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Figure 1: (a) Top: Spaghetti plot of jet-stream core lines, extracted from numerical weather prediction data for September 28, 2016. Bottom:
Ground truth of the core line on same day. Line features are colored by pressure level in hPa to infer vertical variation. (b) Top: 4 core line
groups obtained from clustering on fields of directional wind speed derivatives (upper left image) and vector-to-closest point volumes (upper
right image). Bottom: The best cluster representatives closest to the ground truth. (c) Ridge lines extracted from central tendency volume
(inset, upper image) computed from case (a) and ridges from the visitation map (inset, lower image).

Abstract
The extraction of a jet-stream core line in a wind field results in many disconnected line segments of arbitrary topology. In an
ensemble of wind fields, these structures show high variation, coincide only partly, and almost nowhere agree in all ensemble
members. In this paper, we shed light on the use of clustering for visualizing an ensemble of jet-stream core lines. Since classical
approaches for clustering 3D line sets fail due to the mentioned properties, we analyze different strategies and compare them
to each other: We cluster the 3D scalar fields from which jet-stream core lines are extracted. We cluster on a closest-point
representation of each set of core lines. These representations are derived from the extracted line geometry and can be used
independently of the lines orientation and topology. We cluster on the 3D line set using the Hausdorff distance as similarity
metric. In the resulting clusters, we visualize core lines from the most representative ensemble member. We further compute
ridges in a single 3D visitation map that is build from the ensemble of core lines, and we extract the most central core line
from the ensemble closest-point representation. These “averages” are compared to the clustering results, and they are put into
relation to ground truth jet-stream core lines at the predicted lead time.

1. Introduction

Nowadays, numerical weather forecasting is routinely performed
at weather centers and research institutions. The improvement of
weather forecasts depends heavily on documenting and under-
standing complex three-dimensional structures in the atmosphere.
Therefore, these structures need to be defined and extracted from
simulated physical fields. Once available, a three-dimensional (3D)
visualization of these structures provides a greatly increased capac-
ity to understand the key relationships and dependencies between
multiple atmospheric processes. Beyond single forecasts, ensem-
ble weather forecasts are well established in meteorology to un-
derstand and assess the uncertainty inherent in numerical weather
predictions. Ensemble methods perform multiple simulations using
perturbed initial conditions or different forecast models, to predict

possible future states of the atmosphere. Analysis of the temporal
evolution and variability of an ensemble forecast is then used to
estimate the likelihood of certain weather events. For many impor-
tant structures, i.e. line features, in the atmosphere, ensemble anal-
ysis becomes notoriously difficult. This is because such structures
are often fuzzy and cluttered, consisting of many disconnected seg-
ments of arbitrary topology. An example is the jet-stream, regions
of high wind speed, typically encountered near to the top of our
principal weather systems. The extraction of jet-stream core lines
can lead to many separate line features in 3D [KHS*18]. In an en-
semble of wind fields, these features show high variation, coincide
only partly, and almost nowhere agree in all ensemble members.

To determine and characterize major trends in operational rou-
tines, forecasters often actively look for some kind of mean or me-
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dian solution for a certain feature in an ensemble, involving clus-
tering features on the 2D chart in their mind if the patterns sug-
gest so to do. We aim to automate this process and, in particular,
lift it to 3D. This, however, is challenging for the type of feature
we consider. So-called spaghetti plots, i.e., the simultaneous dis-
play of all ensemble members (see 1a), quickly produce visual
clutter and cannot easily convey major trends, outliers, and statis-
tical properties of the feature distribution. Statistical feature-based
approaches, on the other hand, like contour and curve box-plots
[WMK13; MWK14] or variability plots [FBW16] cannot be used
in general for highly fragmented line sets with arbitrary topology.

In this work, we shed light on the use of clustering to determine
the major trends in ensembles of jet-stream core lines with vastly
different geometry and topology. We compare the results to the
clustering of lines using the mean distance between any pair of core
line (one in each cluster) as distance metric. For clustering, we use
Agglomerative Hierarchical Clustering (AHC) with Ward’s method
[Jr63], which groups the initial core lines in bottom-up fashion. To
prepare the data for clustering, the used fields are interpreted as
high-dimensional data points and projected to lower dimension us-
ing either PCA, for derivative fields, or t-SNE, for closest point
fields. The findings, in the form of the mean or most representa-
tive core line of each cluster, are put into relation to ground truth
features obtained from re-analysis data that best represents the at-
mosphere data at the considered lead time.

In particular, we make the following contributions: First, we
compare different clustering approaches and analyze their poten-
tial to convey major trends in a weather forecast ensemble to im-
prove the predictability of certain weather situations. Second, we
propose two novel representations for clustering meteorological
features comprised of line sets with arbitrary topology: We clus-
ter on the derivative fields from which features are extracted, and
on a topology-invariant representation of line sets based on a clos-
est point representation. This enables to operate on the extracted
jet-stream core lines, regardless of their shape and topology. Third,
we compare the results of clustering to those achieved via visitation
maps, a density field showing the frequency of occurrence of line
features, and via central tendency fields characterizing points most
central in between sets of lines. Ridge detection in such volumes
is used to extract approximate features which are then used in the
comparative analysis. To demonstrate the practical relevance and
usefulness of our work, we discuss the strengths and weaknesses
of the methods by means of real-world scenarios using numeri-
cal weather simulation data from the European Center for Medium
Weather Forecasting (ECMWF).

