the volume rendering integral between consecutive fragments.
With respect to visual quality, this approach works well for high-
frequent TFs, but it requires further subdivision of the data points
when wider TFs are used. In this case, we specify the subdivision
factors that are used, e.g., "multi-isosurface 4" splits each piece-
wise linear segment in the TF uniformly into four linear segments.
We call the number of generated elements the subdivision factor.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

tf

d

Figure 6: The transfer function used to render the synthetic
datasets. Different widths of the TF peaks are used in the evalu-
ation.

6.1. Synthetic Datasets

We first evaluate the quality of the rendering approaches on three
synthetic datasets. All datasets were sampled to a Cartesian grid
with a resolution of 1283, and they are rendered to a 5122 view-
port. A triangular TF with three peaks is used to map certain data
ranges to emissive colors red, yellow, and blue, as well as absorp-
tion (see Figure 6). To analyze how the rendering algorithms can
handle varying frequencies in the TF, we use different widths for
the TF peaks. I.e., initially the width of all peaks is set to 0.05,
and they are then scaled to 0.002 to obtain more narrow peaks.
In all quantitative evaluations of constant stepping, the TF con-
trol points are stored explicitly, and emission and absorption values
are retrieved for a data value via linear interpolation between the
emission and absorption values at the two closest control points. In
the performance evaluations of constant stepping, however, the TF
is stored as a 1D texture to enable fastest access using hardware-
accelerated linear interpolation.

The first synthetic test case “Sphere” is a sphere. The density is
one at the center of the grid, and falls down smoothly to zero in a
radially symmetric way towards the boundaries. It is given by the
function

v(x,y,z) = 1−
√

x2 + y2 + z2. (12)

The second test dataset “Tube” is a tube with periodically increas-
ing and decreasing density, given by

v(x,y,z) = 10(0.1−
√

y2 + z2(0.9−0.5cos(7x))3). (13)

It is used to demonstrate the behavior of the rendering algorithms
if the structures in the dataset become thinner and thinner. As a fi-
nal synthetic test case, we use the Marschner Lobb dataset [ML94]
with the standard parameters.

6.2. Ground Truth Rendering

To verify the accuracy of the used volume rendering algorithms, we
require a ground truth rendering. However, simply using constant
stepping with a very small step size does not always converges.
When accumulating small emission values along a ray, numerical
errors are introduced due to the loss of significant bits. Figure 7
illustrates the convergence behavior of regular constant stepping
with decreasing step size for Marschner Lobb.

Therefore, we employ the following approach to circumvent the
aforementioned effect: The volume is traversed cell-by-cell, and
the volume rendering integral is evaluated separately for each cell
using a small step size of 0.0001 cells. Then, the integral values per

submitted to COMPUTER GRAPHICS Forum (4/2021).

8 S. Weiss & R. Westermann / Analytic Ray Splitting for Controlled Precision DVR– Extended version –

35 40 45 50 55 60
PSNR (dB) to baseline

step size 2 15
step size 2 14
step size 2 13
step size 2 12
step size 2 11
step size 2 10
step size 2 9
step size 2 8
step size 2 7
step size 2 6
step size 2 5
step size 2 4
step size 2 3
step size 2 2

Figure 7: Ray casting Marschner Lobb with decreasing yet con-
stant step size. Convergence is not achieved, and below a certain
step size the quality even decreases due to the accumulation of nu-
merical errors.

cell are blended together to obtain the final baseline color. Column
(a) in Figure 10 shows the three synthetic datasets rendered with
the ground truth method and different TF settings.

6.3. Qualitative Evaluation

The qualitative evaluation compares the three different rendering
techniques on the datasets Sphere and Tube (see Figure 8). First, ray
casting with a constant step size is used. While it can generate high
quality results for smooth TFs (a.1), it introduces artifacts when
the TF peaks are narrowed (b.1 and b.2). Multi-isosurface render-
ing, on the other hand, works well for high-frequent TFs (b.3), but
for smooth TFs a further subdivision of the TF segments is nec-
essary (a.2 and a.3). Our proposed analytic ray splitting algorithm
resolves the volume rendering integral up to a user-specified preci-
sion, independent of the frequency of the TF (see the quantitative
evaluation in subsection 6.4 below).

To obtain further insights as to where the errors occur, the
Marschner Lobb is rendered using the different DVR algorithms
(see Figure 9) and TF peak widths. At a peak width of 0.05, the
transitions between the three peaks of the TF are relatively smooth,
yet constant stepping and multi-isosurface rendering already show
noticeable pixel errors over the whole image. Analytic ray splitting,
in particular when used with Simpson quadrature, produces signif-
icantly lower numerical errors, which are in particular not visible
any more. It can be clearly seen, that with a decreasing width of the
TF peaks to 0.002, the errors introduced by both constant stepping
and multi-isosurface rendering become unacceptably high. Con-
stant stepping with a step size of 0.1 fails to resolve the thin struc-
tures, leading to ringing artifacts. Even for a step size as low as
0.001, the artefacts cannot be resolved. Multi-isosurface rendering
shows highest errors at the silhouettes, due to the piecewise linear
surface approximation in the reconstruction process, and suffers
from z-fighting due to imprecision in the rasterizer. Ray splitting
with Simpson quadrature and 10 quadrature points can successfully
resolve the DVR integral for both TF ranges. Neither does the algo-
rithm suffer from noise as the constant stepping approach, nor from
rasterization errors at the silhouettes. It leads to the best results over
all test cases shown here.

