
3D-TSV: The 3D Trajectory-based Stress Visualizer
Junpeng Wanga,∗, Christoph Neuhausera, Jun Wub,∗, Xifeng Gaoc and Rüdiger Westermanna
aTechnical University of Munich, Boltzmannstr. 3, Garching, 85748, Germany
bDelft University of Technology, Landbergstraat 15, Delft, 2628 CE, The Netherlands
cLightspeed & Quantum Game Studios, Tencent America, Seattle, USA

ART ICLE INFO
Keywords:
3D Stress Visualization
Principal Stress Lines
Level of Detail Techniques

ABSTRACT
We present the 3D Trajectory-based Stress Visualizer (3D-TSV), a visual analysis tool for the
exploration of the principal stress directions in 3D solids under load. 3D-TSV provides a modular and
generic implementation of key algorithms required for a trajectory-based visual analysis of principal
stress directions, including the automatic seeding of space-filling stress lines, their extraction using
numerical schemes, their mapping to an effective renderable representation, and rendering options
to convey structures with special mechanical properties. In the design of 3D-TSV, several perceptual
challenges have been addressed when simultaneously visualizing three mutually orthogonal stress
directions via lines. We present a novel algorithm for generating a space-filling and evenly spaced
set of mutually orthogonal lines. The algorithm further considers the locations of lines to obtain
a more regular appearance, and enables the extraction of a level-of-detail representation with
adjustable sparseness of the trajectories along a certain stress direction. To convey ambiguities in
the orientation of the principal stress directions, the user can select a combined visualization of
two principal directions via oriented ribbons. Additional depth cues improve the perception of the
spatial relationships between trajectories. 3D-TSV is accessible to end users via a C++- and OpenGL-
based rendering frontend that is seamlessly connected to a MatLab-based extraction backend. The
code (BSD license) of 3D-TSV as well as scripts to make ANSYS and ABAQUS simulation results
accessible to the 3D-TSV backend are publicly available.

1. Introduction
Techniques for visualizing the three mutually orthogonal

principal stress directions in 3D solids under load are impor-
tant in a number of use cases in computational mechanics.
In civil engineering such visualizations are used to develop
and assess strategies for steel reinforcement of concrete sup-
port structures [38]. In mechanical engineering, where often
massive components like engines and pumps are considered,
one is interested in how forces “find” their way through
these components. The development of lightweight load
bearing structures is investigated in e.g., aerospace engineer-
ing, here stress directions provide the first indicators where
structures can be hollowed [22, 23, 5]. In bio-mechanics,
such techniques are used to show tension and compression
pathways simultaneously, and compare different structural
designs regarding their mechanical properties [8]. For an
overview of stress tensor visualization, we refer to the recent
review article by Hergl et al. [12].

An informative visualization of the stress directions in a
3D solid can be achieved via principal stress lines (PSLs),
i.e., integral curves in 3D space along the principal stress
directions. PSLs are effective in communicating the path-
ways along which external loads are transmitted, and they
show the mutual relationships between the different princi-
pal stress directions [8, 43]. In computational engineering,

∗Corresponding author
junpeng.wang@tum.de (J. Wang); christoph.neuhauser@tum.de (C.

Neuhauser); j.wu-1@tudelft.nl (J. Wu); xifgao@tencent.com (X. Gao);
westermann@tum.de (R. Westermann)

ORCID(s): 0000-0002-4607-844X (J. Wang); 0000-0002-0290-1991 (C.
Neuhauser); 0000-0003-4237-1806 (J. Wu); 0000-0003-0829-7075 (X. Gao);
0000-0002-3394-0731 (R. Westermann)

PSLs are used in particular to show where and how loads
are internally redirected and deflected. Such visualizations
are necessary for a first qualitative analysis, before a quanti-
tative analysis of certain regions using derived scalar stress
measures is commonly performed.

However, in computational mechanics stress trajectory
visualizations are used in a rather inconsistent way, and,
to the best of our knowledge, no standard tool for such an
analysis exists. In many research groups in computational
mechanics, own software packages for showing one particu-
lar principal stress direction starting at randomly selected lo-
cations are used. Often, CFD tools for flow visualization are
used to show streamlines in a single principal stress direction
field. Visualization tools that are able to show all principal
stress directions simultaneously are rare, and also available
post-processing tools do not offer this functionality.

One reason preventing a wider adoption of such tools
is visual clutter and occlusions that are produced when
showing the different types of PSLs simultaneously. Due
to their mutual orthogonality, the visualizations appear ir-
regular and unstructured, and perceptual coherence breaks
up even for sparse sets of trajectories. While this effect
can be reduced by starting trajectories from narrow regions
and following only a single type of PSLs, this leaves large
sub-domains uncovered and does not show the mutual vari-
ations of the stress directions. In general, clutter can be
reduced by visualizing the single stress directions side-by-
side, yet juxtaposition makes it difficult to effectively relate
the three mutual orthogonal stress directions to each other.
Contribution

J Wang et al.: Preprint submitted to Elsevier Page 1 of 13

ar
X

iv
:2

11
2.

09
20

2v
3

 [
cs

.G
R

]
 1

 F
eb

 2
02

2

The 3D Trajectory-based Stress Visualizer

Figure 1: (a) The 3D Trajectory-based Stress Visualizer generates a space-filling and evenly spaced set of principal stress lines
(PSLs) in a 3D domain. (b) It supports a regular appearance by considering already selected lines when locating new seed points.
(c,d) To reduce clutter, the density of PSLs can be adapted in a hierarchical manner. (d) Ambiguities in the assignment of stress
types to directions are visualized by merging two principal stress directions into ribbons. Different scalar stress measures (d) can
be mapped to color.

This paper presents the 3D Trajectory-based Stress Visu-
alizer (3D-TSV), a system and methodology for the visual
analysis of the PSLs in 3D stress fields. Figure 1 gives an
overview of the visualization options provided by 3D-TSV.
With 3D-TSV, we release a system that supports a compre-
hensive integral line-based analysis of 3D stress fields. To
achieve this, 3D-TSV builds upon existing techniques for
line seeding in vector fields [16, 27], and it extends them
towards the specific use case by considering simultaneously
the three principal stress directions in the seeding process.
3D-TSV is designed to achieve improved regularity of the
extracted PSLs, i.e., it aims for a grid-like structure where
PSLs roughly intersect, uniformly cover the domain, and
reveal symmetries in the underlying fields. To achieve this,
in the sequential seeding process every new seed point is
located on an existing PSL belonging to a different principal
stress direction. As proposed for streamlines in [16, 27],
the seeding process is parameterized using different distance
thresholds for each type of PSL, which allows controlling
separately the sparseness of the PSLs of each type. We use
this possibility to enable a level-of-detail (LoD) visualiza-
tion that combines a dense seeding of a selected PSL type
with a seeding at a user-selected sparseness level of the
respective other PSLs.

To ease integration into existing systems and accessi-
bility to end users, 3D-TSV is implemented as a client-
server tool connecting a MatLab PSL extraction backend
with an OpenGL rendering frontend. The backend extracts
trajectories from a given stress field using parameters that are
either specified via the GUI that is built into the renderer,
or a configuration file. We have chosen a MatLab backend
due to the popularity of MatLab in mechanical engineering,
and, thus, to enable engineers to easily integrate new model
representations and algorithms. Currently, 3D-TSV works

with hexahedral simulation grids, includingMatLab code for
trilinear and inverse distance-based interpolation of stress
tensors in such grids. If other types of basis functions are
used, the correspondingMatLab functions simply need to be
exchanged. Due to the cell adjacency structure that is built
internally to efficiently find the next cell during trajectory
integration in deformed hexahedral grids, other cell types
can be supported with only minor additional effort.