2. Related Work

The analysis of 3D line feature ensembles is closely related to en-
semble visualization techniques. Parametric statistical distributions
and distribution shape descriptors for scalar-valued ensembles were
presented by Love et al. [LPK05]. Different variants of confidence
regions were introduced to obtain major geometric trends in en-
sembles of closed isocontours and streamlines [WMK13; MWK14;
FBW16; FKRW16]. Demir et al. [DJW16] proposed a closest-
point representation to convey the central tendency of an multi-
dimensional shape ensemble.

In a number of works, scalar- and vector-valued ensemble
fields were modeled via mixtures of probability density func-
tions to compactly classify complex distributions and their evolu-
tion over time [LLBP12; JDKW15; DS15; WLW*17]. Demir et
al. [DDW14] propose to linearize 3D data points and visualize
the data distributions using bar-charts. Poethkow and Hege [PH13]
and Athawale et al. [ASE16] use location-wise estimators of non-
parametric distributions from ensemble members to estimate the
spread of surface and vector field features. Recently, Hazarika et
al. [HBS18; HDSC19] presented a copula-based framework for
large multivariate datasets, where they partition the domain and
compute statistical quantities over those parts.

Alternatively, clustering has been used to group ensemble mem-
bers, either fields or curves in such fields, regarding similar data
characteristics [BM10; TN14; OLK*14; FBW16; FFST19]. The
comparative studies by Zhang et al. [ZHQL16] and Moberts et al.
[MVv05] provide overviews of similarity measures using geomet-
ric distances between curves. Strehl and Ghosh [SG02] apply dif-
ferent clustering techniques to one single ensemble, and combine
the results into a single clustering. Ferstl et el. [FKRW17] cluster
different time-steps of the same ensemble in a hierarchical way to
convey the change of clusters over time. Clustering of atmospheric
data is surveyed by Wilks [Wil11]. An example is the operational
clustering of ensemble members at ECMWF [FC11], where fore-
cast scalar fields of geopotential height are clustered in three differ-
ent time windows for a static data region. Kumpf et al. [KTB*18]
use multiple k-Means clusterings on ensemble fields, with slightly
varying clustering domain, and analyze the robustness of clusters.
Clustering using the Hausdorff metric was applied to group similar
streamlines (cf. [RT12]) in flow-fields, and fiber bundles [BBP*05]
in diffusion tensor imaging.

Building upon first definitions of jet-streams, e.g., [Rei63], were
the “layer of maximum wind” (LMW) was defined to identify the
3D jet-stream axis representing the core line, many different meth-
ods have been developed to automatically identify jet-streams. For
example, Strong and Davis [SD05] detect core lines on their LMW
by computing wind speed maxima via finite differencing in the
y-direction only. Molnos et al. [MMP*17] introduced a network-
based scheme using shortest paths to detect a jet-stream core as a
continuous, globe-circumventing line. Spensberger et al. [SSL17]
consider 2D wind fields on a “dynamical tropopause”, an isosur-
face of 2 potential vorticity units.

Aforementioned methods make a priori assumptions about cer-
tain jet-stream characteristics, such as being westerly oriented or
fully connected large-scale features. Our approach builds upon the
detection method by Kern et al. [KHS*18], which avoids such
assumptions and detects arbitrarily oriented and possibly discon-
nected jet-stream core lines.

3. Data

We extract the jet-stream core lines by applying ridge detection to
a given wind field, as proposed by Kern et al. [KHS*18]. Numeri-
cal weather prediction data, generated from the Numerical Weather
Prediction (NWP) model at ECWMF, serve as input for feature de-
tection. Ensemble forecasting is used to compute m predictions,
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each comprised of multiple fields such as wind direction and pre-
cipitation. For jet-stream core line detection, we use the 2D wind
components u,v and wind speed Vs for each vertical layer, From
these inputs, we derive new fields from which the features are ex-
tracted (see eq. 1). Let ~V = (u,v) be the wind vector at a grid point
x, and Vs be the wind speed resolved into the direction ~s, the local
wind direction at x. Let~n be the vector normal to~s. The loci (candi-
dates) of jet-stream core lines are defined at each grid point where
Vs is maximal along~n in the horizontal, and along~z in the vertical:

∂Vs

∂n
= 0,

∂Vs

∂z
= 0 (1)

Upon detecting candidate lines via ridge extraction, filtering is ap-
plied to consider domain-specific constraints. In particular, domain
experts look for jet-stream core lines with at least Vs ≥ 40ms−1

and large features with a feature length above 500km. Minima lines
of the wind field are removed by testing whether all eigenvectors
of the 2D Hessian matrix at each line vertex are negative. Filtered
ridge lines are shown in Fig. 1a and Fig. 2.

Figure 2: Extracted jet-stream core lines rendered as 3D tubes for
4 different member of the ensemble in Fig. 1a. Images demonstrate
the variation of line topology. Tubes are colored by pressure in hPa
to show variation in the vertical.

