
A
ut

ho
r’s

pr
ep

rin
t

1

Volumetric Isosurface Rendering
with Deep Learning-Based Super-Resolution

Sebastian Weiss∗ , Mengyu Chu†, Nils Thuerey‡ and Rüdiger Westermann§

Technical University of Munich.
Email: ∗sebastian13.weiss@tum.de, †mengyu.chu@tum.de, ‡nils.thuerey@tum.de, §westermann@tum.de

(a) (b) (c)

Fig. 1: Our super-resolution network can upscale (a) an input sampling of isosurface depths and normals at low resolution (i.e.,
320x240), to (b) a high resolution depth and normal map (i.e., 1280x960) with ambient occlusion. For ease of interpretation,
only the shaded output is shown. (c) The ground truth is rendered at 1280x960. Samples are from a 10243 grid, ground truth
renders at 0.16 and 18.6 secs w/ and w/o ambient occlusion, super-resolution takes 0.07 sec.

Abstract—Rendering an accurate image of an isosurface in a volumetric field typically requires large numbers of data samples. Reducing
this number lies at the core of research in volume rendering. With the advent of deep learning networks, a number of architectures
have been proposed recently to infer missing samples in multi-dimensional fields, for applications such as image super-resolution. In
this paper, we investigate the use of such architectures for learning the upscaling of a low resolution sampling of an isosurface to a
higher resolution, with reconstruction of spatial detail and shading. We introduce a fully convolutional neural network, to learn a latent
representation generating smooth, edge-aware depth and normal fields as well as ambient occlusions from a low resolution depth and
normal field. By adding a frame-to-frame motion loss into the learning stage, upscaling can consider temporal variations and achieves
improved frame-to-frame coherence. We assess the quality of inferred results and compare it to bi-linear and -cubic upscaling. We do this
for isosurfaces which were never seen during training, and investigate the improvements when the network can train on the same or
similar isosurfaces. We discuss remote visualization and foveated rendering as potential applications.

Index Terms—Machine Learning ; Extraction of Surfaces (Isosurfaces, Material Boundaries) ; Volume Rendering.

F

1 INTRODUCTION

MUCH of the research in isosurface volume ray-casting
has been devoted to the development of efficient search

structures, i.e., data structures that can reduce the number of data
samples required to determine where a view ray intersects the
surface. Despite their high degree of sophistication, for large
volumes with heterogeneous composition the traversal of these
data structures becomes increasingly costly. Since the workload of
ray-casting is linear in the number of pixels, frame rates can drop
significantly when isosurfaces in large volumes are rendered on
high resolution display systems.

This effect is intensified if global illumination effects are
considered. An important global illumination effects for isosurfaces
is ambient occlusion (AO). AO estimates for every surface point
the attenuation of ambient light from the surrounding, and uses this
information to enhance cavities and locations closely surrounded
by other surface parts. AO is simulated by testing along many
secondary rays per surface point whether the isosurface is hit,
requiring so many data samples, in general, that interactive frame
rates cannot be maintained.

In this work, we investigate the potential of convolutional neural
networks to further reduce the number of samples in isosurface
ray-casting, for both the reconstruction of the surfaces’ geometry
and ambient occlusions on it. This strategy works in tandem with
an acceleration structure to even more aggressively reduce the
number of samples. First, we shed light on the question whether an
accurate high resolution image of the surface—a super-resolution
image—can be inferred from only the surface points at a far lower
image resolution. Second, we aim at investigating whether ambient
occlusions can be inferred from the surface geometry without the
need to explicitly compute occlusions on that geometry.

From a signal theoretical point of view, it can be argued that new
structures—beyond what can be predicted from multiple frames of
low resolution inputs by classical up-scaling filters like bi-linear
or -cubic interpolation—cannot be inferred without any further
assumptions about their occurrence. Recent works in deep learning
have demonstrated that such assumptions can be learned by an
artificial neural network. Learning-based image and video super-
resolution have achieved remarkable results, by training networks

https://orcid.org/0000-0003-4399-3180

A
ut

ho
r’s

pr
ep

rin
t

2

(a) (b) (c) (d)

Fig. 2: Super-resolution on depth and normal maps with screen-space shading (a,c) leads to superior reconstruction quality compared
to super-resolution on color images (b,d). These images exhibit color bleeding and shifts, while our screen-space shading approach
successfully prevents these artifacts. (b) was converted to gray-scale to emphasize geometric differences.

using corresponding pairs of low- and high resolution color images
[1], [2]. Learned assumptions can then be transferred to a new low
resolution input, to generate a high resolution variant that adheres
to the structures seen at training time.

Similar observations have been reported in current works
in visualization, which demonstrate the use of neural-network-
based inference of data samples for volume upscaling and in-situ
visualization, as well as parameter-space exploration. Networks
are used to infer high resolution scalar fields and missing time-
steps between 3D simulation results [3], [4], and they learn
the dependencies between simulation results and the simulation
parameters to infer the results for new parameter settings [5]. These
works demonstrate that a network can learn to infer new data from
given samples, by learning either some type of interpolation, or
the local effects of parameter value modifications constraint by the
global data distribution.

1.1 Contribution

We present an artificial neural network that learns to upscale a
sampled representation of geometric properties of an isosurface
at low resolution to a higher resolution. We introduce a fully
convolutional neural network, using the FRVSR-Net [6] as a basis,
to learn a latent representation that generates a smooth, edge-aware
depth and normal field, as well as ambient occlusions, from a
low resolution depth and normal field. To support user navigation,
we integrate a loss function into the training pass that penalizes
frame-to-frame inconsistencies and achieves improved temporal
coherence in the reconstruction step.

Even though similar in spirit to classical super-resolution
techniques, we strive for a conceptually different approach in this
work: Instead of using color images and down-scaled ground truth
images for training, we aim at incorporating 3D scene information
in the form of per-frame depth and normal fields into the training
and reconstruction process. It is our goal to let the network learn
the relations between the isosurface geometry sampled at a low
and a high resolution, and to infer on the relations between the
geometry and shading.

We use the neural network to infer images of isosurfaces with
four times the resolution of the input images. Figure 1 demonstrates
the result of the upscaling process. Since the network is designed to
learn high resolution ambient occlusions from low resolution depth
and normal images, computations of ambient occlusions at runtime
are entirely avoided. Thus, compared to volumetric ray-casting at
full resolution, the number of samples from the volumetric field
can be reduced drastically.

To analyse the pixel-wise reconstruction error of the network,
we compare reconstructed images to ground truth renderings
and reconstructions using bi-linear and bi-cubic upscaling. These
comparison are performed using the peak signal-to-noise ratio
(PSNR) between ground truth and reconstructed results, as well as
the structure-similarity metric (SSIM) [7] that gives more weight
to the perceived quality of the results. We demonstrate very good
reconstruction quality even for isosurfaces that were never shown
to the network during training, and that the network’s accuracy can
be even improved by retraining on isosurfaces of shapes similar to
the ones used in the inference step.

Our specific contributions are:

• We show that it is beneficial to train the network based
on depth and normal images instead of color. Our results
indicate that this training process results in an improved
learning of geometric surface properties, as illustrated in
Figure 2.

• Instead of letting the network learn to infer AO in the high
resolution output from AO in the low resolution inputs,
our networks only receive low resolution depth and normal
maps as input. Thus, AO does not need to be simulated
at the samples of the low resolution input, which would
significantly increase the rendering time.

• To let the network learn to maintain frame-to-frame
coherence, we additionally add a motion loss for the
generated image content. In this way, the network achieves
improved reconstruction quality and becomes well suited
for interactive exploration tasks.

• We perform a quality evaluation to shed light on the recon-
struction accuracy of learning-based isosurface reconstruc-
tion. This evaluation shows the strengths and weaknesses of
this type of reconstruction, and helps to better understand
its specific properties and possible application scenarios.

For a number of isosurfaces with vastly different geomet-
ric properties, we demonstrate the potential of learning-based
upscaling. Furthermore, we discuss several use cases where
isosurface inference can significantly improve and accelerate
existing approaches, e.g., during interactive navigation in remote
visualization environments, in focus+context visualization, and in
foveated rendering.

2 RELATED WORK

Our approach works in combination with established acceleration
techniques for volumetric ray-casting of isosurfaces, and builds
upon recent developments in image and video super-resolution

A
ut

ho
r’s

pr
ep

rin
t

3

via artificial neural networks to further reduce the number of data
access operations.

Volumetric Ray-Casting of Isosurfaces: Over the last
decades, considerable effort has been put into the development
of acceleration techniques for isosurface ray-casting in 3D scalar
fields. Direct volume ray-casting of isosurfaces was proposed by
Levoy [8]. Classical fixed-step ray-casting traverses the volume
along a ray using equidistant steps in the order of the voxel size.
Acceleration structures for isosurface ray-casting encode larger
areas were the surface cannot occur, and ray-casting uses this
information to skip these areas with few steps. One of the most
often used acceleration structure is the min-max pyramid [9], a
tree data structure that stores at every interior node the interval of
data values in the corresponding part of the volume. Pyramidal data
structures are at the core of most volumetric ray-casting techniques
to effectively reduce the number of data samples that need to be
accessed during ray traversal.

