A Comparison of Rendering Techniques
for 3D Line Sets with Transparency

Michael Kern, Christoph Neuhauser, Torben Maack, Mengjiao Han, Will Usher, Ridiger Westermann

Abstract—This paper presents a comprehensive study of rendering techniques for 3D line sets with transparency. The rendering of
transparent lines is widely used for visualizing trajectories of tracer particles in flow fields. Transparency is then used to fade out lines
deemed unimportant, based on, for instance, geometric properties or attributes defined along with them. Accurate blending of
transparent lines requires rendering the lines in back-to-front or front-to-back order, yet enforcing this order for space-filling 3D line sets
with extremely high-depth complexity becomes challenging. In this paper, we study CPU and GPU rendering techniques for transparent
3D line sets. We compare accurate and approximate techniques using optimized implementations and several benchmark data sets.
We discuss the effects of data size and transparency on quality, performance, and memory consumption. Based on our study, we
propose two improvements to per-pixel fragment lists and multi-layer alpha blending. The first improves the rendering speed via an
improved GPU sorting operation, and the second improves rendering quality via transparency-based bucketing.

Index Terms—Scientific visualization, line rendering, order-independent transparency.

1 INTRODUCTION

In many visualization tasks, the need to efficiently dis-
play sets of 3D lines is paramount. Applications range
from the visualization of pathways of particle tracers in
flow fields or over moving vehicles for smart transportation
and urban planning, to exploring neural connections in
the brain or relations encoded in large graphs and net-
work structures. Prior work such as [3], [12], [19], [27]
has shown that transparency, when used carefully to avoid
overblurring, can be used effectively to relieve occlusions
and to accent important structures while maintaining less
important context information. It is particularly useful for
exploratory visualization tasks, where users interactively
select the strength of transparency and the mapping of data
values to transparency.

Rendering transparency, however, introduces a perfor-
mance penalty. When using transparency, the per-pixel color
and opacity contributions need to be blended in correct
visibility order, i.e., by using a-blending (where « represents
a point’s opacity) in either front-to-back or back-to-front
order. Rendering techniques can be distinguished as to
whether they compute the visibility order exactly or approx-
imately, and how this order is established. Especially for line
sets, which have a significantly higher depth complexity
than surface or point models, maintaining the visibility
order during rendering can become a severe performance
bottleneck.

o M. Kern, C. Neuhauser, T. Maack, and R. Westermann are with the
Computer Graphics & Visualization Group, Technische Universitiit
Miinchen, Garching, Germany
E-mail: ~ {michi.kern, christoph.neuhauser,
torben.maack@mytum.de

westermann }@tum.de,

e M. Han and W. Usher are with the Scientific Computing and Imaging
Institute, University of Utah, U.S.
E-mail: {mengjiao, will }@sci.utah.edu

Preprint to appear in IEEE Transactions on Visualization and Com-
puter Graphics, 2020. Manuscript revised on Feb 20, 2020.

In this study, we evaluate exact and approximate object-
and image-order transparency rendering techniques, with
intending to analyze the performance of such techniques
when used to render line sets with an extremely high
depth complexity. Our evaluation includes an in-depth eval-
uation of model-specific acceleration schemes. We further
demonstrate the use of approximate transparency rendering
techniques for surface and point models with high depth
complexity, though refrain from a detailed performance
evaluation on these cases. The latter would require consider-
ing specific acceleration structures for such surface or point
models, which is beyond the scope of a single paper.

Object-order techniques make use of GPU rasterization.
We consider Depth Peeling (DP) [10] and Per-Pixel Linked
Lists (LL) [43], both of which can render transparency ac-
curately at the cost of computing or memory. Other object-
order techniques use (stochastic) transmittance approxima-
tions, where transmittance refers to the multiplicative ac-
cumulation of per-fragment transparencies. Of the many
different variants of approximate techniques, we selected
Multi-Layer Alpha Blending (MLAB) [32] and the most re-
cent Moment-Based Blending Technique (MBOIT) [25] (see
Fig. 1 for example images). Both approximate techniques
use only small and constant additional buffer resources.

