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Visual Analysis of Multi-Parameter Distributions
across Ensembles of 3D Fields

Alexander Kumpf, Josef Stumpfegger, Patrick Fabian Härtl, and Rüdiger Westermann

Abstract—For an ensemble of 3D multi-parameter fields, we present a visual analytics workflow to analyse whether and which parts of a selected
multi-parameter distribution is present in all ensemble members. Supported by a parallel coordinate plot, a multi-parameter brush is applied to all
ensemble members to select data points with similar multi-parameter distribution. By a combination of spatial sub-division and a covariance analysis of
partitioned sub-sets of data points, a tight partition in multi-parameter space with reduced number of selected data points is obtained. To assess the
representativeness of the selected multi-parameter distribution across the ensemble, we propose a novel extension of violin plots that can show multiple
parameter distributions simultaneously. We investigate the visual design that effectively conveys (dis-)similarities in multi-parameter distributions, and
demonstrate that users can quickly comprehend parameter-specific differences regarding distribution shape and representativeness from a side-by-side
view of these plots. In a 3D spatial view, users can analyse and compare the spatial distribution of selected data points in different ensemble members
via interval-based isosurface raycasting. In two real-world application cases we show how our approach is used to analyse the multi-parameter
distributions across an ensemble of 3D fields.

Index Terms—Ensemble visualization, multi-parameter visualization, 3D rendering, distribution comparison, parallel coordinates.
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1 INTRODUCTION

IN many scientific fields like meteorology and computational
fluid dynamics, numerical ensemble simulations are carried out

with varying magnitudes of initial condition uncertainty, and by
introducing uncertainty in the representation of certain physical
processes. In such an ensemble, each simulation predicts possible
states of physical quantities, aiming at a representative sampling
of the physical phenomena that can occur. One of the major goals
in ensemble visualization is to visually convey commonalities and
differences between the ensemble members and, thus, to reveal the
major trends and outliers in the simulation results.

While there is a considerable body of work related to the visual
analysis of single-parameter ensembles [64], research dedicated
to the analysis of multi-parameter ensembles, to the best of our
knowledge, is rare. A multi-parameter ensemble is an ensemble of
fields where at each domain point a set of physical variables, the
so-called output parameters, is given. For instance, one of our use
cases (Fig. 1) is an ensemble of 3D cloud simulations comprising
96 members, each consisting of 250K data points with twelve
different physical output parameters. The ensemble is generated by
varying the input parameters of the simulation. These parameters
are not considered in this work.

Previous works in multi-parameter data visualization, also
termed multi-faceted, multi-field or multi-dimensional data vi-
sualization [38], [43], have focused on visualizing the relationships
between the parameters in a single data set, for instance, via
parallel coordinates [33], dimensionality reduction [6], [37], or
pair-wise scatterplot matrices [8]. In principle, such techniques
can also be used to analyse the parameter variations across an
ensemble, by either juxtaposition of single member visualizations
or combined visualization of multiple members. In our use case,
however, even for the visualization of a single member these
techniques alone are not feasible due to visual clutter and over-
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plotting, and a combined visualization that can convey relationships
between members becomes increasingly challenging.

The number of entities that need to be considered when
analyzing a multi-parameter data set can be reduced effectively
via clustering in parameter space. By finding groups of data
points with similar multi-parameter values, cluster-based visual
analysis using graphical abstractions for sets of data points can
be utilized. However, when clustering is used with an ensemble—
by clustering each ensemble member individually and comparing
the results [39]—differences in the number of clusters and their
composition further complicate the analysis. Especially the use of
approximate cluster matchings to compare different clusterings can
result in misleading decisions.

To address these shortcomings, we propose an alternative
visual analytics workflow for multi-parameter ensembles. This
workflow builds upon the experiences we have gained when
working with researchers from meteorology and computational
fluid dynamics, where important structures are often described via
specific combinations of multiple physical quantities. It supports
users in the selection of meaningful parameter combinations and
value ranges of interest, and enables them to analyse whether
similar structures occur in the ensemble and how representative
they are.

Contribution

We introduce a visual analytics solution to investigate the oc-
currence of multi-parameter distributions in the members of a
given simulation ensemble. To obtain an initial distribution that
corresponds to a meaningful structure in the data, the system
recommends a cluster of data points with similar multi-parameter
values and shows them in a Parallel Coordinate Plot (PCP) (Fig. 1a).
The system enables users to assess whether the multi-parameter
distribution over the selected data points is present in the other
ensemble members, and where in the data domain the points
contributing to this distribution are located.

To obtain the data points in the other members that follow the
multi-parameter distribution of the selected cluster, the cluster’s

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TVCG.2021.3061925

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



PRE-PRINT OF TVCG SUBMISSION 2020. 2

Fig. 1. Method overview: a) A parallel coordinate plot (using polylines for better visibility) of all data points (white polylines) in a representative member of a
multi-parameter cloud ensemble, comprising 250K data points with twelve physical parameters per point. Parameter space clustering in this member finds data
points shown in green. b) A multi-parameter brush using the cluster’s extreme values selects data points which are not in the cluster (blue). c) By using a kD-tree in
parameter space, in combination with a principal component representation of the multi-parameter distributions of grouped data points, outliers and data points not
following the clustered distribution are discarded. d) An extension of violin plots shows how representative the multi-parameter distribution across the selected cluster
is, and how the single parameter distributions differ between the ensemble members. e) Via a multi-parameter 3D view, the spatial distribution of selected data points
in different members can be compared and analyzed.

extreme values in each parameter are used as filters. Since this
approach selects a hyper-cube in the multi-dimensional parameter
space, also regions which do not contain any of the clustered data
points are selected (Fig. 1b). When applying the selection to another
member with data points in these regions, the multi-parameter
distribution over these data points is distorted. In principle, this
problem can be addressed by computing a tight hull of the clustered
data points in the parameter space, and testing every data point in
another ensemble member against this hull. Since this approach is
far too computationally expensive in our scenario, we propose an
alternative solution building upon an adaptive spatial subdivision
scheme. By using a kD-tree over all clustered data points in the
parameter space, the selected intervals are automatically split into
sub-intervals which enclose the clustered sub-regions more tightly
(Fig. 1c). Outlier removal and a covariance analysis of the locations
of the data points in each sub-region are then used to focus the
analysis on statistically representative trends.

To analyse the similarity of the multi-parameter distributions
of selected data points across the ensemble, we propose a new
graphical depiction of the per-member distributions. This depiction
is an extension of the classical violin plot [29], which we term
Multi-Parameter Violin Plot (MPVP). An MPVP simultaneously
shows the distributions of all parameters over a set of data points
in a selected member. When designing the MPVPs, we have
considered perceptual issues so that users can quickly assess the
major differences and similarities between the ensemble members.
An MPVP plot showing all members simultaneously is linked to the
PCP (Fig. 1d), and it is updated instantly when the user modifies
the selection.

A spatial view shows the locations of the selected data points
in the 3D domain. We follow the approach by Linsen et al. [41] to
visualize a tight hull around the brushed data points via isosurface
rendering. Since in our use cases the data points live on a voxel
grid, surface extraction can be performed efficiently during GPU
volume ray-casting. To compare different ensemble members to
each other, rays are traced simultaneously against the hull of both
the clustered data points and the data points in another member that
is picked by the user (Fig. 1e). In this way, the user can quickly

compare the spatial extent and mutual overlaps of regions showing
a certain multi-parameter distribution. By picking the MPVP of a
certain member, the spatial view is instantly updated to show the
corresponding region.

