
To appear in IEEE Transactions on Visualization and Computer Graphics

Visual Analysis of the Temporal Evolution of
Ensemble Forecast Sensitivities
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Fig. 1: Analysis of the ensemble sensitivity of forecast variable precipitation (top left) to moisture flux (bottom left) over Norway.
(a) A high precipitation event is picked and a stochastically coherent clique is computed. (b) Sensitivity regions are extracted. Color
shows sub-regions with high mutual correlations. (c) For a time sequence, sensitivity regions are matched between time steps and
tracked over time. A “swipe-path” colors (time in h) all locations covered by a selected sensitivity region over time according to the
first time of coverage. Stippling covers statistically insignificant regions. (c1) The proposed workflow operates on 2D and 3D data.

Abstract—Ensemble sensitivity analysis (ESA) has been established in the atmospheric sciences as a correlation-based approach to
determine the sensitivity of a scalar forecast quantity computed by a numerical weather prediction model to changes in another model
variable at a different model state. Its applications include determining the origin of forecast errors and placing targeted observations to
improve future forecasts. We—a team of visualization scientists and meteorologists—present a visual analysis framework to improve
upon current practice of ESA. We support the user in selecting regions to compute a meaningful target forecast quantity by embedding
correlation-based grid-point clustering to obtain statistically coherent regions. The evolution of sensitivity features computed via ESA
are then traced through time, by integrating a quantitative measure of feature matching into optical-flow-based feature assignment,
and displayed by means of a swipe-path showing the geo-spatial evolution of the sensitivities. Visualization of the internal correlation
structure of computed features guides the user towards those features robustly predicting a certain weather event. We demonstrate the
use of our method by application to real-world 2D and 3D cases that occurred during the 2016 NAWDEX field campaign, showing the
interactive generation of hypothesis chains to explore how atmospheric processes sensitive to each other are interrelated.

Index Terms—Correlation, clustering, tracking, ensemble visualization.

1 INTRODUCTION

Ensemble sensitivity analysis (ESA) has been established in meteo-
rology as an ensemble-based approach to estimate the sensitivity of
a scalar forecast quantity J (in meteorology referred to as “forecast
metric”) computed from numerical weather prediction (NWP) model
output to changes in the same or another model variable at an earlier
state. ESA has been introduced by Ancell and Hakim [1] and Torn and
Hakim [42]. It is a correlation-based approach which considers the
variations of physical quantities at different domain locations relative
to each other.
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ESA has been used in a number of applications, including identifi-
cation of the origins of forecast errors (e.g., [23]), investigation about
relations between specific atmospheric processes to other processes of
interest in an NWP model (e.g., [43]), and planning of “targeted obser-
vations” aiming at improving future forecasts by increasing observation
density in critical regions of the atmosphere (e.g., [24]). The use of
ESA, however, is associated with a number of challenges.

One major challenge (C1) is how to assess the confidence that can be
put into the computed sensitivities. The metric J is commonly obtained
by manually selecting a spatial region in which a certain weather event
has been identified, and by using a single representative measure for the
entire region (e.g., mean or root-mean-squared error of corresponding
meteorological parameter) to compute J for every ensemble member.
This approach can become a major source of uncertainty, since a single
measure does not consider the distribution of values over a region and,
thus, might not sufficiently capture the event of interest in all members.

Furthermore, the stochastic stability of the event in the selected
region, i.e., the likelihood of variations in the predictions relative to
each other, cannot be inferred from a single measure. Thus, the chance
of occurrence of the selected event might be very low.
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Once a metric J has been defined, ESA computes the correlation
between J (the target parameter) and the ensemble data of another
model variable (the source parameter) at every point in the domain
(cf. [42]). In the resulting correlation field sensitive regions can be
identified. Then, another challenge (C2) is to infer the geographical
origin of forecast errors from the temporal evolution of theses sensi-
tivities (e.g., [23, 47]). Since the manual tracking of sensitive regions
(e.g., [47]) becomes tedious especially if many parameters are of inter-
est, addressing C2 entails the development of automatic approaches for
tracking sensitive regions in a reliable way. Furthermore, it needs to
be analyzed whether determined regions exhibit sufficient stochastic
stability (C3) regarding the variation of model parameters across these
regions. If this is not the case, it is very likely that the corresponding at-
mospheric structure will fall apart over time, so that conclusions drawn
from ESA have to be carefully evaluated.