We also evaluate four image-order techniques based on
ray tracing. We consider the Generalized Tubes method [13]
as well as Embree’s built-in Bezier curve primitives [40]
implemented in Intel’s OSPRay CPU ray tracing framework
(OSP) [38], a GPU ray-tracer using NVIDIA’s RTX ray
tracing interface [26] through the Vulkan API (RTX), and
voxel-based GPU line ray tracing (VRC) [15]. All techniques
utilize dedicated data structures to facilitate efficient ray
traversal as well as empty space skipping and thus provide
effective means to evaluate the capabilities of image-order
line rendering.

OSP, RTX, VRC, DP, and LL, despite their algorithmic
differences, are all accurate methods and yield the same

(a) PSNR = 33.41, SSIM = 0.907 (b) PSNR = 31.98, SSIM = 0.901 (c) PSNR = 34.42, SSIM = 0.913 (d) PSNR = 31.10, SSIM = 0.842

Fig. 1: Strengths and weaknesses of transparent line rendering techniques. For each pair, the left image shows the ground
truth (GT). Right images show (&) approximate blending using MLABDB, (b) opacity over-estimation of MBOIT, (C) reverse
blending order of MLABDB, (d) blur effect of MBOIT. Speed-ups to GT rendering technique: (a) 7, (b) 2, (c) 3.5, (d) 4.5.

rendering result. Performance-wise, on the other hand, these
techniques differ substantially, and for large data sets some
of them even turn out to be impractical. The main goal of our
evaluation study is to shed light on the differences between
these techniques and to provide guidelines for selecting a
suitable rendering technique for a given application.

Contribution

We provide a qualitative and quantitative comparison of
techniques for rendering 3D line sets with transparency.
For our evaluation, we have systematically selected a set
of techniques that we believe are representative for the
different principal approaches that are available today. Even
though our evaluation study has been performed solely
on 3D line sets, the results are also applicable to other
application scenarios where transparency is used to reveal
otherwise hidden structures.

Through our study, users and practitioners can gain
an understanding of the principal implications of using a
certain technique and become aware of their major strengths
and limitations with respect to quality, memory require-
ments, and performance. Since we use a range of different
sized data sets with vastly different internal structures, our
evaluation hints to specific data-dependencies of certain
rendering concepts. We tried to individually select a trans-
parency setting for each data set that reveals important
features in a meaningful way. Thus, we consider our results
representative of typical use cases of transparent line ren-
dering. For each technique, we also analyze the pre-process
that is required to build the data representations needed for
rendering and perform a thorough evaluation of rendering
performance.

Moreover, we have modified LL to improve scalability
with the number of fragments, and MLAB to make it less
dependent on the order of fragments per pixel. For LL, we
developed GPU-friendly variants of shell-sort and priority-
queues through the min-heap data structure, resulting in
a performance increase of a factor of 2-3. Our implemen-
tation of MLAB uses a discrete set of depth intervals and

can considerably reduce the number of incorrectly merged
fragments.

We have made our implementations publicly avail-
able [17], the test environment using NVIDIA’s RTX [20],
all data sets [16], and all benchmark results for image
quality and performance evaluation. We have also included
additional descriptions of how to use the implementations
and apply them to other data sets.

2 RELATED WORK

Prior work [22], [42] has compared some of the many dif-
ferent rendering techniques for transparent geometry. These
evaluations, however, have mainly focused on the use of
techniques for real-time graphics effects in scenes comprised
of a few spatially extended and homogeneous transparent
objects with rather low depth complexity. Thus, the suitabil-
ity of techniques for visualization tasks as outlined in our
work is difficult to infer from available evaluations. To the
best of our knowledge, an evaluation and comparison of
techniques for rendering large 3D line sets, including ray-
based approaches and scenes with extremely high depth
complexity and high-frequency transmittance functions, has
not been performed.