The frontend renders whatever set of lines that is sent
from the backend using advanced rendering options such as
depth cues, outlines, as well as ambient occlusion effects to
improve the perception of the spatial relationships between
trajectories. Furthermore, the user can select to visualize
one pair of stress directions via ribbons. Ribbons follow
one of the selected directions and twist according to the
other one, and they can effectively convey regions where the
assignment of the eigenvector directions to the type of PSL
(i.e., major, medium, or minor) changes.

To summarize, the contributions of this work are
• an advanced and publicly available tool for trajectory-

based stress tensor visualization supporting stress
fields on arbitrary hexahedral grids,

• the adaptation of evenly spaced line seeding to create
a space-filling set of PSLs with improved regularity,

• an adaptive level-of-detail visualization using varying
PSL density and visual mappings to lines and ribbons.

The application of 3D-TSV is demonstrated in a number
of experiments using datasets with different shapes and
stress states. The code of 3D-TSV is made publicly available
under a BSD license, and published on https://github.com/

J Wang et al.: Preprint submitted to Elsevier Page 2 of 13

https://github.com/Junpeng-Wang-TUM/3D-TSV
https://github.com/Junpeng-Wang-TUM/3D-TSV

The 3D Trajectory-based Stress Visualizer

Junpeng-Wang-TUM/3D-TSV. In video11, the seeding of trajec-
tories by 3D-TSV is compared to the seeding of trajecto-
ries separately in each principal stress direction field via
evenly spaced seeding [16]. 3D-TSV can be used as client-
server system as described (see video22), or as standalone
tool solely in MatLab providing rudimentary visualization
options (see video33). Also the frontend can be used stan-
dalone, reading the PSL specific information from "psl.dat"
files (see video44). Thus, any other backend can be used
to generate PSLs and let the frontend visualize them. We
also provide a script written in the ANSYS built-in language
APDL, which automatically converts the result of an AN-
SYS finite element stress analysis into the format required
by the 3D-TSV backend (see video55). To support the output
from ABAQUS, the mesh information needs to be read from
the ABAQUS input file (".inp"), and the stress data can be
acquired from the result file (".rpt"). We provide datasets,
description and configuration files, as well as scripts for
all use cases of 3D-TSV on the publicly available GitHub
repository.

2. Related work
Stress Tensor Field Visualization. Stress tensor field

visualization can be classified into trajectory-, glyph- and
topology-based methods [21, 12]. Trajectory-based methods
choose the PSLs as visual abstractions of the stress field,
focusing on the directional structure of the principal stresses.
Delmarcelle and Hesselink [6] introduced the concept of hy-
perstreamlines, a visual mapping of the medium and minor
principal stresses onto a tube surface with a single selected
major PSL as centerline. Dick et al. [8] trace the major
and minor PSLs from randomly distributed seed points in
the loading area of the solid object, and different types of
stress state like tension and compression are distinguished
by color. In order to identify and visualize regions where
stress trajectories are of rotational or hyperbolic behavior,
Oster et al. [28] proposed the concept of tensor core lines
in 3D second-order tensor fields. Hotz et al. [15] smear out
dye along the PSLs using line integral convolution. In this
way, a density field is generated that resembles a grid-like
structure. This approach provides a global overview of a 2D
stress distribution, yet an extension to 3D is problematic due
to the generation of a dense volumetric field.

It’s worth noting that even though stresses are frequently
simulated and analysed in engineering applications, the use
of trajectory-based visualizations that consider the whole
stress field as a tensor field instead of several scalar fields
are not commonplace. In particular, such functionality seems
neither provided by any of the well-established software
packages for stress simulation, like ABAQUS and ANSYS,
nor by dedicated environments for visualizing finite-element
simulation results [24, 44].

1https://youtu.be/lN9CxgvfgNY
2https://youtu.be/h7BzP7Jg_-o
3https://youtu.be/99Jn938ZoVk
4https://youtu.be/zafBOAt9Xvs
5https://youtu.be/Yri_B7m3AWU

Glyph-based methods, on the other hand, depict the
stress field by a set of well-designed geometric primitives
– so-called tensor glyphs. Tensor glyphs were originally
designed for glyph-based diffusion tensor visualization [19],
and later adapted to visualize positive definite tensors [18],
general symmetric tensors [34], as well as asymmetric
tensors[35, 11]. Glyph-based techniques are problematic
when used to visualize 3D stress fields, due to their inherent
occlusion effects. Specific placement strategies can be used
to reduce the number of glyphs and occlusions thereof [20,
14]. Tensor glyphs are effective in showing the local stress
states, but they cannot effectively communicate the global
structure of stress lines. Patel and Laidlaw [30] proposed to
guide the placement of glyphs by principal trajectories in the
underlying field, and thus to provide a better understanding
of the global relationships in this field.

Topology-based approaches for stress tensor visualiza-
tion abstract from the depiction of stress directions and focus
on revealing specific topological characteristics of the tensor
field. Delmarcelle andHesselink [7, 13] studied the topology
of symmetric 2D and 3D tensor fields, and introduced the
fundamental concepts of degenerate points and topological
skeletons. Zheng and Pang [49], and later Roy et al. [33],
discussed the robust extraction of these topological features.
Zobel and Scheuermann proposed the notion of extremal
points to analyze the complete invariant part of the ten-
sor [50]. Raith et al. presented a general approach for the
generation of separating surfaces in the invariant space [32].
Palacios et al. introduced the eigenvalue manifold and vi-
sualized the 3D eigenvectors as curve surfaces [29]. Qu et
al. [31] further generalized the concepts of degenerate curves
and neutral surfaces to a unified framework called mode
surfaces.

Streamline Seeding. Seeding strategies to control the
density and placement of trajectories in vector fields are
widely used in flow visualization. Turk and Banks [39] and
Jobard and Lefer [16] were the first to introduce seeding
strategies for generating evenly spaced sets of streamlines in
2D vector field. Numerous extensions and improvements of
these concepts have been proposed since then. In particular,
Vilanova et al. [41] proposed an extension of the approach by
Jobard and Lefer to diffusion tensor fields, which detects the
distance between the new streamline and the existing ones
during the tracing process. They demonstrate the generation
of evenly distributed streamlines, however, the approach
suffers from ‘unfinished’ streamlines that are caused by
an artificial stopping criterion and only considers a single
eigenvector field at a time. For 3D flow visualization, ded-
icated approaches and frameworks have been developed to
reduce the visual clutter and occlusion of densely distributed
streamlines in 3D fields [47, 4, 48, 17]. However, these
techniques do not fit our goal of visualizing PSLs and their
mutual relationships, which requires considering three sets
of orthogonal PSLs simultaneously.

Streamline Visualization. Illuminated streamlines are
often used as a means of visualizing streamlines in a 3D
environment. The streamlines are mapped to tubes and then

J Wang et al.: Preprint submitted to Elsevier Page 3 of 13

https://github.com/Junpeng-Wang-TUM/3D-TSV
https://github.com/Junpeng-Wang-TUM/3D-TSV
https://youtu.be/lN9CxgvfgNY
https://youtu.be/h7BzP7Jg_-o
https://youtu.be/99Jn938ZoVk
https://youtu.be/zafBOAt9Xvs
https://youtu.be/Yri_B7m3AWU

The 3D Trajectory-based Stress Visualizer

shaded, e.g., using the Blinn-Phong shadingmodel [3]. Early
work on illuminated streamlines was done by Zöckler et
al. [51] and Mattausch et al. [27]. Stoll et al. [37] extended
this work by introducing stylized line primitives, rendered by
a hybrid CPU-GPU renderer. Liu [26] presented the DOXIV,
a prototype framework for high-performance visual analysis
of large flow data. Volpe [42] first introduced the concept of
streamribbons for flow field visualization.