For selected isosurfaces, bounding cells or simple geometries
were introduced to restrict ray-traversal to a surface’s interior [10],
[11]. Adaptive step-size control according to pre-computed distance
information aimed at accelerating first-hit determination [12].
Recently, SparseLeap [13] introduced pyramidal occupancy his-
tograms to generate geometric structures representing non-empty
regions. They are then rasterized into per-pixel fragment lists to
obtain those segments that need to be traversed.

Significant performance improvements have been achieved by
approaches which exploit high memory bandwidth and texture
mapping hardware on GPUs for sampling and interpolation in 3D
scalar fields [14], [15]. For isosurface ray-casting, frame to frame
depth buffer coherence on the GPU was employed to speed up
first-hit determination [16], [17]. A number of approaches have
shown the efficiency of GPU volume ray-casting when paired
with compact isosurface representations, brick-based or octree
subdivision, and out-of-core strategies for handling data sets too
large to be stored on the GPU [18], [19], [20], [21]. For a thorough
overview of GPU approaches for large-scale volume rendering, let
us refer to the report by Beyer et al. [22].

Related to isosurface rendering is the simulation of realistic
surface shading effects. AO estimates for every surface point the
integral of the visibility function over the hemisphere [23]. AO
can greatly improve isosurface visualization, by enhancing the
perception of small surface details. A number of approximations
for AO simulation in volumetric data sets have been proposed, for
instance, local and moment-based approximations of occluding
voxels [24], [25] or pre-computed visibility information [26]. The
survey by Ropinski et al. [27] provides a thorough overview of the
use of global illumination in volume visualization. Even though
very efficient screen-space approximations of AO exist [28], [29],
we decided to consider ray-traced AO in object-space to achieve
high quality.

Deep Learning of Super-Resolution and Shading: For
super-resolution of natural images, deep learning based methods
have progressed rapidly since the very first method [1] surpassed
traditional techniques in terms of peak signal-to-noise ratio (PSNR).
Regarding network architectures, Kim et al. introduced a very
deep network [30], Lai et al. designed the Laplacian pyramid
network [31], and advanced network structures have been applied,
such as the ResNet [32], [33] and DenseNet [34], [35] architectures.
Regarding loss formulations, realistic high-frequency detail is
significantly improved by using adversarial and perceptual losses
based on pretrained networks [33], [36]. Compared to single-

image methods, video super-resolution tasks introduce the time
dimensions, and as such require temporal coherence and consistent
image content across multiple frames. While many methods use
multiple low resolution frames [37], [38], [39], the FRVSR-
Net [6] reuses the previously generated high resolution image
to achieve better temporal coherence. By using a spatio-temporal
discriminator, the TecoGAN [40] network produced results with
spatial detail without sacrificing temporal coherence. Overall,
motion compensation represents a critical component when taking
into account multiple input frames. Methods either use explicit
motion estimation and rely on its accuracy [6], [40], [41], [42],
or spend extra efforts implicitly such as detail fusion [37] and
dynamic upsampling [39]. In our setting, we can instead leverage
the computation of reliable screen-space motions via raytracing.

In a different scenario, neural networks were trained to infer
images from a noisy input generated via path-tracing with low
number of paths, of the same resolution as the target, but with
significantly reduced variance in the color samples [43], [44].
Deep shading [45] utilized a neural network to infer shading from
rendered images, targeting attributes like position, normals, and
reflections for color images of the same resolution. None of these
techniques used neural networks for upscaling as we do, yet they
are related in that they use additional parameter buffers to improve
reconstruction quality of global illumination.

Deep Learning of Volumetric Fields: For volume visual-
ization, Zhou et al. [3] presented a learning-based approach for
volume upscaling which better preserves structural details and
volume quality than linear upscaling. Berger et al. [46] proposed a
deep image synthesis approach to assist transfer function design
using generative adversarial networks (GANs). Recently, the use
of convolutional neural networks for temporal upscaling has been
introduced [4]. The authors demonstrate the application of learning-
based reconstruction for in-situ visualization, by letting a network
learn to infer the time evolution of a physical field in-between a pair
of simulated time steps. In another work it has been demonstrated
that a neural network can learn the relationships between simulation
parameters and the simulation results [5]. By using training samples
consisting of parameter sets and corresponding results, the network
can infer the parameter dependencies and use the build latent
representation to generate results for new input values.

3 ISOSURFACE LEARNING

Our method consists of a pre-process in which an artifical neural
network is trained, and the upscaling process which receives a new
low resolution isosurface image and uses the trained network to
perform the upscaling of this image. Our network is designed to
perform 4× upscaling, i.e. from input images of size H×W to
output images of size 4H×4W . Note, however, that other upscaling
factors can be realized by straight forward adaptations and network
re-training.

The network is trained on unshaded surface points. It receives
the low resolution input image in the form of a depth and normal
map for a selected view, as well as corresponding high resolution
maps with an additional AO map that is generated for that view.
A low- and high resolution binary mask indicate those pixels
where the surface is hit. Once a new low resolution input image
is upscaled, i.e., high resolution depth, normal and AO maps are
reconstructed, screen-space shading is computed and added to AO
in a post-process to generate the final color.

A
ut

ho
r’s

pr
ep

rin
t

4

FLR
t ILR

t
Up-

scaling

Warp Flatten

Shading

SRNetOest
t−1 Oest

t

Cest
t

Õest
t−1 O f

FLR
t :

NLR
t :

DLR
t :

Nest
t :

Dest
t :

AOest
t :

Cest
t :

Fig. 3: Overview of network-based learning of isosurface image upscaling. Blue: low resolution inputs, green: high resolution outputs,
yellow: fixed processing steps, red: trained network. From left to right: The current optical flow FLR

t is used to warp the output of the
previous time step Oest

t−1. The current low resolution input ILR
t and the warped previous output is given as input to the network. The

network produces the output Oest
t including estimated high resolution mask (Mest

t , not shown in the figure), normal (Nest
t), depth (Dest

t),
and AO (AOest

t) maps . Deferred shading is used to generate the final color (Cest
t).

The network, given many low- and high resolution pairs of input
maps for different isosurfaces and views, internally builds a so-
called latent representation that aims at mapping the low resolution
inputs to their high resolution counterparts. A loss function is used
to penalize differences between the high resolution learned and
ground-truth variants. We investigate different networks, trained
with collections of randomly sampled views from a small number
of exemplary datasets. Images of isosurfaces at full resolution
are used as ground-truth training data. We analyze the upscaling
quality of these networks on new views for the training data, as
well as views of isosurfaces in datasets the networks have never
seen during training.

3.1 Input Data
Both the low- and high resolution input maps are generated
via volumetric ray-casting. AO in the high resolution image is
simulated by spawning 512 additional secondary rays per surface
point, and testing each of them for an intersection with the surface.
Since we aim at supporting temporally coherent super-resolution,
all images have a time subscript t, starting with t = 1 at the first
frame.

The following low resolution input maps of size H×W are
used in the training step:

• MLR
t ∈ [−1,+1]H×W : The binary input mask that specifies

for every pixel whether the isosurface is hit (mask=1) or
not (mask=-1). Internally, the network learns continuous
values, and uses these values to smoothly blend the final
color over the background.

• NLR
t ∈ [−1,+1]3×H×W : The normal map with the normal

vectors in screen-space.
• DLR

t ∈ [0,1]H×W : The depth map, in which 0 indicates that
no hit was determined.

The low resolution input to the network is then given by ILR
t :=

{MLR
t ,NLR

t ,DLR
t } ∈ R5×H×W . We subsequently call this the low

resolution input image.
In addition, the following map is generated during ray-casting:

• FLR
t ∈ [−1,+1]2×H×W : A map of 2D displacement vectors,

indicating the screen-space flow from the previous view to
the current view.

The screen-space flow is used to align the previous high resolution
maps with the current low resolution input maps. Under the
assumption of temporal coherence, the network can then minimize
for the deviation of the currently inferred high resolution map
from the temporally extrapolated previous one in the training
process. To compute the screen-space flow, assume that in the
low resolution view the current ray hits the isosurface at world
position xt . Since during rendering the current and previous model-
view-projection matrices are known, the current and previous
screen-space coordinates of the point xt , i.e., x′t and x′t−1, can be
computed. The flow is then computed as ft := x′t − x′t−1, indicating
how to displace the previous mask, depth and normal maps at time
t−1 to align them with the frame at time t. Since the described
method provides the displacement vectors only at locations in
the low resolution input image where the isosurface is hit in the
current frame, we use a Navier-Stokes-based image inpainting [47]
via OpenCV [48] to obtain a dense displacement field FLR

t . The
inpainting algorithm fills the empty regions in such a way that the
resulting flow is as incompressible as possible.