The proposed visual analytics workflow builds upon the
following specific contributions:

• An automatic refinement of multi-parameter selections us-
ing adaptive parameter-space partitioning and multivariate
fitting.

• Enhanced violin plots using multiple trace plots and
difference-preserving coloring to simultaneously compare
multiple parameter distributions.

• A multi-parameter isosurface rendering technique which
indicates the parameter intervals that bound a cluster in the
spatial domain.

To perform all operations interactively, we provide a flexible
and scalable GPU rendering engine for parallel coordinate plots as
well as linked MPVPs and 3D cluster boundary views.

2 RELATED WORK

Our work is related to previous works in the fields of ensemble
visualization and multi-parameter visualization.

Ensemble visualization Ensemble visualization is related to
uncertainty visualization [4], [36], yet it is assumed that the
uncertainty is represented by a set of possible data occurrences
rather than a stochastic uncertainty model. Previous works in
ensemble visualization have addressed especially the question of
how to visually convey the ensemble spread of certain physical
fields, using either feature- or location-based approaches [50]. For
a recent overview of ensemble visualization techniques let us refer
to the survey by Wang et al. [64]. Feature-based approaches, such
as finding visual abstractions of the major trends in ensembles of
line or surface features [14], [19], [52], [58], [68], are not subject
of our study.

Related to our approach are in particular approaches that
represent the spread in scalar-valued ensembles via visual rep-
resentations of statistical summaries [44], [53]. Others model
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the variation of field variables by distributions, to reveal major
trends and represent the ensemble in a compact way. Single-
parameter ensembles are modeled via mixtures of probability
density functions to compactly represent their spatial and temporal
spread [17], [34], [42], [65]. Hazarika et al. [25] propose a copula-
based framework for ensemble visualization, in particular to model
the statistical dependencies between the scalar values at different
locations. This approach was later extended to multi-parameter
data [26]. Thompson et al. [61] introduce so-called hixels, a
meta-representation that encodes a histogram of scalar values in
a certain spatial region. Multi-charts build upon a linearization of
spatial locations and use side-by-side bar diagrams to compare the
ensemble variability at different locations [13]. Höllt et al. [30]
and later He et al. [27] use violin plots [29] to perform location-
wise visualization of scalar time-series data. All these approaches
visualize single-parameter ensembles, and cannot be extended in
a straightforward way to multi-parameter ensembles. We extend
these works by first selecting a set of data points with similar multi-
parameter values in a reference member, and then determining and
visualizing corresponding sets in all other ensemble members.

Multi-parameter visualization At the transition between
ensemble visualization and multi-parameter visualization, a number
of approaches have been developed to investigate the relationships
between multiple input parameters and a single output parameter
of a simulation [2], [5], [59], [62]. In contrast to our approach,
which aims at a visual comparison of large data sets with many
output parameters per data point, these approaches shed light
on the sensitivity of simulation results to variations in the input
configurations. Thus, at the core of these approaches is a visual
analysis of the relationships between input configurations and
simulation outputs, rather than the visualization of a single multi-
parameter data set.

For the visualization of multi-parameter data, a number of
different techniques exist, such as radar charts over pair-wise
scatterplots and correlation heatmaps [38], [43]. Most of these
techniques, however, even though effective for rather moderate
amounts of data points, do not scale well in the number of points
and are, thus, problematic in our scenario. Another technique to
directly visualize multi-parameter data points is Parallel Coordinate
Plots (PCPs). Popularized by Inselberg [32], [33], a multitude of
methods have been proposed to improve the visibility of single
data points in PCPs and reduce clutter. Many of these task-
specific adaptations are surveyed in the summary of Heinrich
and Weiskopf [28]. Johansson and Forsell [35] give an overview
of user-centered evaluations of parallel coordinates, Dasgupta et
al. [12] focus on the use of PCPs to convey uncertainty in the data.
For an overview of techniques using multiple coordinated linked
views including PCPs let us refer to the summary report by Roberts
at al. [55].

In our proposed workflow, the user interactively selects lines
passing through certain parameter ranges via brushing in the PCP
of all data points. Ward [66] introduce n-dimensional axis brushing,
where the brushes are created manually using sliders. Fua et al. [21],
[22] enable viewing the data at multiple resolutions by means of
hierarchical clustering. They propose structure-based brushing to
select data lying on a wedge in the hierarchical space. Proximity-
based coloring, zooming and fading of non-selected nodes in the
hierarchy further improves the analysis. Roberts et al. [56] propose
a brushing technique where a line-strip defines the centers of
brushed intervals in each parameter dimension, and the width of
selected intervals can be controlled interactively. Brush patterns can

be translated vertically and across axes to reveal similar patterns in
different parameter ranges. Multiple brushes can be combined and
angular histogram glyphs show the value distribution and direction
within a brush and axis. We make use of some of the proposed
visualization options and integrate additional means into PCPs to
automatically refine the set of brushed data points.

Also related to our approach is multi-parameter clustering,
which can effectively reduce the number of entities that need
to be visualized. Clustering is either performed directly in the
multi-dimensional parameter space [41], [47], or via subspace
clustering that finds clusters within a sub-set of all parameter
dimensions [1], [11], [18], [49]. Non-axis-aligned sub-spaces
have been clustered and visualized via dimensionality reduction
techniques, i.e., by using projections into linear sub-spaces in
which structures in the data points are preserved [45], [48], [69].
For visualizing multi-parameter clusters in the spatial domain,
Linsen et al. [41] propose isosurface rendering of the cluster
boundary via scattered multi-parameter interpolation. Clustering
in combination with PCPs has been used by Lex et al. [40], by
extending PCPs with colored matrices to analyse and compare the
quality of cluster assignments using different algorithms. Long
and Linsen [63] compute a hierarchy of high density clusters,
which are analysed in parallel coordinates and linked views. The
bundled parallel coordinates presented by Palmas et al. [51] use
clustering to improve visual continuity and create links between
axis aggregates. Matchmaker [40] introduces curved meta-links
between axes. The use of clustering in an ensemble of multi-
parameter data sets has been proposed by Kumpf et al. [39], by
clustering each ensemble member individually and comparing the
resulting sets of clusters. To do so, however, matchings between
clusters in different ensemble members need to be established.
Since the number and composition of clusters in each member
can change significantly, this becomes prohibitively unfeasible in
real-world applications.

3 METHOD OVERVIEW AND DATA

Given an ensemble of 3D multi-parameter fields s1, ...,sn, where
each ensemble member si is a discrete sampling of a mapping
from the continuous spatial domain S⊆ R3 into a K-dimensional
parameter space RK . The sampling is represented by a finite set
of m spatial data points Sm = {xi : xi ∈ S, i ∈ {1,2, ...,m}} ⊂ S.
Without loss of generality, we assume that the data points are given
at the vertices of a Cartesian grid, so that tri-linear interpolation
can be used for data reconstruction when rendering the 3D spatial
view. Fig. 2 provides an overview of the workflow we propose to
interactively analyse the occurrence of a selected multi-parameter
distribution in all ensemble members.

In a pre-process, the data points in one representative ensemble
member are clustered using any suitable clustering algorithm. For
instance, HDBSCAN [7] after t-SNE projection of data points is
used for Clouds. The representative ensemble member is selected
manually by using domain knowledge. For the cloud ensemble,
the experts deem the ensemble member that has been simulated
with the parameter set closest to the mean of all parameter sets
as a suitable representative. When working with ensemble data
from the ECMWF Ensemble Prediction System (ENS; e.g., [60]),
an unperturbed control forecast (started from the “best” initial
conditions) is used as representative member. This control run is
available for all ensembles generated by ENS.
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Fig. 2. Workflow overview: To select intervals in multi-parameter space, the
user either selects a computed cluster in that space or brushes manually in
a PCP. Intervals are refined using adaptive spatial subdivision and non-axis-
aligned refinement of sub-intervals, and are applied to all ensemble members.
The user controls the refinement via the subdivision depth and the significance
level of confidence regions in parameter space. MPVPs are generated to assess
the representativeness of a selected multi-parameter distribution across the
ensemble. The user can select different drawing styles, and pick a MPVP. Data
points belonging to the representative and picked MPVP are rendered in a linked
3D spatial view. The user can navigate in this view and select parameters for
which isosurfaces are rendered.