Hexahedral Meshing. An alternative approach to PSL-
based stress field visualization is to generate a frame field
from the principal stress field first and employ field-aligned
hexahedral meshing to produce orthogonal edges that fol-
low PSLs. The edges of such hex-meshes can follow the
directions of PSLs excellently in situations where degenerate
points are not present and the stress lines show low degrees
of convergence and divergence. However, when guided with
frame fields corresponding to realistic load situations, yet
still muchmore benign than those demonstrated in this work,
it is an unsolved problem to reliably produce an all-hex
mesh. Hexahedral-dominant meshing has been resorted as
an intermediate solution. For instance, Wu et al. [46] pro-
pose a conforming stress-guided lattice structure by combin-
ing topology optimization with the field-guided polyhedral
meshing algorithm from [9]. Arora et al. [1] generate similar
structural designs via the guidance of the principal stress
field, where they modify the stress field to get a smooth
frame field. However, hexahedral-dominant meshes often
contain either T-junctions or non-hexahedral elements with
non-orthgonal edges, significantly deviating from the PSLs
and are, thus, not applicable for stress field analysis either.

3. Stress Tensor Directions
At each point in a 3D solid under load, the stress state

is fully described by the stress vectors for three mutually
orthogonal orientations. The second-order stress tensor

T =
⎡

⎢

⎢

⎣

�xx �xy �xz
�xy �yy �yz
�xz �yz �zz

⎤

⎥

⎥

⎦

(1)

contains these vectors for the axes of a Cartesian coordinate
system. T is symmetric since the shear stresses given by the
off-diagonal elements in T are equal on mutually orthogonal
planes. The principal stress directions of the stress ten-
sor indicate the three mutually orthogonal directions along
which the shear stresses vanish. These directions are given
by the eigenvectors of T , with magnitudes given by the
corresponding eigenvalues. The signs of the principal stress
magnitudes classify the stresses into tension (positive sign)
or compression (negative sign). However, since there are
three principal stresses acting at each point, the classification
is with respect to a specific direction.

In descending order, the three eigenvalues of T represent
the major �1, medium �2 and minor �3 principal stresses,
with the corresponding eigenvectors indicating the principal
stress directions at each point in the 3D solid. The trajec-
tories along these directions are called the principal stress

lines (PSLs). They are computed by numerically integrating
massless particles in each single (normalized) eigenvector
field.

In general, �1, �2 and �3 are mutually unequal, and
the eigenvectors are linearly independent and even mutually
orthogonal due to the symmetry of T . However, so-called
degenerate points can exist where two or more eigenvalues
are equal. In the vicinity of these points, which are classified
by �1 = �2 > �3 or �1 > �2 = �36, the PSL direction cannot
be decided. Therefore, when tracing along a principal stress
direction, we test whether the eigenvalue �i correspondingto this direction is too close to another eigenvalue �j , i.e.,
deg = 1

2

|

|

|

|

�i−�j
�i+�j

|

|

|

|

< 10−6. If this is the case and the angle
between the PSL tangents at the current and next integration
point is too large, the integration is stopped. Furthermore,
we provide the option to map deg to the color of a PSL
via a color table (see Sec. 4.3), so that the proximity to a
degenerate point is indicated. PSL integration is also stopped
when the next integration point is located on a boundary
face, the point is closer to a previous point on the same
trajectory than a predefined distance threshold (i.e., to avoid
running into closed orbits), or the number of integration
steps reaches the pre-defined threshold.

The integration of PSLs requires to select seed points
from which they start until they arrive at a degenerate point
or the boundary. While uniform seeding in the entire domain
is used as the default option, the user can select seeding from
the boundary vertices as well as the vertices where loads are
applied. Furthermore, different integration schemes can be
used for PSL tracing, including the 1st-order Euler method,
and the 2nd- and 4th-order Runge-Kutta methods, where the
fixed integration step size � is used for Cartesian meshes,
and an adaptive � for unstructured hexahedral meshes. In
each integration step, the stress tensor T is interpolated,
and the eigenvalues and eigenvectors are computed from
the interpolated tensor. If none of the mentioned stopping
criteria holds, the next step is performed in the direction with
the least deviation from the previous direction.

4. PSL Seeding and Level of Detail
Finding a set of PSLs that effectively convey the princi-

pal stress directions in 3D stress fields requires to consider
perceptual issues related to the visualization of large sets of
trajectories. While in principle the PSLs of a single type,
i.e., major, medium, or minor, can be visualized separately
using techniques from flow visualization, in a stress field
the different types of PSLs need to be shown simultaneously
to understand their mutual interplay. However, an effective
and efficient visual analysis is hindered by the mutual or-
thogonality of the different types, which is perceived as a
disordered state even when a low number of PSLs is shown.
Our proposed seeding strategy cannot completely avoid this

6We do not consider triple degenerate points with �1 = �2 = �3, sincethey do not exist under structurally stable conditions [49].

J Wang et al.: Preprint submitted to Elsevier Page 4 of 13

The 3D Trajectory-based Stress Visualizer

Figure 2: Starting from a set of seeds with empty valence [0 0], the sampling process is performed until all the seed valences
have been turned to [1 1]. The ocher and blue lines are the major and minor PSLs.

problem, but it has some built-in regularity due to enforced
PSL intersections.
4.1. Evenly Spaced PSL Seeding

The proposed seeding strategy builds upon the evenly
spaced streamline seeding approach by Jobard and Lefer [16],
and extends this approach in several ways to account for the
application to PSLs. For the sake of clarity, we describe
the strategy in the context of 2D stress fields, yet it will
become clear that the extension to 3D is straightforward.
However, when applied in 3D, the resulting PSL structures
show a fundamental difference. Unlike in 2D, where due
to the intersections between major and minor PSLs a fairly
regular grid-like structure is generated, such intersections
are rare or do not exist at all when seeding PSLs in 3D. This
counteracts the impression of a consistent grid-like structure
and results in a rather disordered appearance. We propose a
seeding strategy that weakens this effect, but it needs to be
considered that due to the nature of PSLs in 3D stress fields
a globally consistent 3D grid-like structure is impossible to
achieve in general.

Our method builds upon the selection of new seed points
in the spirit of Jobard and Lefer, where the potential can-
didates are those points which are at least a prescribed
distance away from any already extracted PSL. Of these
candidates, the one with minimum distance is selected and
a new trajectory is started at that point. In contrast, in our
approach the distance is always wrt. the initial seed point, so
that the PSLs grow around that point instead of being seeded
at vastly different locations.

To adapt the seeding strategy to the situation of different
types of PSLs, we first introduce the concept of seed valence.
In 2D, the seed valence # is a 2 × 1 binary array, which
is associated to each seed point to indicate whether and of
which type PSLs have been traced from this point. # can
take on four different bit combinations, i.e., empty seed [0 0]
(passed by no PSL), solid seed [1 1] (passed by both major
and minor PSLs) and semi-empty seed [1 0] (only passed
by major PSL) or [0 1] (only passed by minor PSL). The
sampling process is repeated until all valences of all possible

seed points become solid [1 1]. With this definition of seed
valence, the sampling process is performed iteratively, by
using the seed valence to characterize the state of each seed
point at a specific iteration. To ensure that the generated
PSLs are space-filling, the initial candidate seed points (with
= [0 0]) are located at the vertices of a space-filling
Cartesian grid (step 0 in Figure 2).