For aligning the previous maps, the current flow field is first
upscaled via bi-linear interpolation to the high resolution. In a
semi-Lagrangian fashion, we generate new high resolution maps
where every pixel in the upscaled maps retrieves the value in the
corresponding high resolution map from the previous frame, by
using the inverse flow vector to determine the target location.

The high resolution input data, which is used as ground
truth in the training process, is comprised of the same maps as
the low resolution input, plus an AO map AOGT

t ∈ [0,1]4H×4W .
Here, values of one or zero indicate no or full occlusion,
respectively. Thus, the ground truth image can be written as
OGT

t := {MGT
t ,NGT

t ,DGT
t ,AOGT

t } ∈ R6×4H×4W . Once the network
is trained with ILR

t and OGT
t , it can infer a new high resolution

output image Oest
t := {Mest

t ,Nest
t ,Dest

t ,AOest
t } ∈ R6×4H×4W from a

given low resolution image and the high resolution output of the
previous frame.

3.2 Super-Resolution Surface Inference
Once the network has been trained, new low resolution input images
are given to the network to infer the corresponding high resolution
output images. For the inference step, we build upon the frame-
recurrent neural network architecture proposed by Sajjadi et al.

A
ut

ho
r’s

pr
ep

rin
t

5

[6]. At the current timestep t, the network is given the input ILR
t

and the previous high resolution prediction Oest
t−1, warped using the

image-space flow, for temporal coherence. It produces the current
prediction Oest

t , and after a post-processing step also the final color
Cest

t ∈ [0,1]3×4H×4W .
Figure 3 shows all data that are used and inferred by the

network, together with the different processing stages an inference
step is comprised of. These processing stages are:

1. Upscaling and Warping: After upscaling the screen-space
flow FLR

t , it is used as described to warp all previous estimated
maps Oest

t−1, leading to Õest
t−1 ∈ R6×4H×4H .

2. Flattening: Next, the warped previous maps Õest
t−1 are

flattened into the low resolution by applying a space-to-depth
transformation [6]

Ss : R6×4H×4W → R426×H×W . (1)

I.e., every 4× 4 block of the high resolution image is mapped
to a single pixel in the low resolution image. The channels of
these 4× 4 = 16 pixels are concatenated, resulting in a new low
resolution image O f with 16-times the number of channels.

3. Super-Resolution: The super-resolution network then
receives the current low resolution input ILR

t (5 channels) and the
flattened, warped prediction from the previous frame O f (i.e., 16 ·6
channels). The network then estimates the six channels of the
output Oest

t , the high resolution mask, normal, depth, and AO maps.
4. Shading: To generate a color image, screen-space Phong

shading with AO is applied as a post-processing step, i.e.,

Crgb = Phong(ca,cd ,cs,cm,Nest
t)∗AOest

t , (2)

with the ambient color ca, diffuse color cd , specular color cs and
material color cm as parameters.

The network also produces a high resolution mask Mest
t as

output. While the input mask MLR
t is comprised only of values -1

(outside) and +1 (inside), Mest
t can take on any value. Hence, Mest

t
is clamped first to [−1,+1] and then rescaled to [0,1], leading to
M′t

est. This map shows a smooth fall-off of values across edges and
and allows the network to smooth out edges via

Cest
t = lerp(cbg,Crgb,M′t

est), (3)

with cbg being the background color.

3.3 Loss Functions

In the following, we describe the loss functions we have used during
training to calculate the model error in the optimization process.
Via the loss functions, the importance of certain features—and
thus the fidelity by which they can be inferred—can be controlled.
The single loss functions we use are common in artificial neural
networks, yet in our case they are applied separately to different
channels of the inferred and ground truth images. The total loss
function used for training the network is a weighted sum of the loss
functions below. In section 5, we analyze the effects of different
loss functions on the reconstruction quality.

1. Spatial loss: As a baseline, we employ losses with regular
vector norms, i.e. L1 or L2, on the different outputs of the network.
Let X be either the mask M, the normal map N, the depth map D,
the AO map AO or the shaded output C. Then the L1 and L2 losses
are given by:

LX ,L1 = ||X
est
t −XGT

t ||1, LX ,L2 = ||X
est
t −XGT

t ||22.

2. Perceptual loss: Perceptual losses, as proposed by
Gatys et al. [49], Dosovitskiy and Brox [50], and Johnson et al.
[51] have been widely adopted to guide learning tasks towards
detailed outputs instead of smoothed mean values. The idea is
that two images are similar if they have similar activations in
the latent space of a pre-trained network. Let φ be the function
that extracts the layer activations when feeding the image into the
feature network. Then the distance is computed by

LX ,P = ||φ(Xest
t)−φ(XGT

t)||22. (4)

As feature network φ , the pretrained VGG-19 network [52] is
used. We used all convolution layers in all spatial dimensions
as features, with weights scaled so that each layer has the same
average activation when evaluated over all input images.

Since the VGG network was trained to recognize objects in
color images in the space [0,1]3, the shaded output C can be directly
used. This perceptual loss on the color space can be backpropagated
to the network outputs, i.e. normals and ambient occlusions, with
the help of the differentiable Phong shading. This shading is part
of the loss function, and is implemented such that gradients can
flow from the loss evaluation into the weight update of the neural
network during training. Hence, with our architecture the network
receives a gradient so that it can learn how the output, e.g., the
generated normals, should be modified such that the shaded color
matches the look of the target image. When applying the perceptual
loss on other entries, the input has to be transformed first. The
normal map is rescaled from scale [−1,+1]3 to [0,1]3, and depth
and masking maps are converted to grayscale RGB images. We did
not use additional texture or style loss terms [36], [49], since these
introduce artificial details and roughness in the image which is not
desired in smooth isosurface renderings.

3. Temporal loss: All previous loss functions worked only
on the current image. To strengthen the temporal coherence and
reduce flickering, we employ a temporal L2 loss [53]. We penalize
differences between the current high resolution image Oest

t and the
previous, warped high resolution image Õest

t−1 with

LX ,temp = ||Xest
t − X̃est

t−1||22, (5)

where X can be M, N, D, AO or C.
In the literature, more sophisticated approaches to improve the

temporal coherence are available, e.g. using temporal discriminators
[40]. These architectures give impressive result, but are quite hard
to train. We found that already with the proposed simple temporal
loss, good temporal coherence can be achieved in our current
application. We refer the readers to the accompanying video for a
sequence of a reconstruction over time.

4. Loss masking: During screen-space shading in the post-
process (see section 3.2), the output color is modulated with the
mask indicating hits with surface points. Pixels where the mask
is -1 are set to the background color. Hence, the normal and AO
values produced by the network in these areas are irrelevant for the
final color.

To reflect this in the loss function, loss terms that do not act
on the mask (i.e. normals, ambient occlusions, colors) are itself
modulated with the mask so that areas that are masked out don’t
contribute to the loss. We found this to be a crucial step that
simplifies the network’s task: In empty regions, the ground truth
images are filled with default values in the non-mask channels,
while with loss masking, the network does not have to match these
values.

A
ut

ho
r’s

pr
ep

rin
t

6

MLR
t

NLR
t

DLR
t

ILR
t

5 channels

O f
96

channels

C
on

v,
64

R
eL

U

C
on

v,
64

R
eL

U

C
on

v,
64

+ · · ·

10 residual blocks

2x
U

ps
am

pl
in

g

C
on

v,
64

R
eL

U
2x

U
ps

am
pl

in
g

C
on

v,
64

R
eL

U

C
on

v,
64

R
eL

U

C
on

v,
6 +

4x
U

ps
am

pl
in

g

Mest
t

Nest
t

Dest
t

AOest
t

Oest
t

6 channels

Fig. 4: Network architecture for the SRNet. Within the network, ⊕ indicates component-wise addition of the residual. All convolutions
use 3x3 kernels with stride 1. Bilinear interpolation was used for the upsampling layers.

5. Adversarial Training: Lastly, we also employed an
adversarial loss as inspired by Chu et al. [40]. In adversarial
training, a discriminator network is trained parallel to the super-
resolution network generator. The discriminator receives ground
truth images and predicted images, and is trained to classify
whether the input was ground truth or not. This discriminator
is then used in the loss function of the generator network (see, e.g.,
Goodfellow et al. [54] for further details).

In our scenario, for evaluating the predicted images the
discriminator is provided with

• the high resolution output Oest
t , and optionally the color

Cest
t ,

• the input image ILR
t as a conditional input to learn and

penalize the mismatching between input and output,
• the previous frames ILR

t−1,O
est
t−1, and optionally Cest

t−1 to learn
to penalize for temporal coherence.

To evaluate the discriminator score of the ground truth images, the
predicted images Oest are replaced by OGT.

As a loss function of the discriminator, we use the binary cross
entropy loss. More concretely, let z be the input over all timesteps
and G(z) the generated results, i.e. the application of the super-
resolution prediction on all timesteps. Let D(x) be the discriminator
that takes the high resolution outputs as input and produces a single
scalar score. Then the discriminator is trained to distinguish fake
from real structures by minimizing

LGAN,D =− log(D(x))− log(1−D(G(z))). (6)

The generator is trained to minimize

LGAN,G =− log(D(G(z))) (7)

4 LEARNING METHODOLOGY

In this chapter, we provide a detailed description of the used
network architecture, as well as the training and inference steps.
We also shed light on the dependency of the reconstruction quality
on the used loss functions.