6.4. Quantitative Evaluation

The findings from the qualitative assessment are further supported
by a quantitative evaluation using Marschner Lobb, Sphere and
Tube. The results are shown in Figure 10. First, we evaluate the
results of the different rendering algorithms for a smooth (column
b1) and a sharp (column b2) TF, by plotting the percentage of pix-
els within a certain allowed error (i.e., so-called regression error
characteristic (REC) curves). One can see that the ray splitting al-
gorithm using Simpson quadrature can always achieve that 100%
of the pixels are within an error of 1/256 (dashed vertical line),
i.e. where pixel errors occur when using 8-bit color values. For the
used datasets and TF settings, constant stepping approaches actu-
ally never achieve this, i.e., even with smaller and smaller step size
there are always many pixel where the error of 1/256 is overshoot.

We also analyzed whether analytic ray splitting or the used nu-
merical quadrature rules is the decisive factor regarding accuracy.
The methods “interval - midpoint” and “interval - rectangle-3” per-
form analytic ray splitting as proposed, but then use the midpoint
rule or the rectangular rule with three control points to evaluate the
integral along the ray segments. As one can see,“interval-simple”
is able to accurately approximate the rendering integral, especially
with sharp TFs. This leads to the insight that analytic ray splitting at
the data values selected by the TF control points is crucial for ob-
taining high numerical accuracy. On the other hand, higher-order
quadrature is needed for convergence on TFs with both wide and
narrow peaks. As shown in the REC curves, using a fixed number of
ten quadrature points with Simpson’s rule is enough so that 100%
of pixels are within an error of 1/256. In the difficult test case of the
Tube, constant stepping approaches only achieve 100% at a much
higher error rate.

6.5. Timings

Finally, we report the execution times of the different rendering al-
gorithms in relation to the numerical accuracy they achieve. All al-
gorithms have been implemented in CUDA, and performance mea-
sures were taken on a NVidia RTX 2070 GPU. Timings are aver-
aged over 10 different frames of resolution 5122, by moving the
camera randomly around the datasets. No acceleration structures
were used, even though any empty-space skipping strategy can be
integrated in a straight forward way.

The last column (c) in Figure 10 shows, as expected, the linear
performance scale of constant stepping in the step size. Analytic
ray splitting lies between constant stepping with a step size of 0.1
and a step size of 0.01. It is interesting to note that the quadrature
scheme and the number of quadrature steps has almost no effect on
performance. Detailed profiling has shown that by far the most time
is spent in the solve step, to accurately determine the points along
the ray where the data values selected by the TF control points are
taken, and the procedure that builds the piecewise polynomials in
the volume integrals.

Multi-isosurface rendering cannot compete with the ray stepping
approaches. This is due to the fact that a huge amount of fragments
is generated (more than 108), which requires to perform tile-based
rendering so that the fragment buffer fits into GPU memory. Fur-
thermore, especially for Marschner Lobb a large number of frag-

submitted to COMPUTER GRAPHICS Forum (4/2021).

S. Weiss & R. Westermann / Analytic Ray Splitting for Controlled Precision DVR– Extended version – 9

a.1) step 0.1 a.2) iso 1 a.3) iso 8 b.1) step 0.1 b.2) step 0.01 b.3) iso 1

Figure 8: Quality comparison of DVR algorithms, convergence is assumed below a maximal numerical pixel error of 1/256. For smooth
volumes, i.e., Sphere, constant steppping converges with a step size of 0.1 (a.1). Multi-isosurface rendering without further subdivision is not
sufficient (a.2), and requires a subdivision factor of at least 8 (a.3) for convergence. For datasets with higher frequencies, i.e. Tube, constant
stepping requires a smaller step size of around 0.01 (b.2), multi-isosurface rendering achieves convergence without further subdivision (b.3).

ba
se
lin
e

st
ep
pi
ng
0.
1

st
ep
pi
ng
0.
00
1

tr
ap
ez
oi
d-
2

tr
ap
ez
oi
d-
10

Si
m
ps
on
-2

Si
m
ps
on
-1
0

m
ul
ti-
iso
su
rfa
ce
2

m
ul
ti-
iso
su
rfa
ce
4

P
ea
k
w
id
th
0
.0
50

0.0

0.2

0.4
0.6
0.8
1.0

0.
00
2

Figure 9: Comparison of different volume rendering algorithms
against the ground truth rendering result. Two TFs with wider and
more narrow TF peaks are used, i.e., TF range of 0.39 (top) and
0.01 (bottom). In each group, the first row shows the rendering
and the second row the per-pixel L2-norm of the color difference
to the baseline, scaled using a power norm of x0.3 (see legend to
the right).

ments per pixel can be produced for certain views. This can make
the sorting step costly and dominating the overall performance.