4. Clustering of Jet-Stream Core Lines

In this section, different strategies to cluster an ensemble of jet-
stream core lines are examined and put into relation regarding
the main trends they can convey. We consider clustering on the
fields from which the core lines are extracted, and on the extracted
line geometry. By using clustering, we overcome in particular the
limitations of spaghetti plots (cf. Fig. 1a). In the shown scenario,
spaghetti plots suggest long coherent features. By visualizing sin-
gle members (cf. Fig. 2), however, it can be observed that the en-
semble predicts vastly diverging features comprised of many dis-
connected line segments. We introduce three different strategies to
better reveal the major trends in an ensemble of jet-stream core line
of arbitrary geometry and topology. Fig. 3 gives an overview of
these strategies, their application is shown in Fig. 1b. Furthermore,
we compare the extracted line geometries to ridge lines in fields
derived from a closest point representation, and ridges in visitation
maps derived from the line geometry (cf. Fig. 1c). Both variants
can be computed either for each cluster to provide cluster represen-
tatives, or for the entire ensemble.

4.1. Clustering of Physical Fields

The first approach operates on the original fields of wind directions
and speed, as explained in Sec. 3 for m ensemble members. A naive
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Figure 3: Clustering jet-stream core lines based on (a) scalar vol-
umes derived from initial fields, (b) geometric distance metrics for
lines, and (c) closest point representations derived from line sets.

approach is to first average all fields over the entire ensemble and
perform feature detection in the averaged fields. Feature lines ex-
tracted from mean fields of two different scenarios are shown in
Fig. 4a and b. For both days, averaging leads to long connected
features, while small features vanish due to high variation in the
data. In comparison to the ground truth, averaging is not able to
convey important trends, such as the long jet-stream core line south
of Greenland (Fig. 4b), for regions of high variation. We also dis-
covered that clustering directly on the original scalar fields leads to
unsatisfying results due to high variation in the data across vertical
levels and ensembles. More specifically, inputs like wind direction
and speed over a certain domain do not necessarily correlate locally
or globally with the occurrence of line features.

To overcome this problem, we propose the following cluster-
ing strategy outlined in Fig. 3a. From the input field, we first de-
rive quantities that describe the characteristics of jet-stream core
lines and from which these lines are extracted. In particular, we
use directional derivatives of wind (cf. 1) and wind speed as ini-
tial scalar fields for clustering. The latter is important as forecast-
ers are only interested in features of high wind speed. Based on
these scalar fields, we mask all grid points where the derivatives
and wind speed do not approximately match the criteria listed in
Sec. 3 for all ensemble members, and eventually remove these
points from the initial fields. Next, we concatenate the initial fields
and perform dimensionality reduction using Principal Component
Analysis (PCA). Here, we only take into account the principal
components representing at least 90% of data variance, similar to
[FKRW16]. In PCA space, we use clustering to obtain groups of
ensemble members with similar set of scalar fields. The fields of
each cluster are then either averaged, or features are extracted from
the most representative fields per cluster (selected similar to eq. 3).

We propose to choose cluster median over computing the mean
for each cluster as the mean leads to less satisfying results with
important smaller features being vanished. Fig. 4c,d show out-
comes of clustering using the mean across all clusters. These im-
ages suggest fully connected line features whereas the ground truth
in Fig. 4a,b (inset) reveals trends of interrupted features, for in-
stance, over Florida. Contrary to that, using the scalar field median
(cf. Fig. 1b and Fig. 7b) predict interruptions and convey more mi-
nor trends, thus, being more similar to the ground truth.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.



Michael Kern & Rüdiger Westermann / Clustering Ensembles of 3D Jet-Stream Core Lines

(a) (b)

(c) (d)
Figure 4: (a) Jet-stream core lines extracted from mean input fields
of the entire weather ensemble for (a) September 28, 2016, and (b)
October 02, 2016, spaghetti plot and the ground truth are shown
in the insets. (c) Mean representations for case (a) after averaging
clusters obtained from directional derivative fields. (d) Results from
clustering similar to (c) for use case (b).

4.2. Geometry-Based Clustering

Next, we consider the scenario where only the ensemble of ex-
tracted jet-stream core lines is given as a set of lines per ensemble
member. This requires the computation of feature-to-feature simi-
larities regarding the shape of their line geometries. We introduce
two approaches to perform clustering on 3D line feature ensembles.

4.2.1. Geometry Comparison

The first approach is illustrated in Fig. 3b. Given that each ensem-
ble member contains several lines varying in shape and topology,
we first measure member-to-member similarity by comparing pairs
of lines vertex-wise. We use both the mean closest point distance
(MCPD) and the Hausdorff metric (HD) for comparing two sets of
lines, similar to [MVv05; BBP*05]. MCPD is the average of the
closest point-wise distances while HD computes the maximum of
all minimal closest distances between two non-empty subsets. In
our experiments, we found that the results using both metrics were
quite similar. Yet, since HD produces slightly better results in terms
of trend prediction, we use this metric for topology comparison. In
the following, we assume that dH(A,B) represents the Hausdorff
distance between two point sets A and B. For each line in one en-
semble member, we determine the line with minimum dH to a line
in the other member. For final comparison of two ensemble mem-
bers, we take the average dH between two ensemble members for
all line-pair-wise minimal HDs. Let E be the ensemble set with en-
semble members i, j ∈ E consisting of line point sets Li,L j. The
member-wise similarity ds(Li,L j) is then defined as:

dHe(L,L j) = minL′∈L j{dH(L,L
′)}

ds(Li,L j) = meanL∈Li{max{dHe(L,L j),dHe(L j,L)}}
(2)

Based on ds, we set-up a distance matrix containing the similarity
values for each ensemble member pair used for line clustering.