A selected cluster in the representative ensemble member is
shown in a PCP (see Fig. 1a), and converted to a multi-parameter
brush by using the extreme parameter values of all clustered data
points. The tool allows switching between curve or line drawing in
the PCP. Since for the large number of data points in our application
the domain experts found curves to better differentiate the data
points, we exclusively use this style throughout the paper. Even
though other visualization techniques like scatterplot matrices or
multi-charts can be used in this stage, the PCP enables to further
refine or enlarge the parameter ranges in a fairly intuitive way by
brushing directly on each axis. Following Roberts et al. [56], we
use priority rendering of lines w.r.t. a selected value on one of the
parameter axes. Therefore, all data points are sorted w.r.t. their
distance to the selected parameter value, and blended on top of each
other using adjustable opacity in the order of decreasing distance.
By further mapping distances to color, the perception of the density
and spread of lines passing close to the selected parameter value
is enhanced. Since we deal with a single cluster and explicitly
emphasize this cluster by coloring the respective points in the PCP,
dimension arrangement techniques for PCPs [3] did not lead to
any perceptual improvements. Data points not belonging to the
selected cluster are then filtered out by an automatic refinement of
parameter intervals (Fig. 1c).

To assess the occurrence of the selected multi-parameter
distribution in other ensemble members (Fig. 1d), an MPVP
is generated for each member. By picking an MPVP, the user
selects an ensemble member. This member is compared to the
representative member in a 3D view. Both the representative and
the selected member are visualized via volumetric ray-casting
by rendering a hull with member-specific color around each set
of selected data points (Fig. 1e). While the MPVP shows the
distribution of parameters over a selected set of data points, the
3D spatial view shows the spatial locations of these points and the
geometric shape of the corresponding structures. As proposed by
Doleisch et al. [15], [16], all views are coordinated and instantly
updated when the user performs certain interactions, like brushing
in the PCP or picking an MPVP.

The first data set we use is an ensemble of 96 numerical
simulations of a growing thunderstorm cloud over a time span of
six hours [67], simulated on a 700×500×35 Cartesian grid with
anisotropic spacing. Of this data set “Clouds” we only consider the
last time-step. At each data point, twelve precipitation parameters
such as hail, water, and rain are given. Parameter vectors are first
normalized over the whole ensemble, and data points with a norm

less than 0.1 are removed. Roughly 250k points per ensemble
member remain of the initial set of points. The second ensemble is
an ECMWF weather forecast of tropical cyclone Karl initialized on
2016-09-22 00:00 UTC with 162h lead time, in an area from 30N
to 80N and 50W to 30E for 30 vertical levels. This leads to roughly
120k grid locations in a 81×51×30 grid. Karl is composed of 50
ensemble members and one control forecast simulated with best
known initial parameters. Nine parameters such as wind speed,
temperature and different precipitation parameters are considered.

4 MULTI-PARAMETER BRUSHING

Brushing parameter ranges in a PCP to select data points cor-
responding to meaningful structures is challenging. Even though
more sophisticated brushing techniques exist, such as area, lasso, or
angular brushing [54], we refrain from integrating such techniques
into our workflow. This is in particular to relieve the user from
specific assumptions about the relationships between different
parameters, and let the selection be based solely on value ranges
of the available physical quantities. Especially when working with
experts from meteorology, we observed that meaningful structures
are more or less exclusively defined via parameter intervals.

4.1 Cluster-based brushing

Our framework supports the user in finding suitable initial pa-
rameter intervals, applies these intervals across the ensemble and
visualizes for each ensemble member the parameter distribution
over the selected data points. This reveals in which ensemble
members a certain distribution is present, and how representative
this distribution is for a structure in a certain member. The multi-
parameter intervals can be refined further via interactive brushing,
and are then re-applied to the ensemble.

In many practical applications, and even routinely in weather
forecasting, important structures in a data set are often determined
via clustering. Even though the results can sometimes be misleading
since they depend on intrinsic parameters of the clustering
algorithm, extracted clusters often provide a good initial guess
about specific relations in the data. Notably, in our application
where a cluster consists of a discrete set of data points, it is rather
unlikely that identical clusters in different ensemble members exist.

When an initial cluster in a multi-parameter data set is selected,
the extreme values of each parameter over all data points in the
cluster are used as a multi-dimensional brush in a PCP. Instantly,
the selected data points are drawn over all other points in the PCP
(Fig. 1a). Furthermore, parameter histograms are embedded into
the PCP to compare the number and parameter distribution of data
points in the representative member and a selected cluster. We
intentionally draw the histograms with shading in gray scale to let
empty intervals take the color of the background. We also found
that this visual representation enables a more effective comparison
of the per-value differences between the two histogram as, for
instance, by using rotated conventional histograms using vertical
bars.

As seen in Fig. 3, a side-by side view of parameter histograms
– restricted to a selected range – for the initial- and clustered data
points enables to quickly reveal two different aspects: Firstly, they
indicate how representative a parameter interval is for the selected
cluster. For instance, the encircled interval 1 in the parameter range
of “number of ice particles” is representative, since most data points
where “number of ice particles” is in that interval also belong to
the cluster. Interval 2 in the parameter range of snow, on the other
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hand, is not representative, since for the majority of data points it
cannot be decided whether they are in the cluster by only looking
at the parameter snow. Note that few outliers in the cluster lead
to an enlarged interval 3 for parameter graupel. Via a pie-chart
over the histogram of the clustered data points, the ratio between
the number of data points in the cluster and in the initial data
set is effectively communicated. Secondly, the cluster histograms
reveal whether the distribution of parameter values in the cluster
matches that of the data points, or whether the clustering algorithm
has determined sub-structures in a certain parameter interval. To
provide information about how representative the cluster is and
how well the brush fits the cluster, the user can request the ratio of
points in a cluster and points selected by the parameter intervals
derived from this cluster.

Fig. 3. For an ensemble member, two histograms are drawn for each parameter:
One of the values in this member (left) and one of the values in the selected
cluster in this member (right). Histograms indicate the representativeness of a
parameter interval for a selected cluster, by showing the relation between the
frequency of occurrence of parameter values in an ensemble member and a
cluster. The ratio between the overall number of selected data points in the
ensemble and the cluster is shown by pie-charts above the cluster histograms.

A problem that arises when brushing automatically w.r.t. to the
interval ranges of a selected cluster is that the selected set of data
points can include points that do not belong to that cluster. Cluster
boundaries in parameter space, where the clustering algorithm
operates, are usually not axes-aligned, but the intervals define an
axis-aligned hyper-cube in the multi-dimensional parameter space.
Hence, regions—and data points within them—are selected which
are not covered by the cluster (Fig. 4). Another problem arises if
the selected parameter intervals are applied to select data points
in another ensemble member. If this member has data points in a
falsely selected region, the multi-parameter distribution over the
selected data points in this member is distorted.