6.6. Real-World Datasets

We further evaluate the quality and performance of the DVR algo-
rithms on three CT scans: A stag beetle at a size of 832×832×494,
a human thorax at a size of 512×512×286, and a full scan of the
human body at a size of 512× 512× 1884. Additionally, we used
the Ejecta dataset, a supernova simulation at a size of 5123. The
results are given in Figure 11.

We compared the ray-splitting algorithm with Simpson-10
quadrature to ray tracing with a constant step size and measure the
mean absolute error to the baseline and the execution time. In a
first test of constant stepping, we used a coarse step size of 0.25
cells. The coarse step size, however, leads to ringing artifacts and
noise. Therefore, the step size was globally halved until the render-
ing has converged, i.e. the output does not change within an error
of 1/256 anymore. The results for the converged constant stepping

is depicted in the third row of Figure 11 with the final step size, the
average error to the baseline, and rendering time.

One can see that constant stepping with a coarse step size
is much faster than the proposed ray-splitting algorithm. But if
the step size should be chosen small enough for convergence,
it becomes slower than the ray-splitting algorithm with Simpson
quadrature. At the same time, Simpson-10 results in a lower aver-
age error as well.

7. Conclusion

We have presented an algorithm that analytically splits rays through
a post-classified emission-absorption volume at the data values
given by the control points of a piecewise transfer function. Per
segment, the emission and absorption profiles are given as explicit
cubic functions. This allows for solving analytically the absorption
integral and numerically the emission integral up to a user-defined
precision. It is guaranteed that no high-frequent peaks in the trans-
fer function are missed.

A quality and performance evaluation has shown that the perfor-
mance of analytic ray splitting is even higher than that of constant
stepping when triangular TFs with rather narrow peaks are used.
We see the proposed renderer as an efficient and highly accurate
baseline, which can be used for comparative purposes as well as a
framework to integrate alternative rendering options such as scale-
invariant DVR and multi-isosurface rendering.

In the future, we will in particular investigate the use of analytic
ray splitting for differentiable volume rendering including post-
classification. Ultimately, we plan to develop algorithms for con-
verting physical fields in situ into a compact latent code that can be
interpreted by a renderer to produce a meaningful visual represen-
tation. This require differentiable renderers that are able to compute
per-pixel derivatives with respect to the post-classification process.

References

[AW+87] J. Amanatides, A. Woo, et al. A fast voxel traversal algorithm
for ray tracing. In Eurographics, volume 87, pages 3–10, 1987.

[CCdF15] L. Q. Campagnolo, W. Celes, and L. H. de Figueiredo. Accu-
rate volume rendering based on adaptive numerical integration. In 2015
28th SIBGRAPI Conference on Graphics, Patterns and Images, pages
17–24. IEEE, 2015.

submitted to COMPUTER GRAPHICS Forum (4/2021).

10 S. Weiss & R. Westermann / Analytic Ray Splitting for Controlled Precision DVR– Extended version –

(a) (b1) (b2) (c)

Rendering with
wide peaks (top) and

narrow peaks (bottom)

Regression error characteristic curves:
The number of pixels within a specified error bound
The vertical dashed line indicates an error of 1/256

Timings of the various algorithms,
averaged over 10 frames by rotating

the camera around the object.

M
ar

sc
h
n
er

L
ob

b

10−6 10−5 10−4 10−3 10−2 10−1 100
Allowed absolute error

10%

20%
30%
40%
50%
60%
70%
80%

90%

100%

Pe
rc
en

ta
ge

f p

ix
el
s f
%l
lf%

llin
g
th
e
b

%n
d

Peak Width: 0.050000

10−6 10−5 10−4 10−3 10−2 10−1 100
All wed abs l%te err r

10%

20%
30%
40%
50%
60%
70%
80%

90%

100%

Peak Width: 0.002000

stepping 0.1
stepping 0.01
stepping 0.001

interval - simple
interval - stepping-3

interval - trapezoid-2
interval - trapezoid-4
interval - trapezoid-10

interval - Simpson-2
interval - Simpson-4
interval - Simpson-10
interval - Simpson-adaptive e-5

marching cubes 1
marching cubes 2
marching cubes 4

0.05 0.0367 0.0266 0.0191 0.0136 0.0095 0.0066 0.0045 0.003 0.002
TF Range

20

30

40

50

60

70

80

90

PS
NR
 (d
B)

Algorithm

102

103

tim
e
(m
s)

stepping 0.1
stepping 0.01
stepping 0.001

interval - simple
interval - stepping-3

interval - trapezoid-2
interval - trapezoid-4
interval - trapezoid-10

interval - Simpson-2
interval - Simpson-4
interval - Simpson-10
interval - Simpson-adaptive e-5

marching cubes 1
marching cubes 2
marching cubes 4

S
p
h
er

e

10−6 10−5 10−4 10−3 10−2 10−1 100
Allowed absolute error

10%

20%

30%
40%
50%
60%
70%

80%

90%

100%

Pe
rc
en
ta
ge
 o
f p

ix
el
s f
ul
lfu
lli

g
th
e
bo
u
d

TF Ra ge: 0.050000

10−6 10−5 10−4 10−3 10−2 10−1 100
Allowed absolute error

10%

20%

30%
40%
50%
60%
70%

80%

90%

100%

TF Range: 0.002000

stepping 0.1
stepping 0.01
stepping 0.001

interval - simple
interval - stepping-3

interval - trapezoid-2
interval - trapezoid-4
interval - trapezoid-10

interval - Simpson-2
interval - Simpson-4
interval - Simpson-10
interval - Simpson-adaptive e-5