After clustering, we choose the jet-stream core lines from the en-
sembles which best represent their clusters. Here, we consider the
median of the cluster ensemble members to be the the most repre-
sentative. An ensemble member serves as the cluster median if its
similarity ds is smallest to all other group members. Let C ⊂ E be

a cluster, then the representative line feature is defined as follows:

argmini∈C{ds(Li,L j)| j ∈C∧ i 6= j} (3)

Note that with the median we obtain actual line feature predictions
and display those as possible outcomes for further analysis. An ex-
ample of clustering results using HD as similarity metric is shown
in Fig. 8a, the best cluster representatives are shown in Fig. 7c.

4.2.2. Implicit Line-Feature Representation

Similarity metrics operating on point-to-point distances are very
sensitive to the topology and orientation of given line features,
strongly influenced by outliers, especially when comparing sev-
eral disconnected line features per ensemble member. To overcome
this limitation, we make use of a method that first transforms a
jet-stream core line of a single ensemble member into a domain-
filling field in which this feature is given implicitly. Then, cluster-
ing operates on the ensemble of derived fields. Since jet-stream core
lines are not closed and inside/outside classification is not possible,
signed distance fields cannot be utilized for our purpose. Instead,
as proposed by Demir et al. [DJW16], we compute at each grid cell
the vectors to the closest points of each jet-stream core line in the
ensemble, and cluster the resulting closest-point field (see Fig. 3c).

To transform jet-stream core lines to a closest-point represen-
tation, the ensemble domain is first discretized using a Cartesian
grid of fixed resolution. Vcp volumes are then generated by using
a bounding volume hierarchy for all line segments in a bottom-
up fashion. At each grid point, we store m vcps pointing to the
closest feature in each member (compare Fig. 6b). Vector magni-
tudes represent the distance to these closest feature. For cluster-
ing, we consider members to be similar at a grid point if all vec-
tors point into the same direction and have a similar magnitude. To
improve cluster results, vcp volumes are first preprocessed by fil-
tering out grid points which do not point to any close-by feature,
with vcp magnitude exceeding a user-defined minimum length λ

with ||vcpi(~x)|| ≥ λ for all members i. λ is set to half the grid dis-
tance. Dimensionality reduction is conducted via t-SNE [MH08]
to project the vector volume dimension to 2D for improved cluster
separation. Clustering is then performed on the resulting data points
in 2D. We use t-SNE with a perplexity value of 5 for m = 51 en-
semble members to maintain rather local trends with at least 5 close
data points. Higher perplexity values force t-SNE to consider more
global structures in the data, which we found to produce clusters of
higher geometric variability.

To analyze different cluster characteristics, each cluster can be
visualized separately, or new quantities can be derived from each
cluster using the set of vcp volumes assigned to it. For visualiza-
tion, we use GPU volume ray-casting to render the isosurface for
locations at least half of the grid distance away from any line fea-
ture. The minimal distance dmin of a vcp set to a line feature is
defined as

dmin = min{||vcpi(~x)||, i ∈C} (4)

Similar to Demir et al. [DW15], we employ a custom interpola-
tion scheme combining tri-linear interpolation with a plane-based
approach for smooth isosurface rendering.
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(a)

(b)
Figure 5: Left most images: Jet-stream core line ensemble for lead time October 02, 2016 (top) and ground truth core line features (bottom).
Top row (a): Visitation map of line features for the entire ensemble with different thresholds for isosurface extraction (τ = 0.4/0.5/0.6).
Bottom row (b): Central tendency of line features with different thresholds for isosurface ray-casting (σ = 0.4/0.5/0.6).

(a) (b)

Figure 6: (a) Schematic of a visitation map from a line set (black
bold lines). Color represents amount of density related to the num-
ber of line crossings (red = 3 crossings, yellow = 2, green = 1).
(b) Schematic of central tendency computed from closest point vec-
tors (purple dashed arrows). Grid point color indicates amount of
centrality (green = highest, orange = medium, red = lowest).

5. Ridge Line Extraction in Proxy Fields

In addition to clustering, we convey trends in line sets by apply-
ing ridge line extraction in fields that are derived from given line
geometries, e.g., in vcp fields. Extracted ridge lines represent artifi-
cial “mean” representations of the given features, conveying major
and minor trends in the feature ensemble. Note that this is contrary
to feature detection from averaged scalar fields (of the entire en-
semble or single clusters), where minor trends in regions of high
variance can vanish (cf. Fig. 4d with best representatives in Fig. 7
and further examined in Sec. 6). In the following, we discuss two
different approaches to obtain such fields.

5.1. Visitation Map

Line geometry can be used to analyze the frequency of line feature
occurrences within the ensemble domain. This is accomplished by
rasterizing line segments into a discrete grid and counting the num-
ber of line crossings per voxel cell. Fig. 6a illustrates a visitation
map with line feature ensembles of 4 different ensemble members.
In particular, we implement visitation maps proposed by Bürger et
al. [BFMW12] and used in [FBW16]. Visitation maps make use
of a discrete voxel grid and count for each cell the number of line
segments crossing the cell. We use rasterization of line vertices to
build the visitation maps with each vertex assumed to be a particle
– in this context called splat-kernel – of a user-defined diameter.