Fig. 4. Left: Some data points (yellow and grey) do not belong to a cluster in 2D
parameter space (orange). The cluster’s extreme values are indicated by the blue
square. Right: The cluster is converted to a brush in a PCP (not all points are
drawn). The data point colored yellow is falsely selected by the brush.

An example demonstrating the mismatch between clustered
data points and data points selected by the cluster’s extreme values
is shown in Fig. 5, using the representative member in the ECMWF

data set. The cluster (shown in green) is converted to a multi-
parameter brush, which selects the data points rendered in blue.
All remaining data points are rendered in white. The cluster is
rendered last, so that blue lines shining through in the PCP hint to
data points in the selected parameter intervals but not in the cluster.

Fig. 5. Illustration of cluster-based brushing. (a) Green lines show a cluster of
data points. Blue lines show the data points in that member that are selected by
using the cluster’s extreme values as a brush. Points of the whole data set are
rendered in white.

4.2 Brush refinement

The selection of data points using the extremal parameter values
of a given cluster is sensitive to outliers and can include many
more points than contained in the cluster. Furthermore, multiple
disconnected sub-structures in parameter space can lead to large
parameter ranges being selected. To achieve a tighter fit of the
parameter intervals to the cluster, intervals are refined and re-
applied to the data points. The effect of refinement is then also
shown by pie-charts over the parameter histograms (Fig. 3), as the
pie-chart of the brush and cluster become more similar.

For refinement, a kD-tree is constructed over the data points
in the brushed D-dimensional parameter space. Thus, the initially
selected hyper-cube is split into smaller cubes separating outliers
and contiguous sub-structures. To build the kD-tree, we use the
Surface Area Heuristic (SAH) [46] to determine the locations of
split hyper-planes along the parameter axes, in combination with
a bounding interval-based approach to avoid the construction of
very deep kD-trees. When splitting a certain parameter interval,
the possible split locations are restricted to the parameter values of
the data points in this interval. Therefore, all data points are first
sorted w.r.t. the value of this parameter. Then, for all possible split
locations the SAH measure C is computed as

C = Nl ·Ll/L+Nr ·Lr/L. (1)

Here, Nl and Nr, respectively, are the number of points to the
left and right of the current point (with the split point assigned
to the sub-interval with more points or shorter length), L is the
length of the currently selected parameter interval, and Li and Lr,
respectively, are the lengths of the left and right interval that are
generated due to a split. Of all possibilities, the split point for which
C is minimized is selected, favoring large sub-intervals with low
number of data points. Thus, outliers, contiguous subgroups and
empty regions are effectively separated (Fig. 6). Due to alternating
splitting along all parameter axes, the refinement considers the
structure of data points in the multi-dimensional parameter space.

When using the SAH heuristic, however, a high refinement
depth is required until empty regions are effectively separated. In
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Fig. 6, for instance, only when refining along the horizontal axis
for the second time (after all parameter intervals have been refined
once), the empty space between the isolated point on the right and
the cluster of data points to its left will be separated. To avoid
this, after every split the interior boundary of the interval that does
not contain the selected split point is refined, so that the resulting
interval still bounds all points but is as small as possible (black
boundaries in Fig. 6). Thus, already after 1-2 refinements along
every parameter axes a good fit is achieved.

Fig. 6. Left: Parameter intervals derived from a cluster’s (orange points) extreme
values. First horizontal and then vertical kD-tree-based refinement is indicated by
black lines. Dashed lines indicate narrowing of sub-intervals. Vertical refinement
works on already narrowed sub-intervals. Yellow points do not belong to the
cluster but lie in the derived brush. Middle: Resulting sub-intervals and covariance
ellipse of selected point set. Right: Refined brush in PCP. Yellow points are not
contained in any sub-interval or covariance ellipse and can be filtered out.

Each refined hyper-cube is treated as an independent brush in
parameter space. As shown in Fig. 7a, the proposed refinement can
effectively prune outliers as well as empty space between them and
the clustered structures. On the other hand, the distribution of data
points in each hyper-cube can still be such that the derived interval
bounds do not faithfully represent this distribution. For instance,
the distribution of the data points in the upper right part in Fig. 6
shows a clear diagonal preference, which is not well represented
by axis-aligned intervals.

To address this misalignment, we compute additional bounding
representations that better fit the distribution of the data points in
each hyper-cube. For this, we make use of a principal component
analysis of the covariance matrix—containing the covariances
between all parameter pairs of the data points—to determine a
σ-confidence region in parameter space. When a data point is
tested for containment in a given multi-parameter brush, it is now
tested for containment in the confidence ellipses representing the
structure of points in these cubes. In this process we pay special
attention to degenerated intervals and extremely small eigenvalues,
and let corresponding dimensions solely be represented by the unit
interval on the principal component axis.

As shown in Fig. 7b, the distribution-based refinement strategy
prunes a number of additional data points that are not aligned
with the majority of data points in a hyper-cube. This is also
advantageous when applying the selected multi-parameter interval
to other ensemble members, since it enables to consider the
structure of data points in the parameter space rather than solely
their locations.

5 ENSEMBLE ANALYSIS

Once a suitable multi-parameter brush has been obtained from
the cluster’s extreme values and further refined by using the
kD-tree and covariance analysis, this brush is applied to all
other ensemble members. To reveal how representative the multi-
parameter distribution of the selected points is for the ensemble,
i.e., whether a significantly large set of data points with similar

Fig. 7. Same as Fig 5, but intervals derived from the cluster’s extreme values
are first refined using the kD-tree-based interval refinement (top), followed by
an additional distribution-based rejection of data points using a per-interval
confidence region in principal component space (bottom).

distributions exists in each member, we show the distributions for
each member side-by-side. Juxtaposition of the single member
visualizations can reduce cluttering, yet, on the other hand, the
context between similar features in different members can get
lost [24]. While this is certainly a limitation of our approach,
we try to reduce this limitation by a number of design decisions
concerning the shape, color and ordering of the graphical elements
used.

5.1 Multi-parameter violin plots

The MPVPs we propose to visualize a multi-parameter distribution
over a set of data points in a single member build upon density trace
plots [10], which were later modified by Hintze and Nelson [29]
towards so-called violin plots. A violin plot is a vertical or
horizontal density plot with the probability density curve of a
parameter on both sides of a vertical axis, optionally accompanied
by a box plot of the parameter values in its interior. The book by
Chambers [9] gives a thorough overview of the different variants
of this type of plot. Höllt et al. [31] show the density curves of 2
different parameters on either side of the vertical axis to enable
the comparison of 2 scalar value distributions. In a violin plot,
multi-modal data distributions appear as multiple peaks in the
density curve, and the distance between the curve from the axis
provides information about the number of data points contributing
to a certain parameter value. The area under each density curve is
either colored uniquely, or different colors are used in one plot to
distinguish between multiple layers in the data.

The extension we propose to make a violin plot applicable to
a multi-parameter distribution is to overlay multiple violin plots—
each with its own colors on either side of the axis—in a single
MPVP. An illustration of the parameters we have considered in
the design of MPVPs, with an ad-hoc selection on the left and
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our selected design parameters on the right, is shown in Fig. 8.
In this work, we have focused on the use of MPVPs to visualize
twelve parameters simultaneously. Designs for other numbers of
parameters can be derived as discussed in the following, yet for
larger numbers the increasing chance of using similar colors for
different parameters will limit scalability.

Fig. 8. Design parameters for MPVPs. Right of violin axis: Our favored design
and colors. Left of violin axis: An alternative design that is less meaningful and
requires more time for interpretation.