Seeding starts by selecting one of the candidate seed
points and tracing the major and minor PSLs from it (Step 1
in Figure 2), setting # = [1 1] at this point. Per default, the
system starts with the seed point closest to the center of the
bounding box of the domain, to preserve an existing plane
symmetry of the stress field in the PSLs (see Figure 10 and
Figure 11). Then, all candidate seed points with # not equal
to [1 1] are re-classified with respect to the currently existing
PSLs. To exclude candidates too close to an existing major
or minor PSL, # of these candidates is set to [1 0] or [0 1],
respectively. If a point is classified as [1 0] or [0 1] and closer
to a minor or major PSL, respectively, its valence is set to
[1 1]. The distance between a point and a PSL is computed
as the minimum distance between the point and any of the
integration points on the PSL. Proximity is decided via a
distance threshold ", which also controls the density of the
extracted PSLs.

To obtain amore regular PSL structure, each re-classified
candidate point is re-located (i.e., merged) to the position
of the closest integration point on the PSL causing its
classification. This creates an "empty" band around the PSLs
where no candidate seed point exists. The merging operation
enforces that newly selected seed points lie on an existing
PSL, so that the final PSL structure appears more regular and
less cluttered (see Figure 3 for a comparison to the seeding
approach by Jobard and Lefer). By placing the initial seed
point in a region deemed important, the user can specifically
enforce regularity in this region.

If the last computed PSL was a major or a minor PSL,
then the next seed point is selected from the set of candidates
with # = [1 0] or [0 1], respectively. Thus, we alternate
the order of major and minor PSL extraction to obtain a
uniform distribution of both types. Of all these, the one

J Wang et al.: Preprint submitted to Elsevier Page 5 of 13

The 3D Trajectory-based Stress Visualizer

Figure 3: PSLs in a bridge under load (see Figure 9 for the
simulated load conditions). Major (ocher), medium (green)
and minor (blue) PSLs generated by (top) separate seeding
as proposed by [16] in each principal stress direction field, and
(bottom) by our method. Note that since the stress field is not
strictly symmetric, the PSL set shows some asymmetry.

closest to the initial seed point is selected as the new seed
point, and the respectively transverse PSL is computed. The
entire procedure is then restarted until no more candidate is
available (see steps 2-5 in Figure 2).

We further consider the situationwhere some empty seed
points may get too close (measured by ") to the other type
of existing PSLs after they are merged to the current PSL,
e.g., the seed valence # of some empty seed points become
[1 0] after merging them to the newly traced major PSL.
However, it can also happen that some of these merged seed
points might be close to some of the existing minor PSLs,
which would unavoidably cause inappropriate placement of
minor PSLs in the final visualization. Given this, we identify
those semi-empty seed points after merging, and compute
the distances of them to the corresponding type of PSLs. If
there are distances less than ", the valences of these seed
points are set to [11]. By simplymaking # a binary arraywith
three elements referring to the major, medium and minor
PSL, the proposed seeding strategy can be lifted to 3D.
4.2. PSL LoD Structure

To change the density of the generated PSLs, the seed-
ing process can simply be re-run with an appropriately set
distance threshold ". The larger this threshold is, the less
PSLs are extracted. However, the different sets of PSLs that
are generated for different thresholds are not nested, i.e.,
the PSLs at a coarser representation with lower PSL density
are not a subset of the PSLs at a representation with higher
density. Therefore, in an exploration session where the user
interactively selects different PSL LoDs, there are abrupt
changes when transitioning from one level to another. To
avoid this, we propose to generate a nested PSL hierarchy.

The basic idea underlying the construction of a nested
hierarchy is to let the PSLs at a level with higher PSL density
’grow out’ sequentially from the PSLs at a lower density
level. As a side effect, this enables saving computations

Figure 4: PSL LoD hierarchy. Top: The major and minor PSLs
at different LoDs, computed separately for each level. Bottom:
Simultaneous extraction of the PSL structure using level L2
(context) for the major and L3 (focus) for the minor PSLs.

by progressively computing a new level from the previous
coarser level. For a given set of PSLs that have been gen-
erated with distance threshold "0, the refined set of PSLs
according to a distance threshold "1 < "0 is computed
as follows: Firstly, the candidate seed points are reset to
their initial positions. Secondly, the candidate seed points
are merged to the existing PSLs according to "1, to create
“empty” bands around the existing PSLs. The valences are
updated accordingly to [1 0], [0 1] or [1 1] depending on
the types of PSL they are merged to. After this, some non-
solid seeds are left, because "0 is larger than "1. With these
seeds the seeding is subsequently performed, including the
iteration of seed point selection, PSL computation, and re-
classification as described in subsection 4.1.

To generate a full LoD PSL hierarchy, the user defines
the minimum distance threshold " and the number M of
levels to construct. Then, the distance thresholds of each
level are computed as 2(M−k)", k = 1 ∶ M from coarse to
fine, and the hierarchy is constructed progressively from the
coarsest resolution level (see 1st and 2nd rows in Figure 4).
To compute a PSL structure with different types of PSLs at
different LoDs, the distance thresholds for each PSL type
are first selected by the user, and then the multi-type LoD
is computed by alternatively considering the different PSL
types with their respective distances.
4.3. Ribbon-based Stress Visualization

Instead of rendering lines, the user can select a PSL type
(i.e., major, medium,minor) and visualize ribbon-shaped ge-
ometry [40] that is centered at the PSLs of the selected type
and twists according to the direction of another stress type
(see Figure 5 a,b). At each integration point along a PSL of
the selected type, two lines with adjustable length are traced
forward and backward along the other direction. The lines’
endpoints at subsequent integration points are connected to
form a ribbon. It is worth noting that the constructed ribbons
don’t coincide with streamsurfaces that are integrated from
a PSL along one other stress direction. As shown by Raith
et al. [32], such surface might not even exist, i.e., when
integrating from two points on the same PSL over a certain
length along another stress direction, the two endpoints are
not lying on a PSL in general. The mapping of two principal

J Wang et al.: Preprint submitted to Elsevier Page 6 of 13

The 3D Trajectory-based Stress Visualizer

Figure 5: When a PSL goes through a degenerate point
(a), the ribbon-shaped geometry shows a sudden twist (b).
(c) Behaviour of the eigenvalues along the ribbon’s center
PSL, from which the ribbon’s direction and orientation is
determined.

stress directions to a ribbon geometry is conceptually similar
to the well-known hyperstreamlines [6], i.e., a mapping of
two principal stress directions to a tube centered at the PSL
along the third direction.

We let the user select a visualization using ribbons to
convey changes in the assignment of the eigenvector direc-
tions to the type of PSL in the vicinity of degenerate points.
When a ribbon is formed as described, flips often occur in
the vicinity of a degenerate point (see Figure 5 (c)). This is
because the two directions can exchange their classification
as major, medium, and minor, since this depends only on
their position in the sorted sequence of eigenvalues. Thus,
ribbons provide an additional visual cue to indicate topolog-
ical changes of the PSLs in the vicinity of degenerate points.