2.1 Object-order techniques

Several approaches have been proposed to blend the frag-
ments falling into the same pixel in correct visibility order
without having to resort to an explicit sorting of geometry.
Everitt et al. [10] presented depth peeling, which renders for
each pixel in the i-th rendering pass the i-th closest surface
point using a second depth buffer test against the values
from the previous pass. In early work by Carpenter [6], the
A-buffer was introduced as a data structure that stores the
unordered set of fragments falling into each pixel. These
fragments are then sorted explicitly based on the stored
depth information. Yang et al. [43] used per-pixel linked
lists to store a variable number of fragments per pixel on
the GPU, after which they are sorted to blend the fragments

in correct order. Contrary to the linked lists, the k-Buffer [4]
stores only the k nearest fragments, and merges fragments
heuristically if more than Kk fall into the same pixel.

In scenarios where the k-Buffer is not applicable, frag-
ments have to be blended heuristically. Adaptive Trans-
parency [31] operates on k fragments and aims to store
an approximation of the transmittance function per pixel.
Alpha blending is then performed in a second pass us-
ing this approximation. Maule et al. [21] proposed Hybrid
Transparency, which aggregates fragments using a k-Buffer
and merges them heuristically with respect to depth and
opacity. Even though this approach is order-independent,
it is not able to cope with scenes containing many layers.
Multi-Layer Alpha Blending (MLAB) [32] is a single-pass
technique that uses a xed number of per-pixel transmit-
tance layers to approximate the transmittance along a view
ray. When all layers are occupied and the current fragment
creates a new layer, the two most appropriate adjacent layers
are merged in turn. Stochastic Transparency [9] uses weights
to blend or discard fragments based on opacity. Weighted-
Blended Order-Independent Transparency [23] proposed to
use weights based on occlusion and distance to the camera
to merge fragments.

Recently, Miinstermann et al. [25] introduced Moment-
Based Order-Independent Transparency (MBOIT). Rojo et
al. [3] demonstrated the embedding of importance-based
transparency control into MBOIT. MBOIT approximates the
transmittance function pixel-wise by power moments or
trigonometric moments, and applies logarithmic scaling
to the absorbance to enforce order-independency and fa-
cilitate additive compositing. Moment-Based transparency
builds upon Fourier opacity mapping [14], which represents
transmittance as a low-frequency distribution dependant on
depth, and approximates these distributions using trigono-
metric moments, i.e., Fourier coef cients.

Another category of techniques render transparent lay-
ers using multiple samples per pixel, for example, Stochastic
Layered Alpha Blending [42] and Phenomenological Trans-
parency [24]. The latter technigue also incorporates physical
processes to create realistic effects of translucent phenom-
ena. However, these techniques signi cantly increase the
number of generated fragments, which is problematic in
scenarios where the depth complexity is extremely high. As
such, we do not consider them in our study.

We do also not consider particle-based [30] and voxel-
based [8], [18] rendering techniques for transparent ge-
ometry. Especially when used to render space- lling line
sets, these techniques signi cantly increase the number of
rendered primitives or the resolution of the used voxel grid
and require substantial modi cations to render geometric
shapes with ne geometric details and sharp outlines.

2.2 Image-order techniques

Image-order techniques for rendering line primitives make
use of ray tracing. Advances in hardware and software
technology have shown the potential of ray tracing as an
alternative to rasterization, especially for high-resolution
models with many inherent occlusions. Developments in
this eld include advanced space partitioning and traversal
schemes [35], [37], [41], and optimized GPU implementa-
tions [1], [18], [29], to name just a few. Wald et al. [39]

3

proposed the use of ray tracing in combination with a tree-

based search structure for particle locations to ef ciently

nd those patrticles a ray has to be intersected with. Kanzler

et al. [15] built upon voxel ray tracing and proposed a GPU

rendering technique for large 3D line sets with transparency.