marching cubes 1
marching cubes 2
marching cubes 4

0.05 0.0367 0.0266 0.0191 0.0136 0.0095 0.0066 0.0045 0.003 0.002
TF Range

20

40

60

80

100
PS
NR
 (d
B)

Algorithm
101

102

103

tim
e
(m
s)

stepping 0.1
stepping 0.01
stepping 0.001

interval - simple
interval - stepping-3

interval - trapezoid-2
interval - trapezoid-4
interval - trapezoid-10

interval - Simpson-2
interval - Simpson-4
interval - Simpson-10
interval - Simpson-adaptive e-5

marching cubes 1
marching cubes 2
marching cubes 4

T
u
b

e

10−6 10−5 10−4 10−3 10−2 10−1 100
Allowed absolute error

20%

30%

40%
50%
60%

70%

80%

90%

100%

Pe
rc
en
ta
ge
 o
f p

ix
el
s f
ul
lfu
lli

g
th
e
bo
u
d

TF Ra ge: 0.050000

10−6 10−5 10−4 10−3 10−2 10−1 100
Allowed absolute error

10%

20%

30%
40%
50%
60%
70%

80%

90%

100%

TF Range: 0.002000

stepping 0.1
stepping 0.01
stepping 0.001

interval - midpoint
interval - rectangle-3

trapezoid-2
trapezoid-4
trapezoid-10

Simpson-2
Simpson-4
Simpson-10
Simpson-adaptive e-5

multi-isosurface 1
multi-isosurface 2
multi-isosurface 4

0.05 0.0367 0.0266 0.0191 0.0136 0.0095 0.0066 0.0045 0.003 0.002
TF Range

20

30

40

50

60

70

80

90

100

PS
NR
 (d
B)

Algorithm

102

103

104

tim
e
(m
s)

stepping 0.1
stepping 0.01
stepping 0.001

interval - simple
interval - stepping-3

interval - trapezoid-2
interval - trapezoid-4
interval - trapezoid-10

interval - Simpson-2
interval - Simpson-4
interval - Simpson-10
interval - Simpson-adaptive e-5

marching cubes 1
marching cubes 2
marching cubes 4

10−6 10−5 10−4 10−3 10−2 10−1 100
Allowed absolute error

20%

30%

40%
50%
60%

70%

80%

90%

100%

Pe
rc
en
ta
ge
 o
f p

ix
el
s f
ul
lfu
lli

g
th
e
bo
u
d

TF Ra ge: 0.050000

10−6 10−5 10−4 10−3 10−2 10−1 100
Allowed absolute error

10%

20%

30%
40%
50%
60%
70%

80%

90%

100%

TF Range: 0.002000

stepping 0.1
stepping 0.01
stepping 0.001

interval - midpoint
interval - rectangle-3

trapezoid-2
trapezoid-4
trapezoid-10

Simpson-2
Simpson-4
Simpson-10
Simpson-adaptive e-5

multi-isosurface 1
multi-isosurface 2
multi-isosurface 4

Figure 10: Accuracy statistics for different synthetic datasets and rendering algorithms.

Method
Beetle 832×832×494 Thorax 512×512×286 Human 512×512×1884 Ejecta 5123

s e t (ms) s e t (ms) s e t (ms) s e t (ms)

Simpson-10 – 1.73e-5 2.77e2 – 4.69e-5 7.72e2 – 1.13e-4 5.34e2 – 1.54e-5 6.14e2
Stepping 0.25 2.50e-1 3.94e-3 1.12e2 2.50e-1 1.26e-2 8.29e1 2.50e-1 2.37e-2 3.64e2 2.50e-1 4.18e-3 9.98e1

Stepping n 3.91e-3 5.37e-4 1.35e4 2.14e-3 3.24e-4 6.76e3 1.56e-2 7.47e-4 9.06e3 2.76e-3 5.93e-4 6.31e3

Figure 11: Error and timing statistics for real-world datasets. s, e and t, respectively, indicate step size in constant stepping, mean square
pixel error compared to the baseline rendering, and rendering time. Stepping n indicates that the step size is reduced until convergence. The
final step size is shown in column s.

submitted to COMPUTER GRAPHICS Forum (4/2021).

S. Weiss & R. Westermann / Analytic Ray Splitting for Controlled Precision DVR– Extended version – 11

[dBGHM97] M. W. de Boer, A. Gröpl, J. Hesser, and R. Männer. Re-
ducing artifacts in volume rendering by higher order integration. IEEE
Visualization’97 Late Breaking Hot Topics, pages 1–4, 1997.

[DCH88] R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering.
ACM Siggraph Computer Graphics, 22(4):65–74, 1988.

[DH92] J. Danskin and P. Hanrahan. Fast algorithms for volume ray trac-
ing. In Proceedings of the 1992 workshop on Volume visualization, pages
91–98, 1992.