Splat-kernels with support of 4 voxels were chosen for our data
and the density values were normalized in a second pass to allevi-
ate thresholding. Next, we use GPU volume ray-casting to obtain
isosurfaces with a user-defined density. This reveals regions of high
feature density and provides first insights about possible tendencies
in the data. Fig. 5b shows a visitation map for 3 different thresholds
where major trends of high frequent occlusions are revealed but in-
terruptions are hardly detected.

We also extract ridge lines from visitation maps using classical
ridge detection (cf. [PS08]). The ridge lines provide approximate
line features which serve as possible predictions for the current
ensemble (see Fig. 1c bottom and Fig. 7f,h). Ridge line extrac-
tion is restricted by a user-defined minimal density for visitation
maps. This threshold has to be set carefully as high values lead to
high information loss (see Fig. 5a for threshold comparison). In our
work, we found thresholds between 0.4 and 0.6 most suitable for
our data. We can compute visitation maps for either the entire en-
semble or for each cluster individually. Note that ridge lines are
approximations producing new features not contained in the en-
semble. In Sec. 6, we compare ridge lines to feature lines obtained
from clustering techniques to discuss their potential.

5.2. Central Tendency

We use vcp volumes to also determine the central tendency of the
data. Central tendency (centrality) represents locations which are
most central in the data set, meaning that the grid points lie in be-
tween all closest line features and inherit small magnitudes. An
example of three different central tendencies is sketched in Fig. 6b
for 4 ensemble members. For centrality, we additionally compute
the mean vcp~µ at each cell:

~µ = vcp(~p) =
1
N

N

∑
i=1

vcpi(~p) (5)

Note that we refrain from visualizing the isosurface of ~µ as this
introduces artifacts in rendering, in example for grid points in be-
tween two line feature groups. The final central tendency σ of a
grid point is computed as follows:

dmax = max{||vcpi(~x)||, i ∈C}

σ = max{1−dmax,
√

f · (1−||~µ||)},
(6)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Best cluster representatives for scenario on October 2, 2016 (lead time) simulated for September 28 (init time) from: (a) ground
truth, (b) derivative field clustering, (c) geometry-based clustering, (d) vcp clustering, (e) ensemble mean, (f) ensemble visitation map, (g)
ensemble centrality, (h) cluster centrality. Blue rectangles mark regions of varying feature prediction across all ridges.

where f is the fraction of vcp vectors with a vector magnitude
||vcpi(~x)|| < τ, with τ being half the grid distance. The factor f
is important as we want to filter out cases where many vcp of high
magnitude cancel out each other, resulting in artifacts with falsely
classified points of high centrality. The final rendering of central
tendency for the entire ensemble is shown in Fig. 5b with 3 dif-
ferent threshold for σ. From the central tendency volume, we can
also extract ridge lines, both for the ensemble and for each clus-
ter. Compared to the visitation maps, extracting ridges from the
central tendency differs from ridges in visitation maps in terms
of trend inference. In example, features over Florida and Green-
land (cf. Fig. 5b) are better revealed than with visitation maps (cf.
Fig. 5a) when compared to ground truth. However, central tendency
produced a jet-stream core line over Spain which has not been pre-
dicted by the ground truth, leading to false interpretations.

6. Results and Use Cases

We discuss the potential of all proposed techniques by means
of real-world weather forecasting cases from the 2016 North At-
lantic Waveguide and Downstream Impact Experiment (NAWDEX,
[SCW*18]), an atmospheric research field campaign. Forecast data
are obtained from the Ensemble Prediction System (ENS) at the
ECMWF with 51 ensemble members. The data is a regular latitude-
longitude grid with grid spacing of 1.0◦ and 70 terrain-aligned
model levels in the vertical. To assess the potential of our methods
in terms of trend prediction, we compare the results to jet-stream
core lines extracted from re-analysis data obtained from ECMWF
using the ERA5 re-analysis model [HB19]. ERA5 data is similar to
the NAWDEX data with 0.5◦ grid spacing and 276 vertical levels.

To enable a proper quality comparison, we selected cases where
trends in the ground truth are predicted by a subset in the ensemble
forecast. Furthermore, we will examine weather forecasts 72 and 96
hours from initial simulation time because of the following reasons:
a) these hours are commonly used by forecaster to create short-
and medium-range forecasts, and b) the high variation of features
prediction hampers forecasters to infer clear trends from standard
spaghetti plots. We assess the quality of each approach by compar-
ing the median MCPD of best cluster representatives (predictions
closest to ground truth) and ridge lines to all line features in ERA5.
To compare the average closest distance of lines contained in fea-
ture predictions from our approaches to the ground truth lines in

ERA5, and to be insensitive to features not present in the reference,
we found that MCPD is most suitable here for quality comparison.

Table 1: Median of mean point-pair distances of best cluster repre-
sentatives and ridge lines to ground truth for all techniques: mean
over entire ensemble (MEAN), scalar field clustering with mean
(SFCµ) and median (SFCM), geometry-based clustering (GC), vcp
clustering (VC), cluster central tendency (VCC), ensemble central
tendency (C), and cluster visitation map (V).