Figure 6 compares the options to visualize principal
stress directions via ribbons and lines, and combine them
into a single visualization. As can be seen, twists in the
ribbon geometry effectively hint to regions where degenerate
points might exist. For lines, 3D-TSV can map the degen-
eracy measure introduced in Sec. 3 to color. An interesting
observation is that high degeneracy and flips thereof fre-
quently occur close to the object boundaries when Cartesian
simulation meshes are used. These flips occur due to the
well-known inaccuracies at curved boundaries that are rep-
resented by hexahedral simulation elements in a Cartesian
grid.

5. System Implementation
To implement the communication between the C++

visualization frontend and the MatLab extraction backend,
the messaging library ZeroMQ is utilized, which can be
used for communication over a wide variety of protocols,
like TCP/IP. 3D-TSV relies on the request-reply pattern
implemented in ZeroMQ, where the frontend issues a new
request to the backend when the user changes simulation
settings in the graphical user interface, and the backend
sends back a reply as soon as the simulation is finished in
order to notify the frontend of the availability of new data.

The reason why we turned toMatLab instead of C++ for
the implementation of the backend is, on the one hand, that
the sampling method is an inherently sequential algorithm.

Figure 6: Top: Ribbons are aligned along the minor PSLs
and twist according to the medium principal stress direction.
Middle: Minor PSLs with degeneracy measure mapped from
blue (low) to red (high). Bottom: A visualization using lines
for minor PSLs and ribbons for major PSLs.

Thus, it cannot benefit significantly from multi-threaded
PSL tracing or GPU parallelization. On the other hand,
MatLab is widely spread in engineering, where most of our
collaborators regarding stress visualization come from, and
the engineers tend to use mainstream commercial software
they are already familiar with to finish the design iteration
quickly. In this case, they can run the MatLab backend
independently without any complicated compilation and
setup process. To this end, we also provide a slim MatLab
visualization implementation, which can provide users a fast
and easy way to explore the stress field, while discarding
some more complex hardware-accelerated features from the
C++ frontend, like depth cues or ambient occlusion effects.
It is worth noting that also the rendering frontend can be used
standalone, by reading trajectories from a file specifying the
exchange format regarding PSL type and LoD representa-
tion.
5.1. Numerical PSL Integration

3D-TSV is designed to support the visualization of PSLs
in solids discretized by hexahedral grids, where the stress
tensors are given at the grid vertices. When computing PSLs
in Cartesian grids, component-wise trilinear interpolation
of the tensors is used during numerical line integration. In
deformed hexahedral cells, tensor interpolation is performed
via inverse distance weighting [36].

To integrate PSLs in Cartesian grids, the system provides
fixed-step integration schemes with user adjustable stepsize
of at least half the cell diameter. In deformed hexahedral

J Wang et al.: Preprint submitted to Elsevier Page 7 of 13

The 3D Trajectory-based Stress Visualizer

Figure 7: (a) Quantities required to test whether a point
P0 (red ∗) is located in a hexahedral cell. Black "+" and
orange arrows indicate centers Ci and out-facing normals
n⃗i, i ∈ {1,⋯ , 6} of the six cell faces. Green arrows indicate the
directional vectors ⃗P0Ci, i ∈ {1,⋯ , 6} that are used. (b) Point
re-location is subsequently performed until the next integration
point Pi+1 is within the same cell ei (grey cube) as the current
point Pi, or is within one of the cells eadj (cyan cubes) adjacent
to ei.

grids, a different approach is taken since the size of the
simulation elements can vary, and with a constant stepsize
the risk increases that multiple cells smaller than this size
are missed in one single integration step. To reduce this
risk, the integration stepsize is automatically adapted to the
size (i.e., the length of the shortest edge) of the cell at the
current integration point Pi. These values are pre-computed
and stored per cell. In each integration step, the size s of the
current cell is read and multiplied by a user selected scaling
factor �s. �s can be made smaller than 1 to obtain more
accurate PSLs. With the stepsize s ⋅ �s, the PSL is integrated
from the current point Pi in cell ei to the new point Pi+1.Then, the integration process is restarted with Pi+1 and the
cell ei+1 containing Pi+1.To find ei+1, it is first tested whether Pi+1 is still
contained in ei. The following in-out criterion is used
to test whether a point is located in a hexahedral cell:
Given a hexahedral element with the centers and out-facing
normal of its 6 faces Ci and n⃗i, i ∈ {1,⋯ , 6}. Any
point P0 in the interior or on the boundary of the element
satisfies max(arccos(⃗P0Ci, n⃗i)) ≤ �

2 , i ∈ {1,⋯ , 6},
see Figure 7a. In practice, the criterion is slightly relaxed
to max(arccos(⃗P0Ci, Vi)) ≤

91�
180 , i ∈ {1,⋯ , 6}, to account

for non-planar cell faces, i.e., a slight variation of the normal
vectors across the faces.

If ei does not contain Pi+1, the cell ei+1 needs to be
determined. To this end, we further test whether Pi+1 lies
in any of the adjacent cells eadj of ei. For each cell, the set
of adjacent cells as well as the adjacency type, i.e., face-,
edge-, and vertex-adjacency, is pre-computed and stored. In
case Pi+1 is not within ei or eadj , we scale down the stepsizevia a dichotomy strategy, i.e., Pi+1 = (Pi+1 + Pi)∕2, until
Pi+1 is located in ei or it’s adjacent cells eadj .In the case where ei and ei+1 are connected by a single
edge or vertex, it may still happen that cells are skippedwhen
going from Pi to Pi+1. In this situation, stepsize refinement
is performed multiple times until the cell ei+1 shares a facewith ei or is below a user-selected threshold. The latter
situation is encountered when the PSL goes through a cell
vertex or edge, so that face-adjacency cannot be determined.

Figure 8: (a) The deformed hexahedral simulation mesh. (b) A
PSL (blue trajectory) in the simulated stress field. It is ensured
that every next integration point is in the previous cell or in
a cell adjacent to the previous cell. (c) Same as (b), but now
every next integration point is in a face-adjacent cell.

In Figure 8, for the given mesh two PSLs that have been
extracted without andwith additional stepsize refinement are
compared. As can be seen, cells that would be skipped when
using only face-to-face adjacency are now determined and
considered in the integration.
5.2. Rendering

The line and ribbon primitives are rendered in a stylized
fashion similar to the techniques by Zöckler et al. [51], Stoll
et al. [37] and Mattausch et al. [27], using default colors,
halos and depth cues as shown in the first three images in
Figure 1. Focus PSLs and contextual ribbons are rendered
in ocher and blue, respectively. The base color is modulated
using Blinn-Phong shading [3, 51], which assumes a point
light source at the world space position of the viewer (i.e., a
head light).

The user can interactively change the color mapping—
also separately for each PSL type—and can in particular
switch to a mapping of some scalar quantity to color, as
indicated in the last image in Figure 1 using the scalar von
Mises stress measure. The scalar values are issued via the
backend as per-vertex attributes. The standard color scheme
we use for the different principal stress directions (blue,
green, ocher) is the ‘3-class Set2’ transfer function from
ColorBrewer7. It is colorblind safe and print friendly.

For enhanced depth perception, depth cues are added,
i.e., with increasing distance to the camera, fragments are
increasingly desaturated. A translucent simulation mesh out-
line hull can be rendered together with the stress field data
in order to hint at the extents of the simulation domain.
5.3. 3D-TSV Settings

3D-TSV provides a number of parameters that can be
changed by the user to control the generation of PSLs.