The first design parameter we found important is the style and
color of the outlines of the regions covered by the violins, i.e., the
density curves. We evaluated 3 different possibilities (Fig. 9): a) A
bold outline in the color of the region. b) No outline. c) A black
outline. Drawing no outline has 2 apparent drawbacks compared
to the other options: Firstly, regions colored with a rather light
color do not stand out against the background. Secondly, when
regions overlap and the resulting color is similar to the color of
the last rendered violin, the shape of the covered region can no
longer be perceived clearly. Drawing a black outline can effectively
reveal the shape of each region—also when blended with some
other regions—yet since all regions have the same outline color it
becomes difficult to distinguish between them where many contours
appear. The first option (Fig. 9a) turned out to be most effective,
standing out against the background and conveying the single plots
in the overlap regions.

When multiple violins overlap, their colors need to be blended.
Overwriting colors by the color of the last drawn violin can
occlude violins that are completely covered by this last one.
One can also select a color for an overlap region that depends,
for instance, on how many violins overlap in this region. This,
however, makes it impossible to grasp the connection between
an overlap region and the violins that contribute to it, since the
violins’ colors are not preserved in the color of the overlap region.
In addition, this coloring results in abrupt color changes between
the regions that occur due to different numbers of overlapping
violins. Another issue that needs to be considered is that the visual
context between multiple MPVPs should not be lost, meaning that
overlap regions with the same set of contributing violins should be
easily perceivable across a set of MPVPs shown side-by-side.

To address these issues, we use α-blending when drawing
the single violins, and explicitly enforce a certain drawing order
(Fig. 9a). The violins are drawn in the order of decreasing area
between the density curve and the violin axis, so that the chance
to completely over-blend a single violin becomes lower, even
though still possible. The drawing order is established from the
representative ensemble member and used for the visualization
of all other members. Violin plots are then blended atop of each
other, i.e., we start with a white background C = (1,1,1) and then
update this color via C = α ·CV +(1−α) ·C whenever drawing a
violin with color CV and opacity α. An α value of 0.4 is used to let

Fig. 9. Different visual designs of MPVPs. a) Our proposed design with bold
opaque outlines in the region color, as well as perception-aware color selection,
left-right assignment of parameters, and drawing order. b) No outlines. c) Black
outlines. d) Random drawing order and e) random colors of single violin plots. f)
Random left-right assignment of parameter curves.

overlaid colors shine through even when more than two layers are
present. Fig. 9d shows that some regions get lost when rendering
and blending is performed in an arbitrary order.

To avoid hardly distinguishable blend colors, we follow the
recommendation of Gama and Goncalves [23]. As all complemen-
tary colors (being opposite on the color wheel) blend into a similar
color, humans can better distinguish the blend colors of different
pairs when these pairs are close on the color wheel. Since we have
up to twelve parameters and, thus, need up to six colors on each
side of the violin axis, we select two sets of six colors each. The
eight colors of the ColorBrewer palette Dark2 are sorted according
to their hue, and split into two groups of four (right and left violins)
such that the maximal distance between hues is minimal in each
group (Fig. 8). The additional two colors per side are chosen from
the other side of the color wheel to avoid too many similar colors,
yet with the trade-off of few complimentary colors. Fig. 8 (right)
and Fig. 9a are both generated with these colors. In contrast, and
as seen in Fig. 8 (left) and Fig. 9e, when using an arbitrary color
selection, either very similar colors for different violins or pairs of
complementary colors with the same blend color can be selected.

We further determine an assignment of ensemble parameters
to the left or right of the violin axis that reduces the mutual
overlaps between the single violin plots on either side. Therefore, a
similarity matrix D = {di, j} is computed, which represents the pair-
wise overlaps of two parameter regions i and j. Values ai j indicate
the percentage of the region of i that is covered by j. The minimum
di, j =min(ai j,a ji) defines the similarity between the violin plots of
parameters i and j. Large mutual overlap indicates overall similar
shape of the plots, implying that the plots should be drawn on
different sides of the violin axis. Small overlap, on the other hand,
is not critical, since due to the drawing order the smaller plots are
drawn atop of the larger ones. Iteratively, the pair of parameters with
highest similarity value di, j is determined, and these parameters
are assigned to opposite axis sides. To decide which of the two
parameters is placed left and which right, the violins already placed
left kl and right kr are considered. In particular, the assignment
is selected that minimizes the sum of the maximum similarities
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between the parameter pairs on the left and right side, i.e.,

arg min
ρ∈{(r,l),(l,r)})

(max
kρ[0]

di,kρ[0] +max
kρ[1]

d j,kρ[1]).

Here, r and l indicate the right and left side, and kρ[·] indicates
already assigned parameters on either side. As can be seen in
Fig. 8f, with no explicit assignment of parameter curves to the
sides of the violin axis, large overlap regions can occur and absorb
whole single violin plots.

Another design decision is how to scale the single violin
plots in the horizontal. Here, we provide two different scaling
modes: The first one uses one scale for each parameter, and applies
these scales to the respective parameters of every MPVP. For a
particular parameter, the largest density value in any of the MPVPs
is computed, and this value is set as the interval bound for that
parameter in every MPVP (Fig. 10 (top)). Even though this mode
distorts the proportions between the parameters in one single MPVP,
it is necessary when the total densities of parameters differ. It is in
particular useful when showing multiple MPVPs side-by-side and
comparing the parameter distributions across the ensemble. The
second mode lets every single MPVP use it’s own scale, which is
applied to all parameter curves in this plot. In this way, the available
drawing space in each plot can be used as good as possible, without
sacrificing the relative proportions between the parameters (Fig. 10
(bottom)). This second mode is used when a fine-granular analysis
of the multi-parameter distribution in a single member is desired.

Fig. 10. MPVPs of 5 ensemble members. Top: For each parameter, the horizontal
scale, i.e. the value at the left and right border, is set to the maximum value of the
curves for this parameter over all ensemble members. Bottom: For each MPVP,
the horizontal scale is set to the maximum value of all parameter curves of the
corresponding ensemble.

5.2 Spatial multi-parameter view

To further support the user in examining the spatial locations of
selected data points, a 3D view is linked to both the PCP and
MPVP chart. Per default, the 3D view is synchronized with the
PCP, so that any selection of a representative member or changes
of the multi-parameter brush due to the selection of a cluster,
refinement, or user interaction immediately triggers an update of
the spatial view. In the spatial view, the locations of all data points
in the selected member and the points in the refined cluster in that
member are instantly rendered (Fig. 11). The user can also select
an MPVP, in which case the 3D view is linked to the ensemble
member shown in this MPVP. Then, instead of all data points in
the representative member, the data points in the corresponding
member that are selected via the refined multi-parameter brush are
shown in green (e.g., top right in Fig. 17).

Rendering the selected data points in 3D space is performed
in two different ways (Fig. 11), depending on whether a high

performance or high quality visualization is favoured. In either case,
surfaces enclosing the data points are rendered semi-transparently,
by using adjustable opacity values.

(a) (b)

Fig. 11. a) Iso-surface in a binary field derived from a multi-parameter field of
the representative member in Karl. b) Same iso-surface computed via smooth
interpolation in each parameter field.

Binary representation During interaction, for instance, if the
user manually changes the multi-parameter brush, selected data
points are converted into binary values and rendered via isosurface
ray-casting in the resulting binary field. A multi-parameter value
is set to one, if all parameters are within the selected parameter
intervals, otherwise the value is set to zero. In the resulting binary
volume, ray-casting is used against the iso-contour to the value
of 0.1 using tri-linear interpolation. Optionally, the binary value
distribution can be smoothed via an adaptive Gaussian low-pass
filter, which can keep values of one unchanged to avoid removing
small isolated data points. Since the computation of a binary
volume is extremely fast on the GPU, even for Clouds with a size
of 700x60x500, fully interactive frame rates are achieved. Multiple
binary fields can be stored and visualized simultaneously. We use
this option to show the locations of brushed data points in the
representative member relative to locations of all data points in that
member (Fig. 12a), and to compare the locations of selected data
points in different members (top right in Figs. 17 and 18).