They use an approximate voxel model for 3D lines, using
quantization of line-voxel intersection points to a discrete

set of locations on voxel faces. Ray tracing is then performed
using the regular grid as an acceleration structure.

Ray tracing of line sets can be performed on analytic
or polygonal tube models by using common acceleration
structures like kD-trees or bounding volume hierarchies
to accelerated ray-object intersections. CPU and GPU ray
tracing frameworks like OSPRay [38] and OptiX [29] can
be used for this purpose. OSPRay builds on Intel's Em-
bree ray tracing kernels [40] and has built-in support for
rendering xed-radius opaque streamlines and B ézier curve
primitives. Han et al. [13] further extended OSPRay with a
module for rendering Generalized Tube Primitives, support-
ing varying radii, bifurcations, and transparency. NVIDIA's
RTX ray tracing through the OptiX interface [26] uses RT
cores on current GPUs to perform hardware-accelerated ray-
primitive intersection tests. OptiX also provides an interface
to implement custom shaders, which, in our current sce-
nario, can also be used to analytically intersect rays with
tubes.

3 LINE RENDERING

We classify line rendering algorithms into two major groups:
object-order and image-order. Object-order techniques use
rasterization of geometric primitives to let the GPU com-
pute the fragments falling into each pixel in an arbitrary
order. Although the order is rst given by the order in
which rendering calls are issued for each primitive, this
order is not given when processing each fragment in the
fragment shader stage. For transparency, these techniques
use either fragment merge heuristics or 2-pass approaches
to ensure (correct) transmittance and visibility. In contrast,
image-order techniques use ray tracing to nd the surface
points seen through the pixels. The correct visibility order
of the points along a ray is established by using a space-
partitioning scheme to traverse a ray in front-to-back order
through space.

3.1 Object-Order

Object-order techniques can be classi ed into accurate and
approximate techniques. Accurate techniques guarantee the
exact visibility order of rendered fragments. Approximate
techniques violate this order by blending a fragment's color
over a color that already contains the color of a fragment
that is closer to the camera. Although approximate tech-
nigues typically have bounded memory and rendering con-
straints, accurate approaches come with either unbounded
rasterization load or unbounded memory requirements.

Depth Peeling

Depth Peeling (DP) [10] generates pixel-accurate renderings
of transparent geometry by rendering the scene multiple
times and using the depth buffer to achieve ordered blend-
ing, each transparent layer at a time. DP utilizes the depth

buffer hardware test to successively obtain the next closest
layer and performs standard front-to-back blending into the
current framebuffer.

A unique property of DP is that it does not require any
additional memory besides a second depth buffer. On the
other hand, DP needs to “peel” layers, i.e., render the scene
as many times as the depth complexity of the scene. In
our application scenario, where the scenes are comprised
of many thousands of thin and often space- lling objects,
a huge number of rendering passes typically has to be
performed. As indicated in Fig. 2, terminating the blend
passes after a xed number of times is dangerous, because
deep layers with high opacity can contribute signi cantly to
the nal pixel color.

Due to the high rendering cost of DP, its performance
is typically about 1-2 orders of magnitude below that of all
other alternatives we consider. Therefore, we decided to use
DP solely for generating ground truth images of transparent
lines, against which the results of other techniques are
compared.

Fig. 2: Intermediate results of depth peeling for layers 1, 10,
and 50 of a semi-transparent line set. Note that even at layer
50 notable differences appear in the nal result.