Another challenge (C4) put forward by our collaborators from
meteorology was the application of ESA to analyze sensitivities in
three-dimensional space. In existing meteorological workflows ESA
is solely applied to analyze the sensitivity between field variables on
two-dimensional atmospheric levels (e.g., [23, 43]). To the best of our
knowledge, there is no study that applied ESA in full three-dimensional
space, even though such an extension would be very beneficial to in-
vestigate the interrelations of atmospheric processes as well as the
structure of related weather events in the inherently three-dimensional
atmosphere.

1.1 Contribution
We introduce a novel visual analysis workflow for addressing C1 to
C4; an overview of this workflow is provided in Sect. 3 and Fig. 2.
We demonstrate its application by analyzing weather systems observed
during the 2016 North Atlantic Waveguide and Downstream Impact
Experiment (NAWDEX, [37]), an atmospheric research field campaign
in which two of the authors were involved. The NAWDEX research
on predictability of weather investigates how different physical pro-
cesses can play different roles in cyclone evolution; our presented ESA
approach aims at facilitating insights into sensitivities of the weather
evolution related to Tropical Cyclone “Karl” in September 2016.

To address C1, we provide options to determine sub-regions with low
stochastic variation in the region in which the selected weather event
occurs. Therefore, the user can pick a location at which the event has a
significant occurrence, and via correlation clustering—adapted from
Pfaffelmoser and Westermann [27]—the set of locations (including the
picked one) with mutual correlations above a threshold is determined.
A region comprised of such locations is said to be coherent with respect
to the predicted event, and we call such a region a correlation clique.
By repeating this process, multiple coherent regions can be determined,
and the most representative one can be selected and used to restrict the
computation of J to its locations.

We address C2 by letting the user, in the source parameter field,
interactively select connected components of superlevel sets, i.e., the
set of locations at which a threshold in the normalized sensitivity field
is exceeded, and track these components over time. Furthermore, and
to address C3, we provide an indication of the robustness of the ESA
result by visualizing correlation clusters in a selected superlevel set.
Computed clusters indicate low or high stochastic variation of model
parameter values across the selected region, letting the user infer the
structural coherence in the corresponding weather event.

To track a selected feature, i.e., a superlevel set, we use an area-
weighted optical flow based approach. To match features in two suc-
cessive time steps, for all locations covered by a feature in the current
time step, we vote using an uncertainty-aware correspondence measure
whether these locations again belong to a feature in the next time step.

We account for uncertainties in a feature’s boundary by assigning
target locations close to a boundary, yet outside a feature, to the closest
location inside that feature so that correspondence is established. Ad-
ditionally, since the features we consider can vary significantly in size
over time, the optical flow is used in forward and backward direction
in combination with correspondence statistics to obtain a measure that
better takes into account the size of matched features.

To effectively convey sensitivities between events at different atmo-
spheric levels as well as the temporal changes these events undergo
(C4), we have designed a system comprised of two linked views: An
abstract view displaying a graph structure showing split and merge
events, and a single track visualization using a so called swipe-path
in multi-dimensional space. These visualizations enable the user to
shed light on the robustness of tracked events over time as well as their
temporal changes in shape, size, and location at different atmospheric
levels.

2 RELATED WORK

ESA has been introduced by Ancell and Hakim [1] and Torn and
Hakim [42]. It has been used in various meteorological publications
with a prominent use case being the estimation of the impact of ad-
ditional observations on forecast accuracy [42]. Although alternative
sensitivity analysis techniques are available and used in meteorolog-
ical applications (an overview is provided e.g., by [24]), due to the
widespread use of ESA, and in particular its use by our meteorological
partners, we focus exclusively on this method in the current work.

With respect to visualization research, our approach is related to
techniques for ensemble visualization, and in particular correlation visu-
alization and region-based tracking in time-varying multi-dimensional
scalar fields. A thorough overview of ensemble visualization techniques
in meteorology can be found in the recent survey article by Rautenhaus
et al. [29].