Continuous field representation To generate a high quality
visualization, ray-casting is performed simultaneously in all single
parameter fields. During ray-casting it is checked at every sample
point whether all interpolated parameter values are within the
selected parameter intervals. The transition into and out of these
regions is detected by a change from "at least one parameter out"
to "all parameters in", and vice versa. For shading, the gradient in
the field of the parameter that was last going "in" (when entering
the region) and first going "out" (when exiting the region) is
used. Computationally, this method is far more complex than
the first rendering option due to the significantly higher texture
accuracy and number of texture look-up operations during ray-
casting. On the other hand, it considers the smooth variation of
physical parameters across the domain and leads to a continuous
multi-field visualization [20]. Furthermore, it can effectively show
which single-parameter brush bounds the rendered surface, by
coloring surface points according to which parameter triggered the
surface hit (Fig. 12b).

6 GPU IMPLEMENTATION

To enable interactive brushing and applying the brush instantly to
all ensemble members, we have implemented a high-performance
implementation on the GPU. It is particularly tailored to efficiently
handle large multi-parameter ensembles, to be able to instantly
update PCPs, MPVPs and 3D views upon user interaction.

The GPU implementation is index based, so that once the data
points with assigned index reside in GPU memory, many operations
require touching on far less memory compared to an explicit
representation. In order to support efficient and parallel range
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(a) (b)

Fig. 12. a) Surfaces enclose all (grey) and brushed (orange) data points in
the representative ensemble member of Clouds. b) Continuous multi-parameter
surface rendering in Karl shows which parameter intervals limit the surface
structure in 3D space. Wind-speed in white, temperature in orange, humidity in
green and precipitation quantities in blue.

queries for brushing, a boolean buffer containing the activation of
each index is present in each drawable instance. If a brush update
occurs, a compute shader processes all indices of the drawable
instance in parallel and updates the activation of each index.
Afterwards a second compute shader then uses the so computed
activations to update the indexbuffer for rendering. Furthermore,
histogram-based similarity queries between different ensemble
members or between members and a given histogram can be
performed in a highly efficient way. All data points can be processed
in parallel, and by using atomic memory operations on the GPU,
parallel increment operations on the values in the GPU histogram
buffer can be issued in an exclusive way.

Our implementation via the Vulkan graphics API (published
on https://github.com/wavestoweather/PCViewer) enables cross-
platform support and high rendering performance. On a standard
desktop PC—an Intel Xeon E5-1650 v2 CPU with 6× 3.50 GHz
and NVIDIA GeForce GTX 1070 graphics card with eight GB
VRAM—the performance is high enough to interactively analyse
the set of ensemble members via brushing, MPVP visualization,
and volume rendering, i.e., 2.5 million data points with twelve
parameters each in Clouds. It takes roughly 0.5 seconds to
execute a normal brush operation (two seconds for a multivariate
refined kD-brush) and render the result for ten ensemble members
simultaneously, including histograms, and 200 milliseconds for a
single member. Volume rendering using the binary and continuous
representation takes roughly 0.1 seconds and six seconds for
Clouds.

7 EVALUATION

7.1 MPVP evaluation

The effectiveness of different MPVP designs for conveying multi-
parameter distributions was studied in two informal user studies. In
a first study, the user experience when using the six different visual
designs shown in Fig.9 was studied. A second study was conducted
to evaluate how well MPVPs can reveal the (dis-)similarities
between multi-parameter distributions. For each study we recruited
five computer science students, all having a background in computer
graphics and visualization. No student took part in both studies.
The participants were selected to have no color vision deficiency.
The students were exposed to MPVPs for the first time, and none
of them knew the visualized ensemble fields. Some MPVPs not
included in the evaluation were shown and explained to the users
beforehand. All MPVPs were shown with global scaling in use.

In the first study, for each design option we created ten
MPVPs using randomly selected multi-parameter distributions

from Clouds and Karl. In each MPVP, we randomly selected a
parameter and classified it into {left, right}, according to the side
of the MPVP axis it is shown, and {peak, multi-peak, plain},
according to whether the distribution shows a single or multiple
clearly pronounced peaks or a more plain distribution. We selected
parameters which could be classified with high certainty. In a web
interface, the MPVPs were shown consecutively, and the users were
asked to classify the selected parameters as fast as possible and
push a button to start the next evaluation. The selected parameters
were indicated by colors and each question appeared for all six
design options in random order. The time required for classifying
each MPVP was measured and the average time was computed
for each user and the six different design options. Finally, for each
option the average time and standard deviation (both in seconds)
over all users were computed.

While no mis-classification was recorded when using the
designs a), b) and c), not all parameters could be identified correctly
with designs d), e) and f). This is due to occlusions that are
produced by these designs, resulting in parameters covered entirely
or to a major extent. Therefore, we excluded designs d), e), and f)
from the study. For the options a), b) and c), the recorded measures
are represented via box plots in Fig. 13.

Fig. 13. User times in seconds to locate and classify parameters in a MPVP.

It can be seen that designs b) and c) are significantly less
effective than design a). When asking the users about their
subjective impression, it turns out that designs b) and c) require
users to spend more time on regions where many single-parameter
distributions overlap. In these regions, design c) leads to increasing
visual clutter due to the crossing of many indistinguishable outlines.
Since differences in the colors of the single-parameter distributions
are washed out due to blending in the overlap regions, design b)
makes it difficult to associate perceived colors to the initial colors
of the parameters. Due to the drawing of outlines in the unperturbed
colors of the single parameters, a more effective shape perception
was reported when using design a).

In the second study, our goal was to analyse how well MPVPs
can be ordered by a user w.r.t. increasing distance to an initial multi-
parameter distribution, and how well relative differences between
the single-parameter distributions can be assessed. To perform this
evaluation, we have created a synthetic ensemble comprising 20
members which increasingly differ from a representative member
(Figure 14). The representative member consists of 10k data points,
each with twelve normally distributed artificial parameters. The
means and standard deviations of the normal distributions were
selected randomly. For the i-th ensemble member, up to i of the
initial distributions are randomly perturbed. The means are changed
by up to 0.3 of the initial mean, and the initial standard deviation
is scaled randomly by factors between 0.4 to 2.5. In this way, the
ensemble members tend to become increasingly different to the
initial reference.
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Fig. 14. MPVPs of the synthetic data set in the random order they were presented to the participants.

We asked the users (T1) to order the MPVPs w.r.t. decreasing
similarity to the representative member, and (T2) to classify each
MPVP and parameter according to how much they differ (in
categories of low, medium, high) from the representative one.
Via T1, our goal was to study the effectiveness of MPVPs to
support a visually-guided comparison of many multi-parameter
distributions, which, in contrast to a numerical similarity score,
enables to consider the mutual relationships between the shapes
of the single-parameter distributions in one MPVP and across
them. T2 serves as a hint on how well certain parameters can be
perceived in the MPVP and whether the proposed visual design
leads to similar results for all parameters. In T3, we asked to
identify the four to six most dissimilar members solely based
on the first (green on the left) and fourth parameter (purple on
the right), to shed light on the perception of distribution patterns
involving multiple parameters.