Use cases MEAN SFCµ SFCM GC VC VCC C V
Sep. 28 4.58 3.58 2.61 2.25 2.62 2.66 2.79 3.08
Oct. 02 4.73 2.70 3.13 2.47 2.60 2.73 4.31 3.01

6.1. September 28, 2016

We regard a scenario of highly varying predictions on September
28 from initial time September 25, 2016, partly predicting either a
closed curved or interrupted jet-stream core line over Greenland
or Florida. Taking the mean over the entire ensemble (MEAN)
does not convey information about interrupted features and mi-
nor feature trends (cf. Fig. 4a). Clustering the derived scalar fields
and obtaining the mean over the clusters for feature detection led
to improved results (cf. Fig. 4c), indicated by smaller values for
MCPD (cf. Table 1 MEAN and SFCµ); however, those means did
not convey any interruptions. We also applied all three clustering
techniques to the data and obtained the best representative feature
lines for comparison. In terms of cluster separation, vcp ensemble
clustering managed to separate the line ensemble best compared to
geometry-based scalar field clustering (shown Fig. 1b). All cluster-
ing techniques produced representatives which are similar to pre-
dictions in the reference, predicted multiple interrupted lines over
Florida, and, thus, outperformed MEAN wrt. MCPD.

Next, we assess the quality of ridge lines identified in the visi-
tation map of a cluster obtained from a geometry-based clustering
(cf. Fig. 1c bottom), and ridge lines from the central tendency field
(see Fig. 1c top). Both methods are able to provide satisfying re-
sults, however, the ridge line of the visitation map fails to convey
some minor features (in example west of Great Britain), leading to
slightly higher MCPD values. Yet, ridge lines are closer to the refer-
ence than lines from MEAN, and those from centrality can compete
with all best cluster representatives. In Summary, we could improve
MEAN wrt. MCPD with all cluster representatives and ridge lines,
best results were achieved with cluster representatives (cf. Table 1).
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(a) (b)

Figure 8: Clustering results with 4 clusters (each cluster colored) (a) obtained from geometry-based clustering with Hausdorff distance, and
(b) from clustering on vector-to-closest point volumes. Inset shows member distribution for all clusters. Black rectangles highlight major
differences in trend prediction between both clustering techniques.

6.2. October 02, 2016

We picked another scenario for October 2 from September 28,
2016 with highly varying predictions, in example feature occur-
rence south of Greenland, two merging or two distinct jet cores
from Florida towards the North Atlantic, and multiple interruptions
in between (cf. blue rectangles in Fig. 7). Similar to Sec. 6.1, tak-
ing the mean over the entire ensemble led to massive information
loss and missed features compared to the reference (see Fig. 4b and
d). Best representatives from all clustering techniques are shown in
Fig. 7b,c and d. Computing the mean or median from scalar-field-
based clustering produced results close to the ground truth, both vi-
sually and wrt. MCPD (see. column 2 and 3 in Table 1). All cluster-
ing techniques, again, were able to provide good results coinciding
with the ground truth. In example, they correctly predicted two dis-
tinct features over Florida with multiple interruptions (cf. Fig. 7b,c,
and d). In terms of cluster separation, we found that vcp clustering
is superior to all other clustering techniques, in example, it excelled
line set comparison with HD as shown in Fig. 8. Opposed to clus-
tering, ridge lines in central tendency and visitation map volumes
(cf. Fig. 7f,g, and h) could not properly reveal such interruptions in
the data. In addition, centrality over the entire ensemble produced a
feature over Spain not present in the reference (Fig. 7g), leading to
the highest MCPD value compared to all other techniques except
the MEAN. All approaches, except centrality, were able to highly
outperform MEAN wrt. MCPD where best cluster representatives
were closest to the reference.

7. Conclusion

In this work, we have introduced and compared different ap-
proaches to cluster 3D line sets of arbitrary orientation and topol-
ogy for trend inference. In particular, we clustered (a) on derived
scalar fields, (b) on line geometry using the Hausdorff metric, and
(c) on vector-to-closest point representations invariant to line topol-
ogy and orientation. We have shown that all clustering approaches
have the potential to infer major and minor trends from weather
ensemble forecasts close to trends contained in re-analysis data
considered to be the ground truth. In addition, we have provided
methods to analyze of feature occurrence frequency with visitation
maps and derived central tendency fields from closest-point vol-
umes to classify points most central between line sets. From these
fields, we have extracted ridge lines as an artificial mean represen-
tation and have demonstrated that they can compete with clustering

when applied to cluster results only, yet produced slightly inferior
results. In terms of clustering, we can recommend two approaches:
If the initial physical fields are given, we propose to operate on de-
rived scalar fields characterizing points close to potential features.
In case line geometry is provided only, clustering based on vector-
to-closest-point representations is the most effective technique to
obtain clear distinct clusters and trends in the data.

Note that the examination of cluster quality for each proposed
clustering technique is beyond the scope of this work and requires
further investigations in the future. This includes automated selec-
tion of best clusters and best cluster representatives by comparing
multiple clustering results and incorporating information about ad-
ditional physical quantities. However, our proposed techniques are
not limited to jet-stream core lines and can be applied to arbitrary
scalar fields, feature detection methods, and line sets. Note that pa-
rameters for t-SNE and ridge detection have to be adapted depend-
ing on number of data elements (ensemble members) and their di-
mensionality. We have integrated our techniques in the visualiza-
tion tool “Met.3D” (see [FKRW17; KHS*18; KTB*18]), enabling
domain experts to further judge the quality and likelihood of best
representatives by plotting additional atmospheric processes along
with jet-stream core lines. We are confident that this analysis can
help domain experts in estimating the best predictions and trends
from vastly diverging line features in the future.