7https://colorbrewer2.org/#type=qualitative&scheme=Set2&n=3

J Wang et al.: Preprint submitted to Elsevier Page 8 of 13

https://colorbrewer2.org/#type=qualitative&scheme=Set2&n=3

The 3D Trajectory-based Stress Visualizer

Figure 9: The solid objects used in this work and the applied external loads. Red and blue arrows indicate the loading positions
and directions, black regions indicate fixed boundaries. A finite-element-based elasticity analysis has been used to compute the
stress field for each model under the predicted loads. The unstructured hexahedral meshes ‘Parts’ and ’Bearing’ are courtesy
of [25] and [10], respectively. All other meshes are Cartesian meshes. ‘Arched Bridge’ and ’Rod’ are courtesy of [2] and [10],
respectively. All simulated stress fields are made publicly available.

Data Set #Cells #Seeds "∕D0 M #PSLs Time (s)
Cantilever 250K 2K 1/5 1 85 0.4

Rod 536K 18K 1/5 1 174 2.1
Femur 696K 10K 1/18 3 823 9.0
Bracket 650K 9K 1/12 3 293 5.4
Bearing 189K 55K 1/18 3 1,364 33.4
Parts1 253K 46K 1/20 3 1,557 27.9

Table 1
Model and performance statistics. D0 is the length of the
shortest dimension of the bounding box of the stress field.

These parameters include the merging threshold " and the
number of levels M introduced in subsection 4.1 and sub-
section 4.2, respectively. Another set of parameters enables a
user-guided interaction with the PSL distribution, including
sliders for controlling the LoD resolution of major, medium
and minor PSLs. In addition, the user can select the two PSL
types that are used to generate ribbons. Via a drop-down
menu, the user can select a scalar stress measures that are
mapped to PSL color using a transfer function. The backend
provides different stress components, such as the principal
stress amplitudes, von Mises stress, and the six Cartesian
stress components.

6. Results
In all of our experiments, PSL generation is performed

on the CPU, i.e., a workstation running Ubuntu 20.04 with
an AMD Ryzen 9 3900X@3.80GHz CPU and 32GB RAM.
Rendering is done on an NVIDIA RTX 2070 SUPER GPU
with 8GB of on-chip memory. The rendering times are
always below 10 milliseconds. The data sets we use in our
experiments are shown in Figure 9. The stress fields are
simulated by a finite element method (FEM), using the solid
objects under the shown load conditions. Table 1 lists the
numbers of simulation elements of each of the data sets, the
seed points that are used to generate the PSLs, the number of
generated PSLs, and the time required for PSL generation.

For the three models ’Bridge’, ’Cantilever’ and ’Rod’,
we demonstrate the improvements of the proposed seeding
strategy over evenly spaced streamline seeding. 3D-TSV is
used to visually analyze the stress fields in ’Femur’ and

Figure 10: PSLs in the ‘Cantilever’ stress field. PSLs by the
proposed seeding strategy (left) and evenly spaced streamline
seeding (right).

’Bracket’. These two data sets that are frequently seen in
structural design and optimization [45]. Finally, we consider
the two mechanical parts ’Bearing’ and ’Parts1’ to demon-
strate the application of 3D-TSV to unstructured hexahedral
simulation meshes.

Figs. 10 and 11 emphasize the improvements by the
proposed seeding strategy regarding the regularity of the
extracted set of PSLs. 3D-TSV generates a fairly uniform
space-filling PSL structure, which, in particular, maintains
the symmetry of the stress field in ’Cantilever’. Evenly
spaced streamline seeding, on the other hand, generates a far
less regular design which introduces severe visual clutter.

The visualization also highlights the importance of
showing different PSL types simultaneously. In the analyzed
tensor field, the signs of the eigenvalues along the major and
minor PSLs are mostly positive and negative, respectively.
This means that the major PSLs are mainly under tension
and the minor PSLs mainly under compression. Thus, either
of both effects could be shown by visualizing one PSL type,
but not both.

Figure 12 (top) shows the space-filling PSLs in the
stress field in the interior of ’Bracket’. From the boundary
condition in Figure 9, we see that the structure is mainly
under tension. Thus, we choose to show the major PSLs
at the higher level of detail (L2) and the minor PSLs at
lower level L1 (see Figure 12 (bottom)). The minor PSLs
are shown via ribbons, with the medium principal stress

J Wang et al.: Preprint submitted to Elsevier Page 9 of 13

The 3D Trajectory-based Stress Visualizer

Figure 11: Top: PSLs showing the principal stress directions
in ‘Rod’. Bottom: PSLs in ‘Rod’ from a different view. Left:
PSLs computed by 3D-TSV. Right: PSLs computed via evenly
spaced seeding as proposed by [16].

direction indicating the twist. This enables a fine granular
analysis of the major principal stress directions, and simulta-
neously provide a coarse representation of the other principal
directions. A similar setting has been selected to visualize
the stress directions in ’Femur’ (see Figure 1).

Figure 12: Stress field in ‘Bracket’. Top: PSLs at the finest
level (according to Table 1). Bottom: major / minor PSLs at
the third (L3) / first (L1) level of detail.

3D-TSV works with Cartesian meshes and deformed
hexahedral meshes, which are both frequently used in me-
chanical engineering applications. Here we use the stress
fields due to external loads in the interior of ‘Bearing’ and
‘Parts1’, to demonstrate the capability of 3D-TSV. As shown
in Figure 9, especially in ‘Bearing’ the element sizes change
considerably over the 3D domain. The distribution of PSLs
of ‘Bearing’ is shown in Figure 13 (top), and the bottom
image shows the combination of major at the third level
of detail (L3) and minor at L1, where the minor PSLs are

shown via ribbons. The full distribution of PSLs of ‘Parts1’
can be seen in the Figure 14 (left), on the right the minor
PSLs atL3 and major PSLs atL2 are shown simultaneously,
where the major PSLs are rendered via ribbons.

Figure 13: Stress field in ‘Bearing’. Top: PSLs at the finest
level (according to Table 1). Bottom: major / minor PSLs at
the third (L3) / first (L1) level of detail. Ribbons are along
the minor PSLs and twist according to medium principal stress
direction.

Figure 14: Stress fields in ‘Parts1’. Left: PSLs at the finest
level. Right: major / minor PSLs at L2 / L3. Ribbons are
along the major PSLs and twist according to medium principal
stress direction.

7. Conclusion and Future Work
In this paper, we have introduced 3D-TSV, a tool for

visualizing the principal stress directions in 3D solids under
load. 3D-TSV makes use of a novel seeding strategy, to
generate a space-filling and evenly spaced set of PSLs. By
considering all three types of PSLs simultaneously in the
construction process, the regularity of the resulting PSL

J Wang et al.: Preprint submitted to Elsevier Page 10 of 13

The 3D Trajectory-based Stress Visualizer

structure is improved. By incorporating different merging
thresholds for each PSL type into the construction process,
a consistent multi-resolution hierarchy is formed, which
can be utilized to show different PSL types with different
resolutions simultaneously. Efficient rendering options for
lines and ribbons on the GPU enable interactive analysis of
large sets of PSLs.

In the future, we intend to couple 3D-TSV with load
simulation processes, so that dynamic changes of the stress
field can be instantly monitored. Therefore, we will analyze
whether the intrinsically iterative parts of the algorithm
can be parallelized on modern multi-threading architectures.
Furthermore, we are interested in using space-filling evenly
spaced seeding to guide the material growth in topology op-
timization. Topology optimization seeks to distribute mate-
rial in a way that makes the object resistant to external loads.
To automatically generate support structures that follow the
major stress directions and eventually can form a 3D grid-
like structure, we aim at combining our seeding strategywith
the automatic growth process underlying topology optimiza-
tion.