The results of task T1 were compared to an automatic ordering
using the chi-squared similarity measure [57]

χ
2(hrep,hb) =

1
2 ∑

i

(hrep,i−hb,i)
2

hrep,i +hb,i
, (2)

where hrep,i and hb,i, respectively, refer to the ith histogram bin in
the representative member and the current member to be compared.
The measure is computed for every parameter and accumulated.
Scaling by the number of points in the representative member
leads to a maximal distance of one per parameter. Our system
initially shows the MPVPs in the order of decreasing chi-squared
measure to the representative member. It is worth noting, however,
that this ordering can be misleading since it does not consider
the shape of the single parameter distributions. For instance, a
MPVP that is identical in shape to the representative but scaled,
can produce the same chi-squared measure than a MPVP where half
of the distributions match exactly but the other half is completely
different. Since the number of selected data points per ensemble
member varies, especially low chi-squared measures require further
inspection as provided by MPVPs.

When a user places an MPVP at the wrong position in the
ordered sequence, the distance to the correct position is added
to an overall error. The resulting error was then also compared
to the error that is introduced when 1000 random permutations
of the MPVPs are used. The participants were in average off by
2.1 positions for each MPVP, and 4.7 can be expected by random
permutations. Even though 2.1 might seem high at first, it has
to be considered that some sub-sets of MPVPs only show very
subtle changes, and their positions are, thus, interchangeable. This
experiment indicates that the proposed visual design of MPVPs
facilitates an effective judgment of the similarity of multi-parameter
distributions regarding the shape, interval, and scale of the single-
parameter distributions.

For T2, we computed for each MPVP and every parameter
the similarity to the corresponding parameter in the representative
member via the chi-squared similarity measure. Parameters were
then classified according to categories determined by the users, and
discrepancies between categories were accumulated over all mem-
bers. Overall, the strongest mis-classifications were spread across
all parameters, even for those parameters mainly concentrated in
the middle part of the MPVP axis where significant overdraw is
perceived. Surprisingly, the two parameters occupying the largest
area (orange on the left and green on the right) did not perform
best. Furthermore, user feedback revealed that some users put
more attention on the shape of the distributions, while others were
more concerned about the exact vertical position. Both assessment
strategies are provided by MPVPs.

Finally, users were asked to judge the similarity of ensemble
members based on two selected parameters. Three users identified
almost exactly the members that were indicated by the χ2-metric.
Only up to two members were wrongly classified, both with very
small distance values. The other users were correct in the most
similar members, but judged the most severe changes differently. In
the concluding discussion, the selections had to be justified and it
turned out that most participants focused on the shape of the single
parameter distributions relative to each other, information that is
difficult to encode in a numerical score. As there is no gold standard
measure that can reliably compare distributions regarding different
use cases, a visual analysis seems inevitable. As even the optimized
rendering cannot always avoid over-blending of parameter curves,
certain parameters can be excluded from the rendering. This option,
however, was disabled in the user study.

7.2 Parameter space refinement

To evaluate the effects of parameter space refinement, we use PCPs
in combination with MPVPs. In Fig. 15, four PCPs show different
subsets of the data points in the representative member of Clouds.
The data points in the initial cluster and selected by the cluster’s
extreme parameter values (min-max brush) are shown in Fig.1a,b.
Fig. 15a shows the data points when selecting the intervals that
result from 20 (up to three along each parameter axis) kD-tree
refinements and removing empty intervals. While some data points
not in the cluster are removed, many outliers remain (see encircled
data points). Next, partitions with less than eleven points (less
points than dimensions) (Fig. 15b) and points not within 1.25
standard deviation from the mean of points in a partition (Fig. 15c)
are removed. The standard deviation is then further decreased to
1 (Fig.1c) and 0.7 (Fig. 15d), to demonstrate the corresponding
removal of data points. The resulting PCPs indicate an increasingly
tight enclosing of the data points in the initially selected cluster,
yet it is difficult to judge when the selected multi-parameter filter
starts removing data points too aggressively.
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Fig. 16 shows the MPVPs (using global and local scaling) cor-
responding to the initially clustered data points and the selections
in Fig. 1 and Fig. 15. By using global scaling, the reduction of
data points can be perceived clearly, but some single parameter
distributions cannot be distinguished any more. In particular, since
there are significantly more data points that are selected by the
cluster’s extreme values than in the cluster, the multi-parameter
distribution across the cluster can hardly be seen. On the other
hand, one can see on which parameters and in which interval the
applied refinements have the largest effect, enabling to focus on
structures that persist over many refinement levels.

By using MPVPs with local scale, the changes – also relative to
each other – of the single-parameter distributions can be assessed
effectively. In particular, Fig. 16 shows two persistent peaks on the
left side of the MPVP axis (brown and pink) which are successively
separated by the refinements and converge towards the distribution
across the cluster in this parameter range. The same holds for the
two smaller peaks on the right side of the axis (green and violet),
eventually showing good agreement with the multi-parameter
distribution across the cluster. Due to the local scaling, however,
the distributions over parameter intervals with less points become
squeezed and cannot be assessed very well (upper half of the
MPVP axis). In the shown example, even though the distributions
over these intervals fit the distributions in the cluster very well, this
cannot be well perceived from the MPVP due to scaling w.r.t. the
size of the largest peak. In such a case, the user can further scale
the MPVP manually or with logarithmic bin scaling, so that also
the distribution of squeezed distributions can be well perceived and
compared to the cluster.

The shown example demonstrates that a tight covering of
the clustered data points in the multi-parameter space can be
achieved, but it also hints at some limitations of our approach.
Since the domain is partitioned using a kD-tree-based refinement
with automatic selection of the partition boundaries, it is difficult
to determine the depth of the refinement so that not too many
but also not too few data points are removed. It can happen, in
particular, that data points belonging to a coherent structure in the
parameter space are separated. Then, further refinements can even
partition into fewer and fewer points that are eventually removed.
The same is true for selecting the standard deviation that is used
to prune data points within a partition, which might be too small
and removes too many points. On the other hand, in combination
with MPVPs, which show the multi-parameter distributions of
the initially clustered data points and after refinement, the user
can interactively select different refinement strengths. For domain
experts it is in particular useful to see the correspondence between
refinement and pruning to the individual parameter curves, so that
meaningful parameter intervals can be selected.

8 APPLICATION ANALYSIS

For the forecast ensemble Karl, Fig. 5 shows in green the cluster
that was initially selected in the representative member. Selection
of data points using the cluster’s extreme values per parameter
give roughly 15 times as many points as in the cluster (blue lines
in Fig. 5). Notably, however, MPVPs with local scale (Fig. 17a-
b) already indicate good agreement between the multi-parameter
distribution across the cluster and the selected set of data points.
The selection was further refined by removing intervals with less
than seven points via a kD-tree. After two kD-tree refinements
per dimension, the number of points is reduced to roughly three

times the data points in the cluster (Fig. 7 (top)), and covariance-
based refinement using a 1.0-confidence ellipse further reduces
this number to 1.2 times the initial points (Fig. 7 (bottom)). The
PCP seems to indicate an even better fit of the refinement to the
initial data points in the cluster, but the corresponding MPVPs
(Fig. 17c,d) show in fact less correspondence with the MPVP of the
initially clustered data points (see in particular the peaks on the left
side of the MPVP axis). Thus, it was decided to use kD-tree-based
refinement without additional refinements using confidence regions
in parameter space. The resulting parameter selection was then
applied to all ensemble members. The corresponding MPVPs of
20 members are shown in Fig. 17 (bottom).