8. Acknowledgements

This research has been done within the subproject A7 of the Tran-
sregional Collaborative Research Center SFB/TRR 165 Waves to
Weather funded by the German Research Foundation (DFG).

References
[ASE16] ATHAWALE, T., SAKHAEE, E., and ENTEZARI, A. “Isosurface

Visualization of Data with Nonparametric Models for Uncertainty”.
IEEE Transactions on Visualization and Computer Graphics 22.1 (Jan.
2016), 777–786 2.

[BBP*05] BLAAS, J., BOTHA, C. P., PETERS, B., VOS, F. M., and POST,
F. H. “Fast and reproducible fiber bundle selection in DTI visualization”.
VIS 05. IEEE Visualization, 2005. Oct. 2005, 59–64 2, 4.

[BFMW12] BÜRGER, K., FRAEDRICH, R., MERHOF, D., and WESTER-
MANN, R. “Instant Visitation Maps for Interactive Visualization of Un-
certain Particle Trajectories”. Proceedings Visualization and Data Anal-
ysis 2012. Vol. SPIE 8294. 2012, 5.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.



Michael Kern & Rüdiger Westermann / Clustering Ensembles of 3D Jet-Stream Core Lines

[BM10] BRUCKNER, S. and MÖLLER, T. “Isosurface Similarity Maps”.
Computer Graphics Forum 29.3 (2010), 773–782 2.

[DDW14] DEMIR, I., DICK, C., and WESTERMANN, R. “Multi-Charts for
Comparative 3D Ensemble Visualization”. IEEE Transactions on Visu-
alization and Computer Graphics 20.12 (Dec. 2014), 2694–2703 2.

[DJW16] DEMIR, I., JAREMA, M., and WESTERMANN, R. “Visualizing
the Central Tendency of Ensembles of Shapes”. SIGGRAPH Asia 2016
Symposium on Visualization. SA ’16. ACM, 2016 2, 4.

[DS15] DUTTA, S. and SHEN, H.-W. “Distribution driven extraction and
tracking of features for time-varying data analysis”. IEEE transactions
on visualization and computer graphics 22.1 (2015), 837–846 2.

[DW15] DEMIR, I. and WESTERMANN, R. “Vector-to-Closest-Point Oc-
tree for Surface Ray-Casting”. Vision, Modeling & Visualization. Ed. by
BOMMES, D., RITSCHEL, T., and SCHULTZ, T. The Eurographics As-
sociation, 2015 4.

[FBW16] FERSTL, F., BÜRGER, K., and WESTERMANN, R. “Streamline
Variability Plots for Characterizing the Uncertainty in Vector Field En-
sembles”. IEEE Transactions on Visualization and Computer Graphics
22.1 (Jan. 2016), 767–776 2, 5.

[FC11] FERRANTI, L. and CORTI, S. “New clustering products”. ECMWF
Newsletter 127 (2011), 6–11 2.

[FFST19] FAVELIER, G., FARAJ, N., SUMMA, B., and TIERNY, J. “Per-
sistence Atlas for Critical Point Variability in Ensembles”. IEEE Trans-
actions on Visualization and Computer Graphics 25.1 (Jan. 2019), 1152–
1162 2.

[FKRW16] FERSTL, F., KANZLER, M., RAUTENHAUS, M., and WEST-
ERMANN, R. “Visual Analysis of Spatial Variability and Global Correla-
tions in Ensembles of Iso-Contours”. Computer Graphics Forum (Proc.
EuroVis) 35.3 (2016), 221–230 2, 3.

[FKRW17] FERSTL, F., KANZLER, M., RAUTENHAUS, M., and WEST-
ERMANN, R. “Time-Hierarchical Clustering and Visualization of
Weather Forecast Ensembles”. IEEE Transactions on Visualization and
Computer Graphics 23.1 (Jan. 2017), 831–840 2, 7.

[HB19] HENNERMANN, K. and BERRISFORD, P. ERA5 data documenta-
tion. Accessed 11 June 2019. 2019 6.

[HBS18] HAZARIKA, S., BISWAS, A., and SHEN, H. “Uncertainty Visu-
alization Using Copula-Based Analysis in Mixed Distribution Models”.
IEEE Transactions on Visualization and Computer Graphics 24.1 (Jan.
2018), 934–943 2.

[HDSC19] HAZARIKA, S., DUTTA, S., SHEN, H., and CHEN, J.
“CoDDA: A Flexible Copula-based Distribution Driven Analysis Frame-
work for Large-Scale Multivariate Data”. IEEE Transactions on Visual-
ization and Computer Graphics 25.1 (Jan. 2019), 1214–1224 2.

[JDKW15] JAREMA, M., DEMIR, I., KEHRER, J., and WESTERMANN,
R. “Comparative visual analysis of vector field ensembles”. Visual An-
alytics Science and Technology (VAST), 2015 IEEE Conference on. Oct.
2015, 81–88 2.

[Jr63] JR., J. H. W. “Hierarchical Grouping to Optimize an Objec-
tive Function”. Journal of the American Statistical Association 58.301
(1963), 236–244 2.

[KHS*18] KERN, M., HEWSON, T., SADLO, F., WESTERMANN, R., and
RAUTENHAUS, M. “Robust Detection and Visualization of Jet-Stream
Core Lines in Atmospheric Flow”. IEEE Transactions on Visualization
and Computer Graphics 24.1 (Jan. 2018), 893–902 1, 2, 7.