CRediT authorship contribution statement
Junpeng Wang:Conceptualization of this study,Method-

ology, Writing - Review & Editing, Software. Christoph
Neuhauser: Methodology, Writing - Review & Editing,
Software. Jun Wu:Conceptualization of this study,Method-
ology.Xifeng Gao:Conceptualization of this study,Method-
ology. Rüdiger Westermann: Conceptualization of this
study, Methodology, Writing - Review & Editing, Supervi-
sion, Funding acquisition.

Acknowledgment
This work was supported in part by a grant from Ger-

man Research Foundation (DFG) under grant number WE
2754/10-1. We acknowledge the help of Chunxiao Meng at
Northwestern Polytechnical University and Yingjian Liu at
The University of Texas at Dallas in adapting 3D-TSV to
ANSYS and ABAQUS, respectively.

References
[1] Rahul Arora, Alec Jacobson, Timothy R Langlois, Yijiang Huang,

Caitlin Mueller, Wojciech Matusik, Ariel Shamir, Karan Singh, and
David IW Levin. Designing volumetric truss structures. arXiv
preprint arXiv:1810.00706, 2018.

[2] Rahul Arora, Alec Jacobson, Timothy R Langlois, Yijiang Huang,
Caitlin Mueller, Wojciech Matusik, Ariel Shamir, Karan Singh, and
David IW Levin. Volumetric michell trusses for parametric design &
fabrication. InProceedings of the ACMSymposium on Computational
Fabrication, pages 1–13, 2019.

[3] James F. Blinn. Models of light reflection for computer synthesized
pictures. In Proceedings of the 4th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’77, page
192–198, New York, NY, USA, 1977. Association for Computing
Machinery.

[4] Yuan Chen, Jonathan Cohen, and Julian Krolik. Similarity-guided
streamline placement with error evaluation. IEEE Transactions on
Visualization and Computer Graphics, 13(6):1448–1455, 2007.

[5] Stephen Daynes, Stefanie Feih, Wen Feng Lu, and Jun Wei. Opti-
misation of functionally graded lattice structures using isostatic lines.
Materials & Design, 127:215–223, 2017.

[6] Thierry Delmarcelle and Lambertus Hesselink. Visualizing second-
order tensor fields with hyperstreamlines. IEEE Computer Graphics
and Applications, 13(4):25–33, 1993.

[7] Thierry Delmarcelle and Lambertus Hesselink. The topology of sym-
metric, second-order tensor fields. In Proceedings Visualization’94,
pages 140–147. IEEE, 1994.

[8] Christian Dick, Joachim Georgii, Rainer Burgkart, and Rüdiger West-
ermann. Stress tensor field visualization for implant planning in
orthopedics. IEEE Transactions on Visualization and Computer
Graphics, 15(6):1399–1406, 2009.

[9] Xifeng Gao, Wenzel Jakob, Marco Tarini, and Daniele Panozzo.
Robust hex-dominant mesh generation using field-guided polyhedral
agglomeration. ACM Transactions on Graphics (TOG), 36(4):1–13,
2017.

[10] Xifeng Gao, Hanxiao Shen, and Daniele Panozzo. Feature pre-
serving octree-based hexahedral meshing. Comput. Graph. Forum,
38(5):135–149, 2019.

[11] Tim Gerrits, Christian Rössl, and Holger Theisel. Glyphs for space-
time jacobians of time-dependent vector fields. Journal of WSCG,
2017.

[12] Chiara Hergl, Christian Blecha, Vanessa Kretzschmar, Felix Raith,
Fabian Günther, Markus Stommel, Jochen Jankowai, Ingrid Hotz,
ThomasNagel, andGerik Scheuermann. Visualization of tensor fields
in mechanics. In Computer Graphics Forum. Wiley Online Library,
2021.

[13] Lambertus Hesselink, Yuval Levy, and Yingmei Lavin. The topology
of symmetric, second-order 3d tensor fields. IEEE Transactions on
Visualization and Computer Graphics, 3(1):1–11, 1997.

[14] Mario Hlawitschka, Gerik Scheuermann, and Bernd Hamann. Inter-
active glyph placement for tensor fields. In International Symposium
on Visual Computing, pages 331–340. Springer, 2007.

[15] Ingrid Hotz, Louis Feng, Hans Hagen, Bernd Hamann, and Kenneth
Joy. Tensor field visualization using a metric interpretation. In Vi-
sualization and processing of tensor fields, pages 269–281. Springer,
2006.

[16] Bruno Jobard and Wilfrid Lefer. Creating evenly-spaced streamlines
of arbitrary density. In Visualization in Scientific Computing’97,
pages 43–55. Springer, 1997.

[17] Mathias Kanzler, Florian Ferstl, and Rüdiger Westermann. Line den-
sity control in screen-space via balanced line hierarchies. Computers
& Graphics, 61:29–39, 2016.

[18] G Kindlmann, S Whalen, RO Suarez, AJ Golby, and CF Westin.
Quantification of white matter fiber orientation at tumor margins with
diffusion tensor invariant gradients. In Proc. Intl. Soc. Mag. Reson.
Med, volume 16, page 429, 2008.

[19] Gordon Kindlmann. Superquadric tensor glyphs. In Proceedings of
the Sixth Joint Eurographics-IEEE TCVG conference on Visualiza-
tion, pages 147–154, 2004.

[20] Gordon Kindlmann and Carl-Fredrik Westin. Diffusion tensor visu-
alization with glyph packing. IEEE transactions on visualization and
computer graphics, 12(5):1329–1336, 2006.

[21] Andrea Kratz, Cornelia Auer, Markus Stommel, and Ingrid Hotz.
Visualization and analysis of second-order tensors: Moving beyond
the symmetric positive-definite case. In Computer Graphics Forum,
volume 32, pages 49–74. Wiley Online Library, 2013.

[22] Andrea Kratz, Marc Schoeneich, Valentin Zobel, Bernhard Burgeth,
Gerik Scheuermann, Ingrid Hotz, and Markus Stommel. Tensor
visualization driven mechanical component design. In 2014 IEEE
Pacific Visualization Symposium, pages 145–152. IEEE, 2014.

[23] Tsz-Ho Kwok, Yongqiang Li, and Yong Chen. A structural topology
design method based on principal stress line. Computer-Aided
Design, 80:19–31, 2016.

[24] Eun-Jin Lee and Sherif El-Tawil. Femvrml: An interactive virtual
environment for visualization of finite element simulation results.
Advances in Engineering Software, 39(9):737–742, 2008.

J Wang et al.: Preprint submitted to Elsevier Page 11 of 13

The 3D Trajectory-based Stress Visualizer

[25] Yufei Li, Yang Liu, Weiwei Xu, Wenping Wang, and Baining Guo.
All-hex meshing using singularity-restricted field. ACM Transactions
on Graphics (TOG), 31(6):1–11, 2012.

[26] Zhanping Liu. A prototype framework for parallel visualization of
large flow data. Advances in Engineering Software, 130:14–23, 2019.

[27] Oliver Mattausch, Thomas Theußl, Helwig Hauser, and Eduard
Gröller. Strategies for interactive exploration of 3d flow using evenly-
spaced illuminated streamlines. In Proceedings of the 19th Spring
Conference on Computer Graphics, SCCG ’03, page 213–222, New
York, NY, USA, 2003. Association for Computing Machinery.