Finding a suitable visual representation of non-local statistical quan-
tities such as correlation structures is one of the most challenging tasks
in visualization. Visualizing the correlation matrix directly is unfea-
sible for large datasets and cannot show spatial relationships. Global
correlation structures were determined by Bansal et al. [3] via corre-
lation clustering, which groups objects based on pair-wise similarities
(positive correlation) and dissimilarities (negative correlation) using
graph partitioning. Liebmann et al. [21] clustered correlations based
on distances on hyperspheres. Paffelmoser and Westermann [27] intro-
duced correlation-based region growing to determine clusters in which
the degree of dependency between the data at the cluster centroid and
the cluster locations does not fall below a threshold. In contrast, in our
approach we search for clusters of locations for which the mutual data
correlations are above a threshold, to ensure that the stochastic stability
of the entire cluster is high.

Paffelmoser and Westermann [28] derived a model to represent local
anisotropic correlation structures and used this model to distinguish
between correlations along and orthogonal to isosurfaces in 3D scalar
fields. By using this approach they analyzed the possible variations
of isosurface structures in uncertain scalar fields. Other approaches
restricted the analysis to the correlations between the data values at
the same location in different datasets [16, 36], or they analyzed the
data variations at the same locations over time, often via variants of
time-activity curves [9, 40]. Chen et al. [6] used a sampling-based
approach to summarize temporal correlations between voxels in multi-
variable and time-varying datasets with 3D spatial references. Recently,
Zhang et al. [46] developed a temporal multi-variable structure that can
express temporal information at a location in multi-dimensional space.
This was combined with a dissimilarity-preserving cluster algorithm
that characterizes time-varying patterns and spatial locations.

In visualization, a number of techniques have been developed to
track regions over time, i.e., to establish the correspondence between
regions from one time step to the next. In its simplest form, such
methods track the connected components of regions where the data
values are entirely below or above a given threshold [35, 38], yet
also more sophisticated global feature analysis based on scalar field
topology and statistics has been used [2, 5, 7, 34, 39, 45].

The correspondence between regions can either be found using
overlap calculations [35, 38] or by matching attributes that describe
specific properties of each region [31, 33, 35]. When data with high
temporal resolution is given, region overlap methods require only a
matching function which measures the degree of similarity of regions
in different time steps. In early work this was done using area/volume
of the overlap region, yet more advanced matching functions using
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Fig. 2: Method overview: (a) Input are two ensembles of 2D (3D) scalar fields, one of them resolved over time. (b) In the input field of parameter
J, a point of interest is picked. A stochastically coherent clique around this point is computed. ESA is then used to compute sensitivity values
at every domain point to this clique. (c) Sensitivity fields are displayed, and selected regions can be further analyzed by means of correlation
clustering. Selected regions are tracked over time, and (d) different visualizations like split-merge diagrams and swipe-paths are computed and
used to analyze sensitivity tracks.

the Earth Mover distance [17] or the Jaccard distance as isosurface
similarity metric have been employed recently [12,34]. However, since
these metrics do not consider the size of the overlap regions relative to
the features’ spatial extent, the matching result can be misleading; for
instance, if a large feature splits into multiple very small features.

When data with low temporal resolution is given and features vary
strongly in shape and position over time, as it commonly occurs in
our meteorological use cases, overlap-based approaches face an addi-
tional problem: Before analyzing the overlap, the direction into which
the feature has moved needs to be predicted. Muelder and Ma [26]
addressed this problem by predicting a feature’s next location from
previous locations using trajectory extrapolation, and then computing
the overlap between the shifted and a target feature. Doraiswamy et
al. [7] and Valsangkar et al. [2] used the optical flow [15, 22] between
brightness temperature and pressure fields, respectively, to obtain an
initial guess of the location of a cloud or cyclone feature in the next
time step. Two features are matched if there is at least one hit between
these features, i.e., a location in the region of the source feature is
connected to a location in the region of the target feature.

In meteorological and climate research tracking is often reduced
to single points like extremum points in pressure or precipitation
fields [14], and these points are then connected together across time
to form tracks. A popular method to find corresponding points in suc-
cessive time steps is the first-guess method [44], which predicts the
location of a selected point in the next time steps by linear continuation
and then searches for the closest feature point in the next time step.
Gambheer and Bhat [13] tracked clouds by considering the overlap
of closed feature contours across time steps. More recently, Fiolleau
and Roca [11] considered the time-varying two-dimensional input as a
three-dimensional volume, and tracked clouds by tracking seed points
within this volume.