4.1 Network Architecture
The network architecture is a fully convolutional frame-recurrent
neural network (FRVSR-Net) consisting of a series of residual
blocks [6]. An illustration of the network’s building blocks and its
topology is given in Figure 4. he modifications we have performed
are with respect to the number of input and output channels, the

other parts of the network are kept unchanged. The generator
network starts with one convolutional layer to reduce the 101 input
channels (5 from ILR

t , 6∗42 from O f) into 64 channels. Next, 10
residual blocks are used, each of which contains 2 convolutional
layers. These are followed by two upscaling blocks (2× bilinear
upscaling, a convolution and a ReLU) arriving at a 4× resolution,
still with 64 channels. In a final step, two convolutions process
these channels to reduce the latent feature space to the desired 6
output channels. All layers use 3x3 kernels with stride 1.

The network is a residual network, i.e. it learns changes to
the input. As shown in previous work [32], this improves the
network’s capability to generalize to new data, as it can focus on
generating the residual content. Hence, the 5 channels of the input
are bi-linearly upsampled and added to the first five channels of the
output, producing Mest

t ,Nest
t and Dest

t . The only exception is AOest
t ,

which is inferred from scratch, as there is no low resolution input
AO map.

4.2 Training Data
The training and validation data consists of images of isosurfaces
from different timesteps and multi-resolution versions of the Ejecta
dataset. This dataset stems from a particle-based simulation of a
supernova that was resampled to a grid with resolutions from 2563

to 10243. We choose this test suite because it contains isosurfaces
showing many different geometric structures, ranging from very
small details to rather smooth low-frequency parts. Of these, we
rendered 500 sequences, each consisting of 10 frames. For each
sequence, two views are selected at random and used as start
view and end view of a smooth camera path. Eight additional
in-between views are then computed along the path, and used to
render corresponding frames at a low image resolution of 1282,
see Figure 5 for examples. 5000 sub-regions with a spatial size
of 322 (for the low image resolution) and a temporal length of 10
are randomly cropped from the initial sequences, and are split into
training (80%) and validation (20%) data. By rejection sampling
we ensure that in each sub-region at least 50% of the pixels show a
surface hit. The smaller spatial size is needed to fit multiple inputs
at once into the memory during training and benefit from batch
processing in the optimizer. The number of timesteps is kept the
same. On a single Nvidia GeForce GTX 1080 Ti, the networks
are trained for 100 to 500 epochs with training times from 3 to 18
hours, depending on the used cost function.

At this point, it is worth noting that the low resolution
input images are directly generated by the raycaster. This is

A
ut

ho
r’s

pr
ep

rin
t

7

Fig. 5: Example images that are used to train our networks.

substantially different from common practice in image and video
super-resolution [36], [40], where the inputs are low-pass filtered
and downscaled versions of the original high resolution images.
Thus, in our case the input images contain a huge amount of
aliasing due to sub-sampling of the volumetric field, which poses a
challenging task for the network.

The ground truth AO at a surface point is computed by sampling
random directions on the hemisphere and testing for intersections
between rays along these directions and the isosurface. This gives
a much higher visual quality than screen-space AO, which tests
samples against surface points based on screen-space depth.

To infer the current frame, the network takes the previous
high resolution prediction Oest

t−1 as input. Since the previous frame
is not available in the first frame of a sequence, we evaluated
different options to initialize the first previous high resolution input:
Zeroing all entries, default setting to mask=0, normal=[0,0,1],
AO=1, and an upscaled version of the current input. Since we did
not experience any noticeable difference between the three variants,
we used the first and most simple option to train the network.

4.3 Loss Function Characteristics

The losses for training different super-resolution networks are
obtained by using different weighted combinations of the individual
losses described in subsection 3.3. Table 1 shows the specific weight
combinations that are used for the networks we have analysed in
our work.

For the networks trained with the losses in Table 1, Figure 6
shows a visual comparison of the surface structures (without AO)
they infer from a given low resolution input image. In a number
of tests we have confirmed the representativeness of these results,
regardless of the type of isosurface and variations in the loss
function weights. In subsection 5.2, we provide a quantitative
evaluation that supports these findings.

All networks make use of a temporal loss LX ,temp to reduce
flickering between successive frames. Due to the warping of the
previous image, however, the use of a temporal loss can introduce
smoothing. By changing the weighting between the temporal loss
and the other losses, more focus can be put on either sharp details
or improved temporal coherence.

As a baseline for comparison, we use a network that performs
super-resolution on the low resolution color images, only including
Phong shading but no AO. This network—“Shaded”—receives an
RGB color image and a mask, and outputs the upscaled versions.
In particular, this is different from our proposed upscaling process,
where the inputs to the network comprise geometry, i.e., a depth
and a normal field, and the final shading is performed in a deferred
pass on the inferred high resolution normal field. Our experiments

Network Losses
Shaded LGAN,G +0.5LC,P +50LC,temp

network acts on shaded colors
L1-color LM,L1 +LAO,L1 +10LC,L1 +0.1LC,temp

L1-geometry LM,L1 +LAO,L1 +10LN,L1 +100LD,L1 +0.1LC,temp
Perceptual LM,L1 + LAO,L1 + LN,L1 + LD,L1 + 0.1LC,temp +

5LN,P +LAO,P
GAN LM,L1 + LAO,L1 + LN,L1 + LD,L1 + 0.1LC,temp +

LGAN,G

TABLE 1: Networks and their specific loss function configurations.

have shown that the network “Shaded” infers the best results if it
utilizes a combination of perceptual and adversarial loss. The exact
loss function configuration is given in Table 1.

Figure 6, however shows that the “Shaded” network produces
color distortions and over-blurring (see also Figure 2). The visual
quality of this network falls consistently below the quality of the
networks trained on geometry. This result supports our strategy to
let the network learn upscaling the depth and normal fields, and
shade the image in a deferred pass. The following networks all
follow this strategy.

The second network we evaluate is “L1-color”, which is trained
with L1 loss on colors. It acts on depths and normals, yet it lets the
loss function consider the colors after deferred shading. Apparently,
this deteriorates the quality of the inferred output and produces
rather washed out results.

The networks “L1-geometry”, “Perceptual’ and “GAN” also
train on depths and normals, yet they work with the mask, depth,
normal and AO maps in the loss function. Thus, all three networks
are capable of focusing more on the geometric properties of
isosurfaces rather than their appearance. This is confirmed by
our results, which show that these networks can infer far more
details from the low resolution inputs.

(a) (b) (c)

(d) (e) (f)

Fig. 6: Visual comparison of networks with different loss function
configurations: (a) Shaded, (b) L1-color, (c) L1-geometry (our final
model), (d) Perceptual, (e) GAN, (f) ground truth

The network “L1-Geometry” trains only with L1-losses on
all input channels, i.e., mask, depth, normal, and AO. Adding
a perceptual loss on the normal and AO fields, i.e., network
“Perceptual”, doesn’t lead to any visual differences (Figure 6).
We attribute this to the fact that the VGG-19 network was trained
on color images and does not explicitly consider the relationships
between geometric variations—given by the depth and normal
fields—and the shaded output. We also noticed that the training
time increases about a factor of six when using the VGG-19
network. Even though this drawback can probably be weakened
by using fewer layers of the VGG-19 network, we still expect a
significant performance loss if quality is maintained.

A
ut

ho
r’s

pr
ep

rin
t

8

With network “GAN”, we evaluate the influence of an adversar-
ial loss on reconstruction fidelity. In our experiments, however, the
”GAN” network produces more high-frequent details that actually
decrease the quality of the reconstruction, and it significantly
increases both training time and memory requirements by the
discriminator. As a consequence, we decided to focus on directly
supervised networks instead of GAN variants in this work.

In summary, of all tested networks the “L1-geometry” network
with minor objective on temporal coherence shows superior
performance, both in terms of training time and reconstruction
quality. This network does only see shaded colors in the temporal
coherence loss during the training process, and is thus forced to
focus primarily on the reconstruction of geometry.

5 EVALUATION

We compare the “L1-geometry” network with bi-linear and bi-cubic
filtering as baseline methods on unseen test data. To validate how
good the trained networks generalize to new isosurfaces, we let the
network also upscale low resolution isosurface images of volumes
which were never shown during training (see Figure 7): A CT scan
of a human skull with a resolution of 2563, a CT scan of a human
thorax at 2563, and a numerical simulation of a Richtmyer-Meshkov
instability at 10243.

5.1 Qualitative Evaluation

To analyse the visual quality of network-based upsampling, we
used the “L1-geometry” network to upsample images of isosurfaces
in the Ejecta dataset from perspectives that were never seen during
training (see Figure 1 and Figure 7). The results indicate that
the network can effectively infer the surface structures from the
structures it has learned during training. In particular, compared to
bi-linear and bi-cubic upsampling the network infers meaningful
details in line with the geometric surface properties.