[KTB*18] KUMPF, A., TOST, B., BAUMGART, M., RIEMER, M., WEST-
ERMANN, R., and RAUTENHAUS, M. “Visualizing Confidence in
Cluster-based Ensemble Weather Forecast Analyses”. IEEE Transac-
tions on Visualization and Computer Graphics 24.1 (Jan. 2018), 109–
119 2, 7.

[LLBP12] LIU, S., LEVINE, J. A., BREMER, P.-T., and PASCUCCI, V.
“Gaussian mixture model based volume visualization”. IEEE Symposium
on Large Data Analysis and Visualization (LDAV). IEEE. 2012, 73–77 2.

[LPK05] LOVE, A. L., PANG, A., and KAO, D. L. “Visualizing spa-
tial multivalue data”. IEEE Computer Graphics and Applications 25.3
(2005), 69–79 2.

[MH08] MAATEN, L. V. D. and HINTON, G. “Visualizing data using t-
SNE”. Journal of Machine Learning Research 9.Nov (2008), 2579–
2605 4.

[MMP*17] MOLNOS, S., MAMDOUH, T., PETRI, S., NOCKE, T.,
WEINKAUF, T., and COUMOU, D. “A network-based detection scheme
for the jet stream core”. Earth System Dynamics 8.1 (2017), 75–89 2.

[MVv05] MOBERTS, B., VILANOVA, A., and VAN WIJK, J. J. “Evalua-
tion of fiber clustering methods for diffusion tensor imaging”. VIS 05.
IEEE Visualization, 2005. Oct. 2005, 65–72 2, 4.

[MWK14] MIRZARGAR, M., WHITAKER, R. T., and KIRBY, R. M.
“Curve boxplot: Generalization of boxplot for ensembles of curves”.
IEEE Transactions on Visualization and Computer Graphics 20.12
(2014), 2654–2663 2.

[OLK*14] OELTZE, S., LEHMANN, D. J., KUHN, A., JANIGA, G.,
THEISEL, H., and PREIM, B. “Blood Flow Clustering and Applications
inVirtual Stenting of Intracranial Aneurysms”. IEEE Transactions on Vi-
sualization and Computer Graphics 20.5 (May 2014), 686–701 2.

[PH13] PÖTHKOW, K. and HEGE, H.-C. “Nonparametric Models for Un-
certainty Visualization”. Computer Graphics Forum 32.3 (2013), 131–
140 2.

[PS08] PEIKERT, R. and SADLO, F. “Height Ridge Computation and Fil-
tering for Visualization”. 2008 IEEE Pacific Visualization Symposium.
Mar. 2008, 119–126 5.

[Rei63] REITER, E. R. Jet-stream meteorology. 1st. University of Chicago
Press, 1963 2.

[RT12] ROSSL, C. and THEISEL, H. “Streamline Embedding for 3D Vec-
tor Field Exploration”. IEEE Transactions on Visualization and Com-
puter Graphics 18.3 (Mar. 2012), 407–420 2.

[SCW*18] SCHÄFLER, A., CRAIG, G., WERNLI, H., et al. “The North
Atlantic Waveguide and Downstream Impact Experiment”. Bulletin of
the American Meteorological Society 99.8 (2018), 1607–1637 6.

[SD05] STRONG, C. and DAVIS, R. E. “The surface of maximum wind
as an alternative to the isobaric surface for wind climatology”. Geophys.
Res. Lett. 32.4 (Feb. 2005), L04813+ 2.

[SG02] STREHL, A. and GHOSH, J. “Cluster ensembles—a knowledge
reuse framework for combining multiple partitions”. Journal of machine
learning research 3.Dec (2002), 583–617 2.

[SSL17] SPENSBERGER, C., SPENGER, T., and LI, C. “Upper Tro-
pospheric Jet Axis Detection and Application to the Boreal Winter
2013/14”. Mon. Wea. Rev. (Mar. 2017) 2.

[TN14] THOMAS, D. and NATARAJAN, V. “Multiscale Symmetry Detec-
tion in Scalar Fields by Clustering Contours”. IEEE Transactions on Vi-
sualization and Computer Graphics 20.12 (2014), 2427–2436 2.

[Wil11] WILKS, D. S. Statistical Methods in the Atmospheric Sciences.
3rd. Academic Press, June 2011 2.

[WLW*17] WANG, K.-C., LU, K., WEI, T.-H., SHAREEF, N., and SHEN,
H.-W. “Statistical visualization and analysis of large data using a value-
based spatial distribution”. 2017 IEEE Pacific Visualization Symposium
(PacificVis). IEEE. 2017, 161–170 2.

[WMK13] WHITAKER, R. T., MIRZARGAR, M., and KIRBY, R. M.
“Contour Boxplots: A Method for Characterizing Uncertainty in Feature
Sets from Simulation Ensembles”. IEEE Transactions on Visualization
and Computer Graphics 19.12 (Dec. 2013), 2713–2722 2.

[ZHQL16] ZHANG, H., HOU, Y., QU, D., and LIU, Q. “Correlation Visu-
alization of Time-Varying Patterns for Multi-Variable Data”. IEEE Ac-
cess 4 (2016), 4669–4677 2.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.