3 METHOD OVERVIEW

Given an ensemble of forecast runs, our proposed visual analysis work-
flow enables meteorologists to interactively analyze the sensitivity of
a selected model parameter, e.g., precipitation, to another one, e.g.,
moisture flux. Fig. 2 shows an overview of the proposed workflow.
We consider scalar field data from the ECMWF Ensemble Prediction
System (ENS; e.g., [20]). The ensemble comprises 50 perturbed mem-
bers and an unperturbed control forecast (that is started from the “best”
initial conditions). Past forecast data is available from the TIGGE
archive [41] on a regular longitude–latitude grid in the horizontal; in
the vertical, data is available on levels of constant pressure.

The user first inspects the dependent parameter for which the sensi-
tivity shall be analyzed. Following common practice in meteorology,

we show a 2D map of ensemble values, e.g., the point-wise mean or
maximum values (Fig. 2a). In workflows from past meteorological
publications (e.g., [24, 43]), users select a target region enclosing a
significant weather event for which ESA is performed. The parameter
values in the selected region are then used to compute the single value J
per ensemble member, e.g., a mean value or a root-mean-squared error.
Then, at every domain location the sensitivity of these values to the
ensemble values of the independent parameter at these locations are
computed.

It is here were we place our first improvement of the workflow:
We let the user determine a representative region in which an event is
coherently predicted, i.e., a correlation clique (cf. Sec. 4.1). Therefore,
the user selects a seed location, and the system computes instantly a
correlation clique to this location (Fig. 2b, Fig. 3). The size of this
clique and its strength, i.e., the strength of the mutual dependencies
between the data values at the locations covered by the clique, indicate
the expected reliability of the ESA results (C1). The user can inter-
actively select different seed locations to find the largest or strongest
clique, or abort the process if no such clique is found. For computing
the metric J, the parameter values are then condensed only over the
selected clique.

The sensitivity values computed by ESA (cf. Sec. 4.1) are plotted in
a separate map (Fig. 2c). To highlight regions which can be deemed
a significant influence on the target region, the superlevel sets with
respect to a sensitivity threshold—selected based on a significance
test—are visualized. To address C2, the user selects a region, and the
system automatically tracks this region over time by matching against
regions in successive time steps (Fig. 2d). Prior to tracking, however,
our second improvement comes into play to address C3. By means
of correlation clustering it is indicated whether the parameters in the
selected superlevel set show low or high stochastic variation (Fig. 2d).
If, for instance, two large clusters with inverse correlation to each other
exist, the corresponding weather event might be unstable and, thus,
rather unsuited for a temporal evaluation.

The tracking process (cf. Sec. 4.3) is guided by the optical flow to
predict the percentage of area of one region that overlaps with another
region in the next time step. By using the optical flow forward and
backward in time, we detect split and merge events, which are encoded
in an abstract split-and-merge tree (Fig. 2d) that is linked to the spatial
view. This allows for an interactive inspection of detected events,
by picking objects in the tree and visualizing them in their spatial
surrounding. For a selected region we compute a so-called swipe-
path (Fig. 2d), to reveal the spatial and geometric variations a region
undergoes over time. A swipe-path shows in one image the temporal
evolution of a region, including all split and merge events by coloring
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and blending all single time states together (Sec. 4.3.2).
To address C4, all components of our proposed visual analysis

workflow can be performed optionally using 2D or 3D data (see inlets
in Fig 2). To ease navigation, region selection is always performed
on 2D maps, and in a synchronized view the 3D region is shown
simultaneously. When 3D data is used, direct volume and isosurface
rendering via GPU raycasting is used to visualize extracted regions and
show their tracks over time.

4 ENSEMBLE SENSITIVITY ANALYSIS

We introduce details of our proposed interactive visual analysis work-
flow for using ESA, and we demonstrate its outcome and derived
hypotheses on a real-world dataset. We elaborate specifically on the ad-
ditional indications and suggestions that our workflow offers compared
to the common use of ESA in meteorology.

4.1 Statistically coherent input regions
The ESA approach diagnoses statistically the sensitivity of a selected
forecast quantity (the input metric) for a target location to another
quantity at other locations and prior times (the initial condition state
variable). ESA determines these statistical relations using correlation
measures. In particular, the sensitivity (∂J/∂ s) of the target forecast
metric J to a selected state variable s is computed at all points in the
model domain. This sensitivity relationship can be expressed as

∂J
∂ s

=
cov(J,s)

σ(s)
, with cov(J,s) =

1
n−1

n

∑
k=1

(Jk− J̄)(sk− s̄).