To demonstrate the reconstruction quality even for isosurfaces
in datasets that were never seen by the network during training,
we compare the results of bi-linear and network-based upscaling
to the ground truth images using the datasets introduced before.
The accompanying video shows the results when the network
considers frame-to-frame coherence during animations. For the
human skull, which exhibits smooth surfaces similar to Ejecta, the
inference results are very close to the ground truth. A similar result
is obtained when upscaling images of isosurfaces in the Richtmyer-
Meshkov dataset. Despite the many fine-grained geometric details,
the network can reconstruct the isosurface in a fairly accurate way.
The network, however, faces difficulties when applied to images
of an isosurface exhibiting geometric details at a higher frequency
than it was trained on, as for example in the Thorax dataset. In this
case, the network cannot reconstruct all fine-scale details accurately
and rather blurs out the missing surface structures.

5.2 Quantitative Evaluation

To quantify the error that is introduced by learning-based isosurface
reconstruction, all datasets are rendered 500 times from different
views, and for each upscaled image the PSNR and SSIM are
computed between the high resolution ground truth rendering and
the reconstruction. The results, in the form of the medians, the
n% quantiles, and the range of outliers, are shown in Figure 8 and
Figure 9.

The PSNR is computed as

PSNR(Oest
t ,OGT

t) =−10log10(||Oest
t −OGT

t ||22), (8)

where Oest
t and OGT

t are the reconstructed and ground truth images,
respectively. The SSIM is defined as

SSIM(Oest
t ,OGT

t) =
(2µestµGT + c1)(2σest,GT + c2)

(µ2
est +µ2

GT + c1)(σ2
est +σ2

GT + c2)
, (9)

where µest and µGT are the average values of Oest
t and OGT

t , σ2
est

and σ2
GT are the variances of Oest

t and OGT
t , σest,GT is the covariance

between Oest
t and OGT

t , and c1 and c2 are two small constants to
avoid division by zero.

The first quantitative evaluation sheds light on the reconstruc-
tion quality of the networks that were trained using different loss
functions. Figure 8 confirms the strength of the “L1-geometry”
network compared to the alternative variants presented in sub-
section 4.3. These results back up our decision to chose the “L1-
geometry” network as our preferred model, and to use it in the
following quantitative analysis of the reconstruction quality.

In Figure 9, we analyze the reconstruction quality for both
the normal and depth field, and further asses how well local
illumination values and AO values can be inferred from the normal
fields. Note here that AO values are not available at the low
resolution input samples, because their simulation would be far
too costly to maintain interactive frame rates. Thus, bi-linear and
bi-cubic upscaling cannot generate high resolution AO. Therefore,
the error measures were applied on the shaded color output, once
without AO and including measures for bi-linear and bi-cubic, and
once with AO and excluding bi-linear and bi-cubic upscaling. As
can be seen, the PSNR and SSIM always slightly decrease when
AO is added. This, however, is not particularly surprising, since
one more quantity is inferred by the network that could introduce
some error.

It can be seen that the “L1-geometry” network always achieves
better results than the other alternatives, even for isosurfaces of
volumes that were not seen during training. This indicates the
principal capability of neural networks to generalize to new data.
Since the PSNR cannot capture the “sharpness” of the image very
well [7], the differences are rather moderate when using the PSNR
as quality metric. However, the differences become significant
when using SSIM as quality metric. This is further confirmed by
the images in subsection 5.1, which also show far better perceptual
quality of network-based reconstruction compared to bi-linear and
bi-cubic upscaling.

As described in subsection 4.2, the “L1-geometry” network is
trained solely on Ejecta (see Figure 5). This dataset does not contain
the specific structures and rather smooth AO distribution observed
in the Cloud dataset, a dataset of 12 clouds by Kallweit et al. [55].
An example of a volume typical for this dataset can be seen in
Figure 10. We therefore re-trained the network for 600 epochs
on images of isosurfaces in the Cloud dataset. The statistics in
Figure 9 indicate that the re-trained network performs substantially
better on the Cloud dataset, both in terms of PSNR and SSIM. This
is also confirmed by Figure 10, which shows the inference results
of the “L1-geometry” network, once trained on Ejecta and once on
Cloud. The comparison to the ground truth image indicates strong
improvement of the reconstruction accuracy when specializing the
network on a specific dataset.

The evaluation so far shows that network-based upscaling
outperforms bi-linear and bi-cubic upscaling, yet it does not provide
information about the number of erroneously inferred pixels and

A
ut

ho
r’s

pr
ep

rin
t

9

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

Fig. 7: Comparison of upscaling quality: (a) input, (b) bi-linear, (c) our network, (d) ground truth on the Skull, Thorax, Richtmyer-Meshkov
and Ejecta dataset (top to bottom).

25 50 75 100 125 150

GAN

Perceptual loss

L1-geometry (Ours)

L1-color

Shaded

GAN

Perceptual loss

L1-geometry (Ours)

L1-color

Shaded

57.8167

61.7412

63.2695

58.3297

56.6772
PSNR

0.7 0.8 0.9 1.0

0.9416

0.9699

0.9708

0.9361

0.8114
SSIM

Statistics on the color output (no AO)

Fig. 8: Reconstruction quality of networks trained on the Cloud
dataset using different loss functions. The orange line shows the
median and the box outlines the 25% and 75% quantile.

their deviation from the ground truth. To investigate this aspect,
we further analyze how many “good pixels” and “bad pixels” exist
using the Regression Error Characteristic (REC) curves [56]. Given
a certain error tolerance, REC curves show the percentage of pixels
that are accurate according to the ground truth, i.e. REC(τ) =
P(|xest − xGT| ≤ τ). It is widely used as a better performance
description of a predictive model comparing to error statistics like
PSNR, because the performance is illustrated across the range of

errors. In our cases, we evaluate the REC curves on the normal,
depth, AO and the gray-scale pixel intensity after shading without
AO for our model in together with bi-linear and bi-cubic upscaling
in Figure 11(a). First and foremost, the measurements indicate
that erroneously inferred pixels cannot be avoided by any of the
methods. The pixel-wise difference images in Figure 11(b) and
(c) indicate that these errors are predominantly introduced along
the silhouettes and cavities, where sometimes the network cannot
accurately extrapolate the sharp transitions. Second, it is shown
that network-based inference can reduce the number of pixels
with a certain deviation significantly. With the Ejecta dataset as
example, bi-linear upscaling generates an image in which 16% of
the pixels have an absolute error to the ground truth intensity value
larger than 0.1, with a maximal error of 1 between completely
dark and completely bright. When using network-based upscaling,
this number is reduced to 12.4%. Similar results hold for all other
test datasets, demonstrating the superior quality of network-based
upscaling.

5.3 Timings

To evaluate the performance of isosurface super-resolution, we
compare it to volumetric ray-casting on the GPU using an empty-
space acceleration structure. Rendering times for the shown
isosurfaces in the four test datasets are given in Table 2, for a

A
ut

ho
r’s

pr
ep

rin
t

10

Ours

Ours (trained on Clouds)

bicubic

bilinear

Ours

Ours (trained on Clouds)

bicubic

bilinear

Ours

Ours (trained on Clouds)

bicubic

bilinear

Ours

Ours (trained on Clouds)

bicubic

bilinear

Ours

Ours (trained on Clouds)

bicubic

bilinear

Cl
ou

ds

57.1133

57.9791

43.8587

52.2123
normal

150.2499

165.8695

64.6673

71.9377
depth

52.7574

63.9146

AO

72.4287

73.481

62.6014

68.7088
color (no AO)

67.0572

70.6565

color (with AO)

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ej
ec

ta

42.6414

33.4849

39.7373

105.4935

62.6975

63.7845

48.3238 53.9927

46.8274

50.8499

53.1151

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

RM

20.5663

17.0926

19.5998

81.561

43.6069

45.4729

26.3522 35.4553

32.0149

33.757

34.6845

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Th
or
ax

23.5955

20.4111

22.6351

88.3306

47.8777

48.6854

33.42 42.0121

39.2135

41.0351

42.2427

0 25 50 75 100 125 150

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Sk
ul
l

29.0374

24.2633

27.1735

100 200 300 400

66.7865

36.8621

38.2682

25 50 75 100 125 150 175

30.7809

50 100 150 200

36.152

32.8608

34.5028

50 100 150

34.765

PSNR

(a)

Ours

Ours (trained on Clouds)

bicubic

bilinear

Ours

Ours (trained on Clouds)

bicubic

bilinear

Ours

Ours (trained on Clouds)

bicubic

bilinear

Ours

Ours (trained on Clouds)

bicubic

bilinear

Ours

Ours (trained on Clouds)

bicubic

bilinear

Cl
ou

ds

0.9729

0.9757

0.8998

0.9568
normal

0.9999

0.9999

0.9748

0.9875
depth

0.749

0.8667

AO

0.9798

0.9824

0.9339

0.9653
color (no AO)

0.9554

0.9733

color (with AO)