[EJR+13] T. Etiene, D. Jönsson, T. Ropinski, C. Scheidegger, J. L.
Comba, L. G. Nonato, R. M. Kirby, A. Ynnerman, and C. T. Silva. Ver-
ifying volume rendering using discretization error analysis. IEEE trans-
actions on visualization and computer graphics, 20(1):140–154, 2013.

[Hoe16] R. K. Hoetzlein. GVDB: Raytracing Sparse Voxel Database
Structures on the GPU. In U. Assarsson and W. Hunt, editors, Euro-
graphics/ ACM SIGGRAPH Symposium on High Performance Graphics.
The Eurographics Association, 2016. doi:10.2312/hpg.20161197.

[KIL+03] J. Kniss, M. Ikits, A. Lefohn, C. Hansen, E. Praun, et al. Gaus-
sian transfer functions for multi-field volume visualization. In IEEE Vi-
sualization, 2003. VIS 2003., pages 497–504. IEEE, 2003.

[KLH05] R. L. Kanodia, L. Linsen, and B. Hamann. Multiple transparent
material-enriched isosurfaces. 2005.

[Kra05] M. Kraus. Scale-invariant volume rendering. In VIS 05. IEEE
Visualization, 2005., pages 295–302. IEEE, 2005.

[KW03] J. Krüger and R. Westermann. Acceleration techniques for gpu-
based volume rendering. In IEEE Visualization, 2003. VIS 2003., pages
287–292, 2003. doi:10.1109/VISUAL.2003.1250384.

[LC87] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolu-
tion 3d surface construction algorithm. ACM siggraph computer graph-
ics, 21(4):163–169, 1987.

[LC96] C.-C. Lin and Y.-T. Ching. An efficient volume-rendering algo-
rithm with an analytic approach. The Visual Computer, 12(10):515–526,
1996.

[Lev88] M. Levoy. Display of surfaces from volume data. IEEE Com-
puter graphics and Applications, 8(3):29–37, 1988.

[LJKY13] S. Lindholm, D. Jönsson, H. Knusson, and A. Ynnerman. To-
wards data centric sampling for volume rendering. In Proceedings of
SIGRAD 2013; Visual Computing; June 13-14; 2013; Norrköping; Swe-
den, number 094, pages 55–60. Linköping University Electronic Press,
2013.

[Max95] N. Max. Optical models for direct volume rendering. IEEE
Transactions on Visualization and Computer Graphics, 1(2):99–108,
1995.

[MKW+04] G. Marmitt, A. Kleer, I. Wald, H. Friedrich, and P. Slusallek.
Fast and accurate ray-voxel intersection techniques for iso-surface ray
tracing. In VMV, volume 4, pages 429–435, 2004.

[ML94] S. R. Marschner and R. J. Lobb. An evaluation of reconstruc-
tion filters for volume rendering. In Proceedings Visualization’94, pages
100–107. IEEE, 1994.

[NA92] K. Novins and J. Arvo. Controlled precision volume integration.
In Proceedings of the 1992 workshop on Volume visualization, pages 83–
89, 1992.

[NAS92] K. L. Novins, J. Arvo, and D. Salesin. Adaptive error bracket-
ing for controlled-precision volume rendering. Technical report, Cornell
University, 1992.

[Nic06] R. W. D. Nickalls. Viète, descartes and the cubic
equation. The Mathematical Gazette, 90(518):203–208, 2006.
doi:10.1017/S0025557200179598.

[NMHW02] A. Neubauer, L. Mroz, H. Hauser, and R. Wegenkittl. Cell-
based first-hit ray casting. In VisSym, pages 77–86, 2002.

[PSL+98] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. In-
teractive ray tracing for isosurface rendering. In Proceedings Visualiza-
tion’98 (Cat. No. 98CB36276), pages 233–238. IEEE, 1998.

[PTVF88] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery. Numerical recipes in c, 1988.

[Sch13] J. Schwarze. Cubic and quartic roots. In A. S. Glassner, editor,
Graphics gems, chapter VIII.1, pages 404–407. Elsevier, 2013.

[WM92] P. L. Williams and N. Max. A volume density optical model. In
Proceedings of the 1992 workshop on Volume visualization, pages 61–
68, 1992.

submitted to COMPUTER GRAPHICS Forum (4/2021).

http://dx.doi.org/10.2312/hpg.20161197
http://dx.doi.org/10.1109/VISUAL.2003.1250384
http://dx.doi.org/10.1017/S0025557200179598

12 S. Weiss & R. Westermann / Analytic Ray Splitting for Controlled Precision DVR– Extended version –

Supplemental Material

Appendix A: Comparison of Root-Extraction Algorithms for
Multiple Isosurfaces

We compared four methods for extracting the first root of a cu-
bic polynomial in an interval [a,b]. The first two methods, the
formula by Viète [Nic06] using hyperbolic functions and the for-
mula by Schwarze [Sch13] using only roots and trigonometric
functions, give closed-form solutions for all roots of the cubic
polynomial. From those roots, the smallest root in the given in-
terval is selected. The other two methods, Neubauer’s repeated
linear interpolation [NMHW02] and its improvement by Mar-
mitt et al. [MKW+04] are iterative schemes that provide – in the
base form of the algorithm – only the first root in the given interval.