Per-Pixel Linked Lists

While DP has bounded memory constraints and unbounded
rasterization load, Per-Pixel Linked Lists (LL) [43] come
with bounded rasterization load yet unbounded memory
requirements. LL renders the scene only once, and stores all
generated fragments in linked lists over all pixels. Then, for
every pixel, a pixel shader is invoked which traverses the list
and stores all fragments belonging to that pixel in a GPU
buffer resource. The fragments are then sorted wrt. their
depth. Finally, the fragments are blended in sorted order to
produce the nal pixel color. Besides the global fragment
buffer, LL requires a head buffer that stores, for every pixel,
the offsets to the rst fragment in the linked list, and an
atomic counter that tracks the number of inserted fragments
to enable concurrent gathering of new fragments into the
fragment buffer. LL assumes that the GPU buffer resource
is large enough to store all rendered fragments; otherwise,
it fails to correctly render the scene. To reduce the memory
requirements, one commonly stores fragment colors in 32-
bit unsigned integers, with 8 bits per colorand channel.
Even if the available GPU memory is large enough,
which is often the case on high-end GPUs, sorting the many
hundreds or even thousands of fragments per pixel can
become a performance bottleneck. Although simple sorting
algorithms such as bubble sort or insertion sort are suitable
for small numbers of fragments, they do not scale well
to large numbers of fragments. To address this limitation,
we have incorporated alternative sorting algorithms that
achieve better scalability and can be implemented on top of

4

GPU-friendly data structures, i.e., GPU versions of shell-sort
and priority-queue through the min-heap data structure.

Shell-sort [33] is an in-place sorting algorithm based
on insertion-sort. It is speci cally designed to achieve im-
proved sorting performance for large arrays by exchanging
elements that are far apart from each other. Shell-sort subdi-
vides the array into k subarrays by sorting each k-th element
of the array via insertion sort. k in this context de nes the
offset between elements and is hence called the gap. The gap
is iteratively decremented in | iterations using a pre-de ned
sequence (ki; ko; i ki) of | numbers. The a;-th element is
then sorted in the i-th iteration. Note that k; is always 1
since every element needs to be sorted in the last iteration. In
our work, we used | =4 and a gap sequence of(24; 9; 4; 1)
(based on Table 1 in [7]) to ef ciently order elements with
an average depth complexity of 124 elements per node.

Priority-queues are implemented with the min-heap data
structure. A min-heap is a full binary tree where each node
contains a key de ning the priority (or order) of the element.
For each parent node, the key of its children is either
equal or smaller than its own key. Heap data structures
are commonly implemented as binary trees. In our case,
the depth value of each fragment represents the key. That
is, after each insert operation, the root node is the currently
closest element in the min-heap.

Upon insertion of all fragments in the heap, the next
closest fragment is iteratively obtained by removing the root
node from the heap until the heap is empty. Root removal is
implemented by setting the element with the least priority
as the new root and sinking it down until it is correctly
sorted. This process takes O(log n) time for a heap with
n elements. Since the root has to be obtainedn times, the
total time complexity is O(n (log n)), which is faster than
the depth complexity of the previously mentioned sorting
algorithms.

Both sorting algorithms have been embedded into LL to
improve its performance. Fig. 3 shows performance graphs
for renderings of the aneurysm data set from many differ-
ent views. As can be seen, shell-sort and priority-queues
signi cantly improve the sorting performance by a factor of
2 to 3 on average and keep the sorting time almost constant
over all frames. Due to the slightly better performance of
priority-queues for other data sets, we decided to use this
version of LL in our evaluations.

Fig. 3: Rendering times for a ight around the ANEURYSM
data set using LL and different sorting algorithms.

Multi-Layer Alpha Blending

Multi-Layer Alpha Blending (MLAB) [32] is a single-pass
technique. It belongs to the class of transparency rendering

	Introduction
	Related Work
	Object-order techniques
	Image-order techniques

	Line Rendering
	Object-Order
	Image-Order

	Evaluation
	Data Sets
	Data Preparation and Model Representation
	Per-Frame Memory Requirements
	Rendering Performance
	Image Quality
	Quantitative Assessment
	Visual Quality vs. Per-Pixel Error

	Discussion
	Object-Order
	Image-Order

	Conclusion and Outlook
	Acknowledgements
	References
	Biographies
	Michael Kern
	Christoph Neuhauser
	Torben Maack
	Mengjiao Han
	Will Usher
	Rüdiger Westermann

	Appendix A: Quantitative Assessment of Image Quality
	Appendix B: Surface and Point Data