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ej
ec

ta

0.9686

0.8938

0.9468

0.9999

0.9934

0.9934

0.9332 0.9771

0.9326

0.9616

0.9671

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

RM

0.8249

0.7178

0.7835

0.9969

0.9687

0.977

0.7267 0.8861

0.828

0.8608

0.8553

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Th
or

ax

0.8015

0.6782

0.7441

0.9971

0.94

0.9611

0.7009 0.8641

0.8088

0.8525

0.8228

0.4 0.6 0.8 1.0

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Sk
ul

l

0.954

0.8925

0.9373

0.4 0.6 0.8 1.0

0.9998

0.9941

0.9952

0.4 0.6 0.8 1.0

0.9

0.4 0.6 0.8 1.0

0.9725

0.9412

0.9606

0.4 0.6 0.8 1.0

0.961

SSIM

(b)

Fig. 9: (a) PSNR and (b) SSIM on the training and test examples for different upscaling approaches. Box plots show medians, quantiles
and outliers. Since bi-linear and bi-cubic upsampling cannot infer AO, error measures are not available for these fields.

viewport size of 1920x1080. Each dataset was rendered from
a number of different views along a pre-recorded path, so that
the dataset covers the entire viewport. The isosurface renderer is
implemented with Nvidia’s GVDB library [57], an optimized GPU
raytracer written in CUDA. The super-resolution network uses
Pytorch. The timings were performed on a workstation running
Windows 10, equipped with an Intel Xeon W-2123, 3.60Ghz, 8
logical cores, 64GB RAM, and a Nvidia RTX Titan GPU.

The table shows the time to render the ground truth image at full
resolution with AO, the rendering times for the low resolution input

without AO, and the time to perform super-resolution upscaling of
the input using the “L1-geometry” network. As the computation
times for all three different quantities do not differ significantly
from frame to frame, the average time is reported. The time to warp
the previous image, perform screen-space shading, and IO between
the renderer and the network are not included. For rendering the
ground truth AO, 128 samples were taken. This gives reasonable
results, but noise is still visible.

As one can see from Table 2, the time to simulate AO increases
the computational cost significantly. Because the Ejecta dataset

A
ut

ho
r’s

pr
ep

rin
t

11

(a) Network trained on w/o Clouds. (b) Ground truth rendering of Cloud. (c) Network re-trained only on Clouds.

Fig. 10: (a) Our network trained on the Ejecta dataset cannot faithfully reproduce the smooth geometry and silhouettes in the Cloud
dataset, as shown in the ground truth rendering (b). It tends to “overshoot” the AO values and produces artefacts at the boundaries. (c) By
re-training the network on images of isosurfaces in the Cloud dataset, the reconstruction quality is improved.

40.00%

60.00%

80.00%

100.00%

C
lo

u
d
s

normal depth AO color (no AO)

40.00%

60.00%

80.00%

100.00%

E
je

c
ta

0.01 0.1 1.0

40.00%

60.00%

80.00%

100.00%

R
M

0.01 0.1 1.0 0.01 0.1 1.0 0.01 0.1 1.0

(a)

(b) (c)

Fig. 11: (a) REC curves, the cumulative accuracy over the error
tolerance on L1-distance |xest− xGT|. A higher value is better. The
spatial distribution of the pixel-wise error for the (b) normal and
(c) depth map.

contains less empty blocks that can be skipped during rendering
than the Richtmyer-Meshkov dataset, the computation time for the
first hit (high resolution image without AO) is twice as high as
that for the Richtmyer-Meshkov dataset. As expected, the time to
evaluate the super-resolution network stays constant for all four
datasets, as it only depends on the viewport size.

As an example, the total time to render the input and 4 times
upscale images of isosurfaces in the Richtmyer-Meshkov dataset is
0.014s+0.072s = 0.086s. Hence, the network approximately takes
the same time it takes to render the full resolution without AO
(0.088s), but in this time also produces a smooth AO map. More
prominently, for the Ejecta dataset, a high resolution rendering
without AO takes 0.163s, approximately 50% longer than rendering
the low resolution version and upscaling it, which requires 0.103s
in total. The latter version also provides AO “for free”. Once AO

Dataset High-res
(no AO)

High-res
(with AO)

Low-res Super-res

Skull 2563 0.057 4.2 0.0077 0.071
Thorax 2563 0.069 9.1 0.010 0.071
R.-M. 10243 0.088 14.5 0.014 0.072
Ejecta 10243 0.163 18.6 0.031 0.072

TABLE 2: Timings in seconds for rendering an isosurface in
FullHD (1920x1080) resolution, averaged over 10 frames.

is included in the high resolution rendering, the rendering time
increases to 18.6s, hence the super-resolution outperforms the high
resolution renderer by two orders of magnitudes.

6 DISCUSSION

Our results demonstrate that deep learning-based inference has po-
tential for upscaling tasks beyond classical image-based approaches.
The trained network seems to infer well the geometric properties
of isosurfaces in volumetric scalar fields. We believe this result is
of theoretical interest on its own, and at the same time opens up
new perspectives in a number of practical use cases. Even though
it is not possible, in general, to predict the error that is introduced
by the network, we believe there are two classes of applications
were learning-based isosurface inference is eligible: Into the first
class fall applications were a high resolution surface does not
exist, for instance, because due to time and memory constraints
only a low resolution volumetric field can be acquired. In such
scenarios, learning-based inference might be able to predict where
certain features can occur and, thus, can guide refined simulations
or measurements. Regarding this use case, it will be important to
investigate whether artificial neural networks can infer from a given
high resolution image of an isosurface in a low resolution volume
the isosurface rendering from the corresponding high resolution
volume.

Into the second class fall applications were the user is willing
to make tradeoffs in fidelity and speed, i.e., were reconstruction
quality can be sacrificed for speed, at least temporarily or locally.
In the following, we shed light on two such applications and
demonstrate the practical usefulness of isosurface inference.

6.1 Use Cases
One application is the utilization of isosurface inference to support
an interactive exploration of high resolution volume datasets. When
the high resolution dataset cannot be rendered at interactive rates,
it is common practice in many visualization tools to render a low

A
ut

ho
r’s

pr
ep

rin
t

12

Fig. 12: Level of detail rendering for interactive exploration. Left: Rendering of isosurfaces in the original datasets at full image resolution.
Middle: Rendering the isosurfaces in the original datasets at 1/4 the image resolution and upscaling to full image resolution. Right:
Rendering the isosurfaces in the low-pass filtered and down-sampled datasets with half the resolution in each dimension at full image
resolution.

resolution version at full image resolution during interaction, and
to switch back to the high resolution dataset once the camera stands
still. This enables an interactive exploration, yet provides views in
which many details are lost and even the topology of the isosurface
can be corrupted due to the downsampling process that is used to
generate the low resolution version (see 3rd column in Figure 12).
In contrast, upscaling a low resolution image of the high resolution
dataset (2nd column in Figure 12) generates a far more detailed
view and preserves topology to a large extend. Notably, upscaling
the low resolution image of the high resolution isosurface requires
roughly the same time as rendering the low resolution isosurface at
full image resolution.

The same principle can be applied in remote visualization,
where in practice the bandwidth of the communication channel
across which rendered images are transmitted often limits the
streaming performance. Thus, the degree of interactivity often
falls below what a user expects. To weaken this limitation, during
interaction low resolution images of the dataset can be streamed to
the client-side and upscaled using trained networks.

As a second use case we have integrated isosurface inference
into foveated rendering. In foveated rendering, a focus region in
the image is given by the falloff of acuity in the visual periphery.
Since fine details can only be sensed within a small portion (5°) of
the visual field, with increasing angular distance from the central
region of visual stimulus, the number of samples can be reduced
accordingly. This is exploited in foveated rendering to reduce the
number of samples rendered in the peripheral region, by either
upscaling low resolution renderings [58] or interpolating between
a sparse set of initial samples in this region [59].

To use network-based inference in foveated rendering, we
utilize renderings at different image resolution. While the image
is rendered at full resolution in the region of highest acuity, it is
rendered at 1/4 this resolution in the exterior (taking over the full
resolution samples in the focus region) and upscaled by the super-

resolution network. The two images are then smoothly blended
together. As shown in Figure 13a,b, the difference between the
full resolution rendering in the focus regions and the upscaled
low resolution version is almost indistinguishable, yet a significant
lower number of samples is required to generate the final image.
This number can be further reduced by generating and blending
multiple images at ever lower resolution, i.e., by rendering images
using 1/2 and 1/4 the full resolution and using networks to upscale
to the full resolution.

In foveated rendering, the reconstruction error that may be
introduced by the network is fully acceptable, since it only occurs
in the region outside the users central region of visual stimulus.
Yet as we have shown in this work, learning-based upscaling
can far better maintain geometric and topological features than
other techniques like bi-linear upscaling. Thus, transitions between
multiple resolutions are far less pronounced and can be removed
more effectively.