Here J and s are n-dimensional data vectors, with n being the en-
semble size, and the covariance (cov) and standard deviation (σ ) are
computed over all ensemble members. Thus, the sensitivity measure is
the Pearson correlation coefficient multiplied by the standard deviation
of the state variable σ(s) at a certain location.

As the data values in regions exhibiting very low correlation can
be assumed independent of each other, the effect of uncertainty on
a feature in such a region is to a large extent arbitrary. Since σ(s)
can be seen as a measure of the ensemble uncertainty in the state
variable at a certain location, points with both high correlation and high
uncertainty are emphasized, causing weaker structures to be filtered out.
The underlying rational is that changes in terms of standard deviations
to grid points with small uncertainty will influence the outcome of a
weather prediction system only slightly.

Using the ESA measure, so called hypothesis chains between physi-
cal events can be generated to identify physical processes that poten-
tially cause uncertainty in the forecast. The combination of meteorolog-
ical fields for the input metric and state variable (e.g., precipitation and
moisture flux) generates the ensemble that is analyzed to quantify the
contribution to uncertainty induced by the state variable with respect
to the natural variability estimated from the meteorological models.
Critical to the sensitivity analysis is the selection of a suitable input
region over which the metric J is considered.

Using the input metric ensemble values at a single location and
computing sensitivities of these values to the state variable ensemble
values at other locations is highly sensitive to the chosen location.
Hence, in practice a region that contains a significant weather event, i.e.,
a meteorological process of interest like heavy precipitation, is selected,
and for each ensemble member a single measure for the entire region is
computed and used as input metric J. Also more sophisticated selection
procedures exist, for instance, which split manually the selected region
into coherent sub-regions with respect to orography or texture, yet all
these approaches require profound meteorological knowledge to select
a meaningful set of input locations. Furthermore, as indicated by Fig. 4,
computed sensitivities are highly sensitive to the selected input region.

We determine automatically a statistically coherent set of locations
over which the input metric is computed, by computing correlation
cliques. A correlation clique is defined as the set of locations (including
a user-selected seed location) with pair-wise correlations between the
data values at these locations above a threshold. A clique can consist

(a) (b) (c) (d) (e)

Fig. 3: 24 hours ensemble maximum precipitation over Norway, com-
puted between 27 - 28 September 2016, 18:00 UTC. Comparison of
correlation cliques computed from different seed locations.

of multiple connected components. The input metric J is then com-
puted ensemble-member-wise over these locations, and the sensitivity
is computed to the resulting ensemble of values of J. In this way, only
locations that show a statistically similar data distribution and that are
likely to deviate into the same direction in data space are considered.
Averaging over regions with completely different statistical character-
istics is avoided. Fig. 3 shows correlation cliques for 5 different seed
locations that were selected in the depicted precipitation field. It can be
seen how strongly the cliques can vary, and how few locations of the
high precipitation event they can cover.

Figure 4 shows sensitivities computed by ESA for J computed over
two manually selected rectangular regions and a correlation clique.
Since the orography over Norway is vastly different for every grid-
point, it is difficult to select a rectangular region covering a coherent
region. The use of an automatically adapted correlation clique can
alleviate this problem.

4.1.1 Computation of correlation cliques
To compute a correlation clique, the user first selects a domain location
(seed location) at which a significant weather event is predicted, e.g.,
a location with high precipitation. Given this location, the clique is
computed via Algorithm 1.

input :X , x̂, α

xc = x̂; X̃ = X ; i = 0;
sort X̃ w.r.t. decreasing corr(s(x j),s(xc)), x j ∈ X̃ ;
while i < |X̃ | do

X̃ = X̃\{x j|corr(s(xc),s(x j))< α, x j ∈ X̃};
xc = xi+1;
i = i+1;

end
return X̃ ;

Algorithm 1: Our algorithm for computing a correlation clique, with
X containing all locations (i.e., grid points) in the domain, x̂ the seed
location, xi the ith element in X̃ , s(xi) the value vector at location xi,
and α the selected correlation threshold.