The presented methods for ray-isosurface intersections were an-
alyzed on the Ejecta dataset. Two views were used, a far view for
performance and quality benchmarks and a close view for qual-
itative and quantitative precision tests, see Figure 12. A qualita-
tive comparison of the precision of the algorithms is shown in Fig-
ure 13. One can see in the marked regions how fixed step sizes lead
to ringing artifacts, how numerical instabilities occur in the pure an-
alytic solutions, and how the numerical approximations may lead to
missed intersections.

Quantitative precision statistics and timings can be found in Fig-
ure 14. As one can see, the algorithm of Neubauer or Marmitt are
close in performance to constant stepping with ∆t = 0.2. At this
stepsize, ringing artifacts are already noticeable. The algorithm of
Neubauer or Marmitt outperform constant stepping by large mar-
gins for smaller step sizes.

Based on these statistics, we selected Marmitt as the algorithm
to extract isosurface intersections. This algorithm as introduced by
Marmitt et al. [MKW+04], however, only extracts the first root in
the interval. We extend the algorithm to report all roots in the given
interval, not only the first root, see Algorithm 2. Marmitt requires
the solution of a quadratic polynomial to isolate the extrema, see
line 19 in Algorithm 2. We found it crucial to not use the standard
formula for quadratic polynomials,

x0,1 =
−B±

√
B2−4AC

2A
, (14)

denoted by “Marmitt (unstable)” in the statistics. Instead, we advise
to reformulate it to be more numerically stable [PTVF88, p. 184]

x0 =
−B− sign(B)∗

√
B2−4AC

2A
x1 =C/(Ax0),

(15)

denoted by “Marmitt (stable)” in the statistics.

As further alternatives to the presented numerical methods, Had-
wiger et al. [HSS+05] use a simpler bisection model, but re-
port that this method might miss some intersections. Methods to
trace arbitrary implicit surfaces were e.g. presented by Singh and
Narayanan [SN09] or Knoll et al. [KHK+09] to name a few.

Algorithm 2 Extension of Marmitt’s algorithm to find all roots in
the interval [tin, tout], Appendix A.

1: function NEUBAUER(t0, t1, f0, f1)
2: if sign(f0) = sign(f1) then
3: return no hit
4: end if
5: for i = 1...N do
6: tnew := t0 +(t1− t0)

f0
f0− f1

7: fnew := f (tnew)

8: if sign(fnew) = sign(f0) then
9: t0 = tnew, f0 = fnew

10: else
11: t1 = tnew, f1 = fnew
12: end if
13: end for
14: return := t0 +(t1− t0)

f0
f0− f1

15: end function

16: function EXTENDEDMARMITT(tin, tout, f)
17: t0 := tin, t1 := tout, f0 = f (t0), f1 = f (t1)
18: roots=[]
19: Find roots of f ′(t) = 3At2 +2Bt +C
20: if f ′ has real roots then
21: Let e0 < e1 be the roots of f ′

22: if e0 ∈ [t0, t1] then
23: if sign(f (e0)) 6= sign(f0) then
24: add t =NEUBAUER(t0,e0, f0, f (e0)) to roots
25: end if
26: t0 = e0, f0 = f (e0)

27: end if
28: if e1 ∈ [t0, t1] then
29: if sign(f (e1)) 6= sign(f0) then
30: add t =NEUBAUER(t0,e1, f0, f (e1)) to roots
31: end if
32: t0 = e1, f0 = f (e1)

33: end if
34: end if
35: if sign(f0) 6= sign(f1) then
36: add t =NEUBAUER(t0, t1, f0, f1) to roots
37: end if
38: end function

submitted to COMPUTER GRAPHICS Forum (4/2021).

S. Weiss & R. Westermann / Analytic Ray Splitting for Controlled Precision DVR– Extended version – 13

Figure 12: The two scenes used for comparisons, statistics and benchmarks: a far and a close view of the Ejecta dataset. The resolution is
512×512 pixels.

a) fixed step, ∆t = 0.01, baseline b) fixed step, ∆t = 0.5 c) analytic, float precision d) analytic, double precision

e) simple midpoint f) Neubauer g) Marmitt - unstable quadratic h) Marmitt - stable quadratic

Figure 13: Visual comparison of the different algorithms for ray-isosurface intersections and the numerical artifacts on the close view of
Ejecta.