6.2 Conclusion and Future Work

We have introduced and analyzed a deep learning technique for iso-
surface super-resolution with AO. The proposed recurrent network
architecture with temporally coherent adversarial training makes
it possible to infer highly detailed images from low resolution
input renderings. The network reconstructs high resolution images
of isosurfaces including ambient occlusions at a performance
that is significantly faster than that of an optimized ray-caster
at full resolution. We have published the source code for training
and inference as well as the trained networks and datasets on
https://github.com/shamanDevel/IsosurfaceSuperresolution.

The quality of upscaling seems to indicate that not a specific
isosurface is learned, but rather that the network is able to
generalize, i.e., to infer the geometric properties of isosurfaces in
volumetric scalar fields. Yet especially when the network’s learned

https://github.com/shamanDevel/IsosurfaceSuperresolution

A
ut

ho
r’s

pr
ep

rin
t

13

(a) (b) (c) (d)

Fig. 13: Foveated rendering. Rendering of the original datasets in (a) and (c). (b) In the region of highest acuity (indicated by the red
circle in the inlay), the isosurface is sampled at full resolution and smoothly blended with an upscaled image at 1/4 the resolution. (d)
Same as (b), but region of highest acuity is decreased and blended with upscaled images at 1/2 (green area) and 1/4 (exterior) the
resolution. In (b) and (d), respectively, 16% and 11% of the samples in (a) and (c) are used.

representation is not sufficient due to limited training sample
variation, network-based reconstruction can lead to distortions
in the inferred structures. We have demonstrated that this can
be counteracted by specializing the network on certain types of
isosurfaces, such as they occur in certain types of simulated or
measured physical fields. The quality of the reconstruction can be
substantially improved if the network is given the chance to see the
type of isosurface it is used to infer. Nevertheless, it is arguable that
network-based inference should be used carefully in applications
were highest accuracy is required, e.g., in medical imaging.

On the other hand, we have shown applications where a
reconstruction error is tolerable, e.g., during interactive navigation
in large datasets and in foveated rendering. In such applications,
network-based inference provides a very effective means to balance
between reconstruction quality and performance.

The proposed method only represents a first step towards
learning-based data inference, and we see numerous promising
and interesting avenues for future research. Among others, it will
be important to analyze how sparse the input data can be so that a
network can still infer on the geometry of the underlying structures.
Furthermore, we will shed light on the inference of additional
rendering effects such as soft shadows. Finally, we will investigate
the extension of our approach to support transparency and multiple-
scattering effects, by going beyond image-based inference and
integrating volumetric representations in the training and inference
steps.

ACKNOWLEDGMENTS

This work is supported by the ERC Starting Grant realFlow (StG-
2015-637014).

REFERENCES

[1] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE transactions on pattern analysis and
machine intelligence, vol. 38, no. 2, pp. 295–307, 2016.

[2] A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos, “Video super-
resolution with convolutional neural networks,” IEEE Transactions on
Computational Imaging, vol. 2, no. 2, pp. 109–122, 2016.

[3] Z. Zhou, Y. Hou, Q. Wang, G. Chen, J. Lu, Y. Tao, and H. Lin,
“Volume upscaling with convolutional neural networks,” in Proceedings
of the Computer Graphics International Conference, ser. CGI ’17.
New York, NY, USA: ACM, 2017, pp. 38:1–38:6. [Online]. Available:
http://doi.acm.org/10.1145/3095140.3095178

[4] J. Han and C. Wang, “Tsr-tvd: Temporal super-resolution for time-varying
data analysis and visualization,” IEEE Transactions on Visualization and
Computer Graphics (to appear), 2019.

[5] W. He, J. Wang, H. Guo, K.-C. Wang, H.-W. Shen, M. Raj, Y. S. G. Nashed,
and T. Peterka, “Insitunet: Deep image synthesis for parameter space
exploration of ensemble simulations,” IEEE Transactions on Visualization
and Computer Graphics (to appear), 2019.

[6] M. S. Sajjadi, R. Vemulapalli, and M. Brown, “Frame-recurrent video
super-resolution,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 6626–6634.

[7] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli et al., “Image
quality assessment: from error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[8] M. Levoy, “Display of surfaces from volume data,” IEEE Comput.
Graph. Appl., vol. 8, no. 3, pp. 29–37, May 1988. [Online]. Available:
https://doi.org/10.1109/38.511

[9] J. Danskin and P. Hanrahan, “Fast algorithms for volume ray tracing,” in
Proceedings of the 1992 Workshop on Volume Visualization, ser. VVS
’92. New York, NY, USA: ACM, 1992, pp. 91–98. [Online]. Available:
http://doi.acm.org/10.1145/147130.147155

[10] L. M. Sobierajski and A. E. Kaufman, “Volumetric ray tracing,” in
Proceedings of the 1994 Symposium on Volume Visualization, ser. VVS
’94. New York, NY, USA: ACM, 1994, pp. 11–18. [Online]. Available:
http://doi.acm.org/10.1145/197938.197949

[11] M. Wan, A. Kaufman, and S. Bryson, “High performance presence-
accelerated ray casting,” in Proceedings of the conference on Visualization

’99, 1999, pp. 379–386.
[12] M. Sramek, “Fast surface rendering from raster data by voxel traversal

using chessboard distance,” in Proceedings Visualization ’94, Oct 1994,
pp. 188–195.

[13] M. Hadwiger, A. K. Al-Awami, J. Beyer, M. Agus, and H. Pfister,
“Sparseleap: Efficient empty space skipping for large-scale volume
rendering,” IEEE Transactions on Visualization and Computer Graphics,
vol. 24, no. 1, pp. 974–983, Jan 2018.

[14] J. Kruger and R. Westermann, “Acceleration techniques for gpu-
based volume rendering,” in Proceedings of the 14th IEEE
Visualization 2003 (VIS’03), ser. VIS ’03. Washington, DC,
USA: IEEE Computer Society, 2003, pp. 38–. [Online]. Available:
https://doi.org/10.1109/VIS.2003.10001

[15] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and M. H. Gross, “Real-
time ray-casting and advanced shading of discrete isosurfaces,” Comput.
Graph. Forum, vol. 24, pp. 303–312, 2005.

[16] T. Klein, M. Strengert, S. Stegmaier, and T. Ertl, “Exploiting frame-
to-frame coherence for accelerating high-quality volume raycasting on
graphics hardware,” in IN: PROCEEDINGS OF IEEE VISUALIZATION

’05. IEEE, 2005, pp. 223–230.
[17] C. Braley, R. Hagan, Y. Cao, and D. Gračanin, “Gpu accelerated isosurface

volume rendering using depth-based coherence,” in ACM SIGGRAPH
ASIA 2009 Posters, 2009, pp. 42:1–42:1.

[18] E. Gobbetti, F. Marton, and J. A. Iglesias Guitián, “A single-pass gpu
ray casting framework for interactive out-of-core rendering of massive
volumetric datasets,” The Visual Computer, vol. 24, no. 7, pp. 797–806,
Jul 2008. [Online]. Available: https://doi.org/10.1007/s00371-008-0261-9

[19] M. Treib, K. Bürger, F. Reichl, C. Meneveau, A. Szalay, and R. Wester-
mann, “Turbulence visualization at the terascale on desktop pcs,” IEEE
Transactions on Visualization and Computer Graphics, vol. 18, no. 12, pp.
2169–2177, Dec 2012.

[20] F. Reichl, M. G. Chajdas, K. Bürger, and R. Westermann, “Hybrid
Sample-based Surface Rendering,” in Vision, Modeling and Visualization,

http://doi.acm.org/10.1145/3095140.3095178
https://doi.org/10.1109/38.511
http://doi.acm.org/10.1145/147130.147155
http://doi.acm.org/10.1145/197938.197949
https://doi.org/10.1109/VIS.2003.10001
https://doi.org/10.1007/s00371-008-0261-9

A
ut

ho
r’s

pr
ep

rin
t

14

M. Goesele, T. Grosch, H. Theisel, K. Toennies, and B. Preim, Eds. The
Eurographics Association, 2012.

[21] T. Fogal, A. Schiewe, and J. Kruger, “An analysis of scalable gpu-based
ray-guided volume rendering,” in 2013 IEEE Symposium on Large-Scale
Data Analysis and Visualization (LDAV), vol. 2013, 10 2013, pp. 43–51.

[22] J. Beyer, M. Hadwiger, and H. Pfister, “State-of-the-art in
gpu-based large-scale volume visualization,” Computer Graphics
Forum, vol. 34, no. 8, pp. 13–37, 2015. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12605

[23] S. Zhukov, A. Iones, and G. Kronin, “An ambient light illumination model,”
in Rendering Techniques ’98, G. Drettakis and N. Max, Eds. Vienna:
Springer Vienna, 1998, pp. 45–55.