To perform the computation efficiently, we first determine all lo-
cations with a correlation to the seed location that is greater than or
equal to the threshold, sort these locations with respect to decreasing
correlation to the seed location, store the sorted sequence, and proceed
as follows: As long as there are locations in the sequence, we select
the one with highest correlation to the seed location, and remove all
locations from the sequence with a correlation to the selected one below
the selected threshold. This procedure is successively applied until all
locations have been processed, and the remaining locations belong to
the computed correlation clique. The correlation threshold has a signif-
icant effect on the size of the cliques; the lower (higher) it is, the more
(less) locations will be assigned to a clique. From a number of experi-
ments we have found empirically that a threshold around 0.7 usually
leads to plausible cliques. In particular, we have observed that slight
variations around 0.7 often do not cause any significant changes, and
that resulting cliques were considered representative for the considered
event by our partners from meteorology.

Upon computing a correlation clique, it is displayed as an isocon-
tour in the scalar field of input metric J. Locations, i.e., grid points,
belonging to the clique are set to one, while all others are set to zero,
and the isocontours are extracted from the resulting binary field to the
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(a)

(b) (c) (d)

Fig. 4: (a) As in Fig. 3, together with the different input regions (framed in black) that were used to compute the ESA metric J. (b)-(d) Sensitivities
are computed with respect to moisture flux at 18:00 UTC 28 September 2016, corresponding to the time right after a high precipitation event over
Norway. Hence, high sensitivities are expected mostly east (downstream, blue circle) of the high precipitation region. Rectangular input regions
(b), (c) show weaker signals than the region that was automatically determined via a correlation clique (d), especially east of the event.

threshold 0.5. The same procedure is applied in 3D, yet the cliques are
displayed as isosurfaces in the 3D domain.

4.2 Coherent sensitivity regions

With a selected correlation clique, at every domain point ESA is used
to compute the sensitivity between the state variable s at that point and
the input metric J. Of special interest are regions of high sensitivity,
i.e., superlevel sets to a selected sensitivity threshold, displayed by
their enclosing level set. These regions are considered to be coherent
with respect to sensitivity, and they are used to indicate where the
prediction of J can be improved, i.e., by assimilating additional data
from measurements. However, it can be conjectured that measurements
placed in a region with high statistical variance will not be able to
improve the prediction. Instead, a separate measurement for each
statistically coherent region should be preferred.

To further shed light on the statistical variance within a selected
region of high sensitivity, one possible solution is to show the cor-
relation matrix for all locations belonging to that region. In general,
however, this is unfeasible because the correlation matrix is too large
and structures between the values at different locations cannot easily be
identified from it. To overcome this limitation, we utilize the algorithm
for computing correlation cliques to partition the region into multiple
disjoint cliques, with all positive correlations between the data values
at locations in one clique.

4.2.1 Correlation clustering

Algorithm 2 describes the procedure for computing a set of correlation
cliques that densely cover a selected superlevel set. Our goal is to de-
termine regions with low internal yet high mutual stochastic variation.
Multiple cliques with low mutual stochastic variation indicate a rather
unstable weather event that may fall apart over time, hinting towards
regions where the meteorological models tend to produce different
predictions. Especially sub-regions with very low or even negative cor-
relations to the initial clique should be treated separately in subsequent
analyses.

The algorithm first computes a correlation clique in the field of state
variable s to the seed location with highest sensitivity to J. Next, a
second clique is computed, that also has high correlations between the
data values at assigned locations, but with low correlation to the first
clique. Therefore, we compute the member-wise means of the state
variable over the initial clique and select from the remaining locations
the one with the minimum correlation to the mean values as seed point
for the second clique. This process is then repeated with the second
clique as initial clique until all locations in the superlevel set have been
assigned.

The resulting partition shows the size and location of cliques with
strongly correlated data values, yet with positive and negative mutual
correlations. For different scenarios this is demonstrated in Fig. 5.
Even though inverse correlations between cliques within one single
region with high sensitivity seem surprising at first, such structures
can nevertheless occur because the Pearson’s correlation coefficient
underlying ESA is not transitive.

input :X , x̂, α

X̃ = X ; i = 0;
clique0 = correlation clique(X̃ , x̂,α);
X̃ = X̃\{x|x ∈ clique0};
while (X̃! = /0) do

sc = compute metric(cliquei);
xi = argminx∈X̃ (corr(s(x),sc));
cliquei+1 = correlation clique(X̃ ,xi,α);
X̃ = X̃\{x|x ∈ cliquei+1};
i = i+1;

end

Algorithm 2: Correlation clustering splits a selected region X into
sub-regions with high interior correlation but low mutual correlation.