0.00% 0.50% 1.00% 1.50% 2.00%
DDA - [num] Marmitt (float, stable)

DDA - [num] Marmitt (float, unstable)
DDA - [num] Neubauer

DDA - [num] linear
DDA - [num] midpoint

DDA - [ana] Schwarze (float)
DDA - [ana] hyperbolic (float)

DDA - fixed step
Fixed step size - trilinear (0.5)
Fixed step size - trilinear (0.2)
Fixed step size - trilinear (0.1)

Fixed step size - trilinear (0.05)
Fixed step size - trilinear (0.002)

0.01%
0.02%
0.03%
0.03%

1.14%
2.09%

0.02%
0.01%

0.14%
0.05%
0.03%
0.01%
0.00%

Ejecta Far - wrong hits / misses

10−6 10−5 10−4 10−3

Ejecta Far - error on position

10−6 10−5 10−4 10−3

Ejecta Close - error on position

100 ms 101 ms 102 ms

Ejecta Far - Timings

Figure 14: Comparison of the precision and performance of the different algorithms on the close view of Ejecta. The baseline is a rendering
with a fixed step size of ∆t = 0.001. Wrong hits/misses counts how many pixels hit (or miss) the object while are a miss (or hit) in the baseline.
The first two box plots show the absolute error in the isosurface position, i.e. the distance of the isosurface to the camera in world space, of
pixels that are a hit in both the baseline and the method to evaluate. The third box plot shows the timings to compute the images. Note that
the error measures are in log-scale.

submitted to COMPUTER GRAPHICS Forum (4/2021).

14 S. Weiss & R. Westermann / Analytic Ray Splitting for Controlled Precision DVR– Extended version –

Appendix B: Bounds on the Quadrature Error

In the following section, we analyze the presented numerical meth-
ods for their accuracy. Novins and Arvo [NA92] present remainder
terms for the trapezoid rule and Simpson rule with which the re-
quired number of quadrature steps for a given error bound can be
derived,

rT =
b−a

12
f̂ ′′h2 (16)

for the trapezoid rule and

rS =
b−a
180

f̂ (t)h4 (17)

for the Simpson rule, where [a,b] is the integration domain and
h = (a− b)/N is the step size for N sample steps. The difficulty
and computational expense arise from the need for an upper bound
on the second derivative of f in [a,b], f̂ ′′ for the trapezoid rule and
on the fourth derivative f̂ (4) for the Simpson rule.

We now analyze how many quadrature steps would be needed
to evaluate the integrals up to a specified precision using trapezoid
rule or Simpson rule. For that we record all emission integrals, see
subsection 3.3, occurring in the rendering of the Marschner Lobb,
see subsection 6.1, into memory to perform offline statistics. We
then performed experiments with five different options on how to
compute those upper bounds, as shown in Table 1. Note that the
presented numbers are overestimated as any attenuation due to the
absorption of previous segments along the ray is ignored. The sim-
plest way “coarse” is to use the approximation

∆(x) =
D

∑
i=0

δix
i → max

x∈[a,b]
∆(x)≤

D

∑
i=0
|δi|ci, (18)

with c = max(|a|, |b|), combined with a recursive formula to com-
pute f (n), as used by Novins and Arvo [NA92]. This bound can be
evaluated during ray tracing, but gives very crude bounds.

The next two methods make use of the Bernstein form of the
polynomials [CS66]. First, a polynomial ∆(x) is transformed from
the interval [a,b] to [0,1], as the Bernstein form is only defined
over the interval [0,1], giving rise to ∆̃(x). Then the the polynomial
given in the interval [0,1] is transformed into Bernstein form with
coefficients βi given by

βi =
i

∑
r=0

δ̃r

(
i
r

)
/

(
D
r

)
, i = 0,1, ...,D. (19)

These Bernstein coefficients form a convex hull around the polyno-
mial,

min{βi} ≤ ∆̃(x)≤max{βi} ,x ∈ [0,1]. (20)

We can make use of this result to find better bounds on f̂ ′′ and f̂ (4).
Novins and Arvo [NA92] present a recursive approach to compute
bounds on the derivatives of f using bounds on derivatives of q and
p, introduced using the coarse polynomial bounds (Equation 18).
We use it together with Bernstein bounds, denoted by “BS rec.” in
Table 1. Even better bounds, however, can be obtained by making
use of the fact that any derivative of f (x) = q(x)ep(x) is again of
the same form, just with increasing order of q. For example, in our
case with q being a sextic and p a quartic polynomial, the fourth

Table 1: Required quadrature steps, given as median, mean, 90%
quantile and maximum, for a specified error using different quadra-
ture schemes. The column “method” specifies the different ways on
how to compute the error bounds, see Appendix B.

Error Method Median Mean 90% q. Max

Trapezoid rule
10−2 coarse 15.0 3.6e6 2.1e3 2.4e11

BS rec. 9.0 25.1 41.0 1.5e4
BS expand 4.0 5.1 10.0 114.0
roots 2.0 3.5 8.0 87.0
numerical 3.0 3.8 8.0 45.0

10−3 coarse 46.0 1.1e7 6.5e3 7.6e11
BS rec. 28.0 78.0 129.0 4.7e4
BS expand 11.0 14.9 31.0 359.0
roots 6.0 10.0 25.0 276.0
numerical 8.0 10.7 24.0 139.0

10−5 coarse 453.0 1.1e8 6.5e4 7.6e12
BS rec. 275.0 775.0 1.3e3 4.7e5
BS expand 104.0 143.5 307.0 3.6e3
roots 52.0 96.0 242.0 2.8e3
numerical 74.0 99.5 225.0 813.0

Simpson rule
10−2 coarse 2.0 78.5 32.0 4.1e5

BS rec. 2.0 3.2 6.0 78.0
BS expand 2.0 2.2 2.0 14.0
roots 2.0 2.1 2.0 12.0
numerical 1.0 1.1 1.0 7.0
adaptive 5.0 5.0 5.0 12.0