[28] T. Oster, C. Rössl, and H. Theisel. Core lines in 3d second-order
tensor fields. Computer Graphics Forum, 37(3):327–337, 2018.

[29] Jonathan Palacios, Harry Yeh, Wenping Wang, Yue Zhang, Robert S
Laramee, Ritesh Sharma, Thomas Schultz, and Eugene Zhang. Fea-
ture surfaces in symmetric tensor fields based on eigenvalue man-
ifold. IEEE transactions on visualization and computer graphics,
22(3):1248–1260, 2015.

[30] Mohak Patel and David H Laidlaw. Visualization of 3d stress tensor
fields using superquadric glyphs on displacement streamlines. IEEE
transactions on visualization and computer graphics, 2020.

[31] Botong Qu, Lawrence Roy, Yue Zhang, and Eugene Zhang. Mode
surfaces of symmetric tensor fields: Topological analysis and seam-
less extraction. arXiv preprint arXiv:2009.04601, 2020.

[32] Felix Raith, Christian Blecha, Thomas Nagel, Francesco Parisio, Olaf
Kolditz, Fabian Günther, Markus Stommel, and Gerik Scheuermann.
Tensor field visualization using fiber surfaces of invariant space. IEEE
transactions on visualization and computer graphics, 25(1):1122–
1131, 2018.

[33] Lawrence Roy, Prashant Kumar, Yue Zhang, and Eugene Zhang. Ro-
bust and fast extraction of 3d symmetric tensor field topology. IEEE
transactions on visualization and computer graphics, 25(1):1102–
1111, 2018.

[34] Thomas Schultz and Gordon L Kindlmann. Superquadric glyphs for
symmetric second-order tensors. IEEE transactions on visualization
and computer graphics, 16(6):1595–1604, 2010.

[35] Nicholas Seltzer and Gordon Kindlmann. Glyphs for asymmetric
second-order 2d tensors. In Computer Graphics Forum, volume 35,
pages 141–150. Wiley Online Library, 2016.

[36] Donald Shepard. A two-dimensional interpolation function for
irregularly-spaced data. In Proceedings of the 1968 23rd ACM
national conference, pages 517–524, 1968.

[37] C. Stoll, S. Gumhold, and H. . Seidel. Visualization with stylized
line primitives. In VIS 05. IEEE Visualization, 2005., pages 695–702,
2005.

[38] Kam-MingMark Tam andCaitlin TMueller. Stress line generation for
structurally performative architectural design. In 35th Annual Confer-
ence of the Association for Computer Aided Design in Architecture,
Cincinnati, Ohio, USA, 2015. ACADIA.

[39] Greg Turk and David Banks. Image-guided streamline placement. In
Proceedings of the 23rd Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’96, page 453–460, New
York, NY, USA, 1996. Association for Computing Machinery.

[40] Shyh-KuangUeng, Christopher Sikorski, andKwan-LiuMa. Efficient
streamline, streamribbon, and streamtube constructions on unstruc-
tured grids. IEEE Transactions on Visualization and Computer
Graphics, 2(2):100–110, June 1996.

[41] Anna Vilanova Bartroli, Guus Berenschot, and C Van Pul. Dti
visualization with streamsurfaces and evenly-spaced volume seeding.
In Proceedings of the Joint Eurographics-IEEE TCVG Symposium on
Visualization (VisSym04), volume 19, page 21, 2004.

[42] G. VOLPE. Streamlines and streamribbons in aerodynamics.
[43] Junpeng Wang, Jun Wu, and Rüdiger Westermann. A globally

conforming lattice structure for 2d stress tensor visualization. In
Computer Graphics Forum, volume 39, pages 417–427.Wiley Online
Library, 2020.

[44] Wei-Chu Weng. Web-based post-processing visualization system
for finite element analysis. Advances in Engineering Software,
42(6):398–407, 2011.

[45] Jun Wu, Niels Aage, Rüdiger Westermann, and Ole Sigmund. Infill
optimization for additive manufacturing – approaching bone-like
porous structures. IEEE Transactions on Visualization and Computer
Graphics, 24(2):1127–1140, February 2018.

[46] Jun Wu, Weiming Wang, and Xifeng Gao. Design and optimization
of conforming lattice structures. IEEE Transactions on Visualization
and Computer Graphics, 27(1):43–56, January 2021.

[47] Xiangong Ye, David Kao, and Alex Pang. Strategy for seeding 3d
streamlines. In VIS 05. IEEE Visualization, 2005., pages 471–478.
IEEE, 2005.

[48] Hongfeng Yu, Chaoli Wang, Ching-Kuang Shene, and Jacqueline H
Chen. Hierarchical streamline bundles. IEEE Transactions on
Visualization and Computer Graphics, 18(8):1353–1367, 2011.

[49] Xiaoqiang Zheng andAlex Pang. Topological lines in 3d tensor fields.
In IEEE Visualization 2004, pages 313–320. IEEE, 2004.

[50] Valentin Zobel and Gerik Scheuermann. Extremal curves and sur-
faces in symmetric tensor fields. The Visual Computer, 34(10):1427–
1442, 2018.

[51] Malte Zöckler, Detlev Stalling, and Hans-Christian Hege. Interactive
visualization of 3d-vector fields using illuminated stream lines. In
Proceedings of the 7th Conference on Visualization ’96, VIS ’96, page
107–ff., Washington, DC, USA, 1996. IEEE Computer Society Press.

Junpeng Wang is a PhD candidate in the Com-
puter Graphics and Visualization Group at Tech-
nical University of Munich, Germany. He received
his Bachelor and Master’s degrees in Aerospace
Science and Technology in 2015 and 2018, re-
spectively, both from Northwestern Polytechnical
University. Currently, his research is focused on
tensor field visualization and numerical simulation
for solid mechanics.

Christoph Neuhauser is a PhD candidate at the
Computer Graphics and Visualization Group at
the Technical University of Munich (TUM). He
received his Bachelor’s and Master’s degrees in
computer science from TUM in 2019 and 2020.
Major interests in research comprise scientific vi-
sualization and real-time rendering.

Jun Wu is an assistant professor at the Depart-
ment of Sustainable Design Engineering, Delft
University of Technology. Before this, he was a
Marie Curie postdoc fellow at the Department of
Mechanical Engineering, Technical University of
Denmark. He obtained a PhD in Computer Sci-
ence in 2015 from TUM, and a PhD in Mechan-
ical Engineering in 2012 from Beihang University,
Beijing. His research is focused on computational
design and digital fabrication, with an emphasis on
topology optimization.

Xifeng Gao is currently a principal researcher with
Tencent North America. He has more than 10 years
of academic research experience. He is interested
in solving geometric computing related problems
in research areas, such as Computer Graphics, Dig-
ital Games, CAD/CAE, Multimedia Processing,
Robotics, and Digital Fabrication.

J Wang et al.: Preprint submitted to Elsevier Page 12 of 13

The 3D Trajectory-based Stress Visualizer

Rüdiger Westermann studied computer science at
the Technical University Darmstadt and received
his Ph.D. in computer science from the Univer-
sity of Dortmund, both in Germany. In 2002, he
was appointed the chair of Computer Graphics
and Visualization at TUM. His research interests
include scalable data visualization and simulation
algorithms, GPU computing, real-time rendering
of large data, and uncertainty visualization.

J Wang et al.: Preprint submitted to Elsevier Page 13 of 13