(a) (b)

(c) (d)

Fig. 5: Partition of superlevel sets using correlation clustering (Alg. 2).
Level set in ESA between (a) precipitation and moisture flux and
(b) geopotential height error and geopotential height. Many small
clusters (different colors) in (a) indicate high stochastic variability.
Large clusters (b) indicate large statistically coherent regions. (c,d)
Correlation of first cluster to all others in the region. Even negative
correlations (red) appear.

4.2.2 Significance of sensitivity
To test whether an extracted region of high sensitivity is significant,
a two-tailed t-test is commonly applied to the correlation values in
a selected region ( [47]). For the 51 member ensembles used in our
work, values higher than 0.276 can be deemed significant with 95%
confidence. This, however, can only be seen as a rough indicator, since
for every fixed J the t-test assumes normally distributed values for s,
which cannot be guaranteed in general. Therefore, we use the test
solely to remove regions with low significance. Once a region has
significant parts, it is considered as a whole in the upcoming analysis.
In our visualizations, we use an additional visual channel to show
the significance of the sensitivity values over the domain. According
to Retchless and Brewer [32] we use stipple patterns as overlays to
depict the significance. In particular, we use a point stipple pattern with
constant point density to indicate regions with medium significance,
i.e., between 50% and 94%, and a line stipple pattern with constant line
spacing to indicate very low significance, i.e., below 50%. The overlays
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are generated by mapping textures filled with the stipple patterns over
the entire domain, and fading out a texture’s contribution where the
significance values are not in the corresponding interval. The different
types of stipple overlays we use are demonstrated in Fig. 1c.

4.3 Tracking sensitive regions
In the majority of meteorological workflows for ensemble analysis
today, tracking of regions in which significant weather events are pre-
dicted is performed via animation and manual matching of correspond-
ing regions in successive time steps. One of the reasons is that the
predictability of regions associated with high-impact weather events,
which are often the regions of interest, is low, and predicted events tend
to undergo major changes in shape and location over lead time. To
support the automatic tracking of regions over time also in this situation,
we propose an improved tracking algorithm using the optical flow in
forward and backward direction.

4.3.1 Bidirectional OF-based matching
Given a sequence of 2D or 3D time-varying scalar fields, e.g., precip-
itation, the optical flow (OF) [15, 22] estimates the apparent motion
of precipitation patterns in two successive fields, the source and the
target field. The main idea behind the OF algorithm is to minimize
a global cost function that represents the rate of change of the scalar
quantity from the source to the target, under the assumption that the
metric does not change during a sufficiently small duration. The result
is a displacement field, which indicates for every spatial location and
given data value at that location to which location this value should be
moved such that the transformed field matches the target field. In our
workflow we use the implementation of the Farneback algorithm [10]
that is provided by OpenCV [4], with a window size of 12 in either
dimension, pyramid scale of 0.4, polynomials of degree 8, 2 iterations,
and a smoothing factor of 1.2.

To establish a correspondence between regions in the ESA field
at different time steps, which are defined as superlevel sets to the
correlation threshold, we apply forward and backward OF between
these fields (see Fig. 6). In the forward pass, the OF field is used to

(a) (b)

(c) (d)

Fig. 6: Forward (a) and backward (b) OF between sensitivity fields at
two consecutive time steps. (c) Forward OF tracking with 25% filtering
matches a single region (orange outline, yellow interior) to the picked
region (green outline, yellow interior). (d) Bidirectional OF tracking
using the same filtering matches two additional regions, one of them a
major split event visible in Fig. 1c.

estimate at which location in the local surrounding of every source
location a similar ESA value is found in the next time step. This
leads to the predicted motion of the ESA field over the corresponding
time period. In principle, this motion field can already be used to
establish a correspondence between regions in successive time steps:
Correspondence between a source and target region is established if
there is at least one location in the source region where the motion
vector points at a location in the target region [2]. As manually validated
by our domain experts, however, this approach has led to a number of
falsely matched regions as well as missed connections in our specific
scenario.

To weaken this limitation, we have modified the OF-based matching
procedure in two ways: Firstly, for every target location that is indicated
by the motion