10−3 coarse 4.0 138.7 56.0 7.3e5
BS rec. 4.0 4.8 8.0 138.0
BS expand 2.0 2.9 4.0 24.0
roots 2.0 2.7 4.0 22.0
numerical 1.0 1.6 3.0 13.0
adaptive 5.0 5.2 5.0 33.0

10−5 coarse 12.0 436.0 172.0 2.3e6
BS rec. 10.0 12.5 26.0 436.0
BS expand 6.0 6.4 12.0 76.0
roots 4.0 5.8 10.0 64.0
numerical 3.0 4.6 9.0 39.0
adaptive 5.0 10.7 26.0 94.0

derivative of f would lead to a polynomial q of order 18. Applying
the Bernstein bounds on this expanded form leads to much tighter
bounds, denoted by “BS expand” in Table 1.

The method “roots” makes again use of the fact that any deriva-
tive of f (x) = q(x)ep(x) is again of the same form and that

f (x) = 0⇔ q(x) = 0. (21)

The maximum of f (n) in [a,b] can only be reached at a,b or
the roots of f (n+1). We compute all roots using Equation 21 and
the companion matrix of q [HJ85]. For the last method, “numeri-
cal”, we iteratively take more and more quadrature steps until the
quadrature method has converged (up to a small epsilon). Then
we record the difference to that converged solution and report the
smallest number of steps after which the result lies within the spec-
ified error from the converged solution.

submitted to COMPUTER GRAPHICS Forum (4/2021).

S. Weiss & R. Westermann / Analytic Ray Splitting for Controlled Precision DVR– Extended version – 15

All those methods, however, are difficult to perform during ray
tracing due to their complexity. The Bernstein bounds can be eval-
uated during ray tracing, but requires many additional operations
that slow down the ray tracing by a factor of 10-100. As one can
see in Table 1, even for a very small allowed error of 10−5, at least
90% of all integrals during rendering require only 10 quadrature
steps using Simpson’s rule. Therefore, if one can accept that some
outlier would require more quadrature steps, the number of quadra-
ture steps can be fixed globally. This removes the need to estimate
bounds on the derivatives and reduces branch divergence during
ray tracing. An analysis of the errors in this case is presented in
section 6.

Alternatively, we can use an iterative, adaptive Simpson scheme,
Algorithm 2 by Campagnolo et al. [CCdF15], to evaluate the emis-
sion integral up to a certain error bound. It is denoted by “adaptive”
in Table 1. As one can see, it requires slightly more quadrature steps
as, e.g., expanded Bernstein (“BS expand”). It is slightly slower in
performance than fixing the number of quadrature steps, see Fig-
ure 10.

References
[CCdF15] L. Q. Campagnolo, W. Celes, and L. H. de Figueiredo. Accu-

rate volume rendering based on adaptive numerical integration. In 2015
28th SIBGRAPI Conference on Graphics, Patterns and Images, pages
17–24. IEEE, 2015.

[CS66] G. Cargo and O. Shisha. The bernstein form of a polynomial.
Journal of Research of the National Bureau of Standards, 70:79–81,
1966.

[HJ85] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge, MA:
Cambridge University Press, 1985.

[HSS+05] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and M. Gross.
Real-time ray-casting and advanced shading of discrete isosurfaces. In
Computer graphics forum, volume 24, pages 303–312. Wiley Online Li-
brary, 2005.

[KHK+09] A. Knoll, Y. Hijazi, A. Kensler, M. Schott, C. Hansen, and
H. Hagen. Fast ray tracing of arbitrary implicit surfaces with interval
and affine arithmetic. In Computer Graphics Forum, volume 28, pages
26–40. Wiley Online Library, 2009.

[MKW+04] G. Marmitt, A. Kleer, I. Wald, H. Friedrich, and P. Slusallek.
Fast and accurate ray-voxel intersection techniques for iso-surface ray
tracing. In VMV, volume 4, pages 429–435, 2004.

[NA92] K. Novins and J. Arvo. Controlled precision volume integration.
In Proceedings of the 1992 workshop on Volume visualization, pages 83–
89, 1992.

[Nic06] R. W. D. Nickalls. Viète, descartes and the cubic
equation. The Mathematical Gazette, 90(518):203–208, 2006.
doi:10.1017/S0025557200179598.

[NMHW02] A. Neubauer, L. Mroz, H. Hauser, and R. Wegenkittl. Cell-
based first-hit ray casting. In VisSym, pages 77–86, 2002.

[PTVF88] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery. Numerical recipes in c, 1988.

[Sch13] J. Schwarze. Cubic and quartic roots. In A. S. Glassner, editor,
Graphics gems, chapter VIII.1, pages 404–407. Elsevier, 2013.

[SN09] J. M. Singh and P. Narayanan. Real-time ray tracing of implicit
surfaces on the gpu. IEEE transactions on visualization and computer
graphics, 16(2):261–272, 2009.

submitted to COMPUTER GRAPHICS Forum (4/2021).

http://dx.doi.org/10.1017/S0025557200179598