[24] E. Penner and R. Mitchell, “Isosurface ambient occlusion and
soft shadows with filterable occlusion maps,” in Proceedings of
the Fifth Eurographics / IEEE VGTC Conference on Point-Based
Graphics, ser. SPBG’08. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2008, pp. 57–64. [Online]. Available:
http://dx.doi.org/10.2312/VG/VG-PBG08/057-064

[25] F. Hernell, P. Ljung, and A. Ynnerman, “Efficient ambient and
emissive tissue illumination using local occlusion in multiresolution
volume rendering,” in Proceedings of the Sixth Eurographics / Ieee
VGTC Conference on Volume Graphics, ser. VG’07. Aire-la-Ville,
Switzerland, Switzerland: Eurographics Association, 2007, pp. 1–8.
[Online]. Available: http://dx.doi.org/10.2312/VG/VG07/001-008

[26] T. Ropinski, J. Meyer-Spradow, S. Diepenbrock, J. Mensmann,
and K. Hinrichs, “Interactive volume rendering with dynamic
ambient occlusion and color bleeding,” Computer Graphics Forum,
vol. 27, no. 2, pp. 567–576, 2008. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2008.01154.x

[27] D. Jönsson, E. Sundén, A. Ynnerman, and T. Ropinski, “A survey of
volumetric illumination techniques for interactive volume rendering,”
Comput. Graph. Forum, vol. 33, pp. 27–51, 2014.

[28] M. Mittring, “Finding next gen: Cryengine 2,” in ACM SIGGRAPH 2007
Courses, ser. SIGGRAPH ’07. New York, NY, USA: ACM, 2007, pp.
97–121. [Online]. Available: http://doi.acm.org/10.1145/1281500.1281671

[29] L. Bavoil, M. Sainz, and R. Dimitrov, “Image-space horizon-based
ambient occlusion,” in ACM SIGGRAPH 2008 Talks, ser. SIGGRAPH ’08.
New York, NY, USA: ACM, 2008, pp. 22:1–22:1. [Online]. Available:
http://doi.acm.org/10.1145/1401032.1401061

[30] J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution
using very deep convolutional networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 1646–
1654.

[31] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep laplacian
pyramid networks for fast and accurate superresolution,” in IEEE
Conference on Computer Vision and Pattern Recognition, vol. 2, 2017,
p. 5.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[33] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single image
super-resolution using a generative adversarial network,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 4681–4690.

[34] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 4700–4708.

[35] T. Tong, G. Li, X. Liu, and Q. Gao, “Image super-resolution using dense
skip connections,” in Proceedings of the IEEE International Conference
on Computer Vision, 2017, pp. 4799–4807.

[36] M. S. Sajjadi, B. Scholkopf, and M. Hirsch, “Enhancenet: Single image
super-resolution through automated texture synthesis,” in Proceedings
of the IEEE International Conference on Computer Vision, 2017, pp.
4491–4500.

[37] X. Tao, H. Gao, R. Liao, J. Wang, and J. Jia, “Detail-revealing deep video
super-resolution,” in The IEEE International Conference on Computer
Vision (ICCV), Oct 2017.

[38] D. Liu, Z. Wang, Y. Fan, X. Liu, Z. Wang, S. Chang, and T. Huang,
“Robust video super-resolution with learned temporal dynamics,” in
Computer Vision (ICCV), 2017 IEEE International Conference on. IEEE,
2017, pp. 2526–2534.

[39] Y. Jo, S. W. Oh, J. Kang, and S. J. Kim, “Deep video super-resolution
network using dynamic upsampling filters without explicit motion
compensation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 3224–3232.

[40] M. Chu, Y. Xie, L. Leal-Taixé, and N. Thuerey, “Temporally coherent gans
for video super-resolution (tecogan),” arXiv preprint arXiv:1811.09393,
2018.

[41] R. Liao, X. Tao, R. Li, Z. Ma, and J. Jia, “Video super-resolution via
deep draft-ensemble learning,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 531–539.

[42] Y. Xie, E. Franz, M. Chu, and N. Thuerey, “tempoGAN: A temporally
coherent, volumetric GAN for super-resolution fluid flow,” ACM Trans.
Graph., vol. 37, no. 4, 2018.

[43] C. R. Alla Chaitanya, A. S. Kaplanyan, C. Schied, M. Salvi, A. Lefohn,
D. Nowrouzezahrai, and T. Aila, “Interactive reconstruction of monte
carlo image sequences using a recurrent denoising autoencoder,” ACM
Transactions on Graphics, vol. 36, pp. 1–12, 07 2017.

[44] M. Mara, M. McGuire, B. Bitterli, and W. Jarosz, “An efficient denoising
algorithm for global illumination,” in Proceedings of High Performance
Graphics. New York, NY, USA: ACM, jul 2017.

[45] O. Nalbach, E. Arabadzhiyska, D. Mehta, H.-P. Seidel, and T. Ritschel,
“Deep shading: Convolutional neural networks for screen space shading,”
Comput. Graph. Forum, vol. 36, no. 4, pp. 65–78, Jul. 2017. [Online].
Available: https://doi.org/10.1111/cgf.13225

[46] M. Berger, J. Li, and J. A. Levine, “A generative model for volume
rendering,” IEEE Transactions on Visualization and Computer Graphics,
vol. 25, pp. 1636–1650, 2017.

[47] M. Bertalmio, A. L. Bertozzi, and G. Sapiro, “Navier-stokes, fluid
dynamics, and image and video inpainting,” in Proceedings of the 2001
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. CVPR 2001, vol. 1. IEEE, 2001, pp. I–I.

[48] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
2000.

[49] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using
convolutional neural networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 2414–2423.

[50] A. Dosovitskiy and T. Brox, “Generating images with perceptual similarity
metrics based on deep networks,” in Advances in neural information
processing systems, 2016, pp. 658–666.

[51] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style
transfer and super-resolution,” in European conference on computer vision.
Springer, 2016, pp. 694–711.

[52] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[53] D. Chen, J. Liao, L. Yuan, N. Yu, and G. Hua, “Coherent online video
style transfer,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 1105–1114.

[54] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–2680.

[55] S. Kallweit, T. Müller, B. McWilliams, M. Gross, and J. Novák,
“Deep scattering: Rendering atmospheric clouds with radiance-
predicting neural networks,” ACM Trans. Graph. (Proc. of
Siggraph Asia), vol. 36, no. 6, Nov. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3130800.3130880

[56] J. Bi and K. P. Bennett, “Regression error characteristic curves,” in ICML,
2003.

[57] R. K. Hoetzlein, “GVDB: Raytracing Sparse Voxel Database Structures
on the GPU,” in Eurographics/ ACM SIGGRAPH Symposium on High Per-
formance Graphics, U. Assarsson and W. Hunt, Eds. The Eurographics
Association, 2016.

[58] B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder, “Foveated 3d
graphics,” ACM Transactions on Graphics (TOG), vol. 31, no. 6, p. 164,
2012.

[59] M. Stengel, S. Grogorick, M. Eisemann, and M. A. Magnor, “Adaptive
image-space sampling for gaze-contingent real-time rendering,” Comput.
Graph. Forum, vol. 35, pp. 129–139, 2016.

https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12605
http://dx.doi.org/10.2312/VG/VG-PBG08/057-064
http://dx.doi.org/10.2312/VG/VG07/001-008
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2008.01154.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2008.01154.x
http://doi.acm.org/10.1145/1281500.1281671
http://doi.acm.org/10.1145/1401032.1401061
https://doi.org/10.1111/cgf.13225
http://doi.acm.org/10.1145/3130800.3130880

A
ut

ho
r’s

pr
ep

rin
t

15

Sebastian Weiss received the M.Sc. degree
from the Technical University of Munich in 2018.
Currently, he is a doctoral student of computer
science, Technical University of Munich. His re-
search interests include volume visualization,
deep learning and high performance GPU pro-
gramming.

Mengyu Chu received the M.Eng. degree from
Zhejiang University, China in 2014. Currently, she
is a doctoral student of computer science, Tech-
nical University of Munich. Her research interests
include fluid simulations and deep learning.

Nils Thuerey is an Associate-Professor at the
Technical University of Munich (TUM). He works
in the field of computer graphics, where a central
theme of his research are physics simulations
and deep learning algorithms. He received a tech-
Oscar from the AMPAS in 2013 for his research
on controllable smoke effects. He worked for
three years as a post-doc at ETH Zurich and
as R&D lead at ScanlineVFX, before starting at
TUM in October 2013.

Rüdiger Westermann studied computer science
at the Technical University Darmstadt and re-
ceived his Ph.D. in computer science from the
University of Dortmund, both in Germany. In 2002,
he was appointed the chair of Computer Graphics
and Visualization at TUM. His research interests
include scalable data visualization and simulation
algorithms, GPU computing, real-time rendering
of large data, and uncertainty visualization.

	Introduction
	Contribution

	Related Work
	Isosurface Learning
	Input Data
	Super-Resolution Surface Inference
	Loss Functions

	Learning Methodology
	Network Architecture
	Training Data
	Loss Function Characteristics

	Evaluation
	Qualitative Evaluation
	Quantitative Evaluation
	Timings

	Discussion
	Use Cases
	Conclusion and Future Work

	Acknowledgments
	References
	Biographies
	Sebastian Weiss
	Mengyu Chu
	Nils Thuerey
	Rüdiger Westermann