The comparison of per-member MPVPs indicates very high
representativeness of the selected multi-parameter distribution. This
observation is surprising, since the forecasts were simulated using
different initial conditions to cover as good as possible the spread
in the uncertain weather predictions, and this spread is usually high
for high-impact weather events like Karl. In the current case, the
comparative analysis using MPVPs indicates very good agreement
of all forecast simulations with the representative forecast in which
the initial cluster was selected. The MPVPs strongly agree in all
single-parameter distributions, both w.r.t. the number of selected
data points as well as the shape and location of the distributions.
A similar analysis would now have to be performed using other
clusters to confirm the agreement in all predicted structures.

Notably, a comparative structure-based analysis using multi-
parameter distributions in many ensemble members was not
possible until now. Current operational and scientific workflows
support the analysis of the ensemble spread via clustering of single-
parameter fields, but they do not consider the mutual relationships
between the multi-parameter distributions across the ensemble.
In particular, our proposed workflow can be used in principle
to derive new feature-descriptors, by applying meteorological
feature extraction first, and then analysing the multi-parameter
distributions across the spatial locations in which the feature is
located. Via distribution matching, the sets of data points in other
ensemble members with corresponding multi-parameter distribution
– possibly encoding the same feature – can be classified. By
considering stochastic variations in the distributions, the uncertainty
in the found structures could even be quantified.

The 3D spatial view of the representative member in Karl
(Fig. 17 (top, right)) indicates that the data points in the cluster
concentrate around the region in which the storm is present,
i.e., it seems that the cluster has determined the multi-parameter
distribution that is obeyed by the locations covered by the storm.
By simultaneously visualizing another ensemble member, it can
be seen that both ensemble members agree in the region in which
selected data points are located and differ only in some smaller
structures around that region. This is also confirmed by the MPVPs,
which show slightly enlarged parameter distributions, indicating
selected data points which do not belong to the cluster. Another
interesting finding is w.r.t. to the characteristics of cyclons, which
come with fast moving air masses and high precipitation. This
reflects in high wind components in the selected data points, but
at the majority of selected points both humidity and liquid values
are in the lower parameter ranges (brown and yellow distributions).
Thus, it can be conjectured that a more fine-granular selection is
required – especially regarding the parameters related to humidity
– to more faithfully select the storm structure. With the proposed
workflow, the domain expert can now perform manual brushing to
further refine the selected structure in the parameter space.
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(a) (b) (c) (d)

Fig. 15. a) Data points in Clouds selected by a cluster’s extreme values and reduced about empty intervals after 20 kD-tree refinement steps (all data points in the
representative member in white, data points remaining from the initial cluster in green, and from the extreme value brush in blue). Many outliers remain (encircled).
b) kD-tree partitions with less than seven points are removed. c) and d) In each partition, data points not within 1.25 and 0.75 standard deviation from the mean,
respectively, are removed.

Fig. 16. MPVPs corresponding to the multi-parameter distributions of the clustered
and successively refined data points.

For Clouds, the same analysis as for Karl was performed. The
analysis of the initially selected cluster using MPVPs reveals two
separate structures in the parameter NIce, shown by the pink peak
and wider bulk on the left side of the axis of the MPVP in Fig. 18a
(local scaling). The two structures are also shown in the spatial
view in Fig. 12.

A selection of data points solely based on the cluster’s extreme
values (Fig. 1 (top, middle)), Fig. 18b)) cannot separate these
structures and includes far too many data points. Fig. 18c,d
show the effects when refining the initial selection via a kD-
tree (20 refinement steps and intervals with less than eleven data
points removed) and covariance-based refinement (using a standard
deviation of 1.0). Covariance-based refinement leads to a multi-
parameter distribution across the selected points that is very similar
to the distribution over the initially clustered data points, and it
effectively separates the two cloud structures.

In contrast to Karl, the comparison of 20 members using per-
member MPVPs with global scale (Fig. 1) indicates far lower repre-
sentativeness of the selected multi-parameter distribution in Clouds.
This is with respect to the number of selected data points and the
parameter distributions across these points. It can immediately be
seen that some members do not agree very well with the selected
multi-parameter distribution. MPVPs with local scale (Fig. 18
(bottom)) enable to assess the relative occurrences of parameter
values per member. This allows for a comparative analysis of the
shapes of the single-parameter distributions, effectively indicating
common trends and variations.

The analysis reveals the representative multi-parameter distri-
bution also in other members, indicated by peak-like distributions
in the MPVPs, yet to a far less pronounced extent regarding the
number of contributing data points. The domain experts found
it in particular interesting that the two green and violet peaks
associated with snow on the right side of the MPVP axis are
present in every member, yet with slightly different intensities and
vastly different numbers of data points. This seems to indicate
a bias of some simulation members, which needs to be further
examined by investigating the used simulation parameters and
models. Especially ensemble members 11 and 58 differ significantly

in the parameters not represented by the peaks. In this case, manual
brushing can be used to broaden the parameter intervals, and thus
to analyse whether some of the structures in the representative
member occur in other members but have shifted in the parameter
domain. When visualizing the 3D locations of selected data points
in the representative member and the most similar member 16
(Fig. 18 (top,right)), low agreement is revealed. In some of the
ensemble members, even though they agree in the shape of the
single parameters, the locations and shapes of the selected structures
in 3D space differ significantly. This seems to indicate that similar
parameter distributions do not, in general, correspond to similar
spatial shape of the corresponding meteorological structures.

9 DISCUSSION AND CONCLUSION

We have proposed visualization techniques and a workflow for
analysing multi-parameter distributions in the members of an
ensemble of 3D fields. To show simultaneously multiple parameter
distributions over the data points in a single member, we have
proposed an extension of violin plots (MPVPs) for multi-parameter
data. By using MPVPs, the representativeness of a selected multi-
parameter distribution for the ensemble as well as outliers and
major trends in the distributions are efficiently revealed. By a
linked spatial view, the locations of selected data points in different
members can be visualized and compared to each other.

The limitations of the proposed workflow are regarding a more
controllable refinement of initially selected data points and the side-
by-side view of MPVPs. Refining a given set of points is performed
in an interactive way, by letting the user probe different depths
for kD-tree-based refinement and different extents of confidence
regions. However, the selection of the best values so that coherent
structures in the data are not split up is difficult to achieve. Even
though it is clear that a more structure-based refinement can in
principle overcome this problem, this requires a far more involved
pre-process to determine coherent (sub-)structures in the multi-
dimensional space. Even if such structures can be determined,
efficient mechanisms to test whether a data point belongs to such a
structure need to be developed first. Concerning the side-by-side
view of MPVPs, for ensembles composed of many members this
approach is not feasible anymore due to space restrictions. We
envision an automatic pre-selection or even grouping of MPVPs
so that only few representative members need to be shown at once
in a first overview visualization. Finally, we intend to investigate
the extension of the workflow to time-varying ensembles, so that
the temporal changes of multi-parameter distributions over the
ensemble can be assessed and compared in a meaningful way.
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Fig. 17. Cyclone Karl. Top left: In the representative member, MPVPs with global and local scaling show the multi-parameter distribution over all clustered data points
(a), over all data points that are selected via the cluster’s extreme values (b), and over all data points that remain in the parameter intervals refined via kD-tree (c) and
covariance analysis (d). Top right: Locations of brushed points in the representative member (green) and members indicated by numbers (violet). Bottom: MPVPs with
global width scaling for the representative and the first 20 ensemble members.

Fig. 18. Clouds. Top left: In the representative member, MPVPs with global and local scaling for data points a) in the cluster, and brushed via b) cluster extreme values,
c) kD-tree-refined intervals, d) covariance-refined intervals. Top right: Locations of brushed points in the representative member (green) and members indicated by
numbers (violet). Bottom: MPVPs with local width scaling for the same members as in Fig. 1.
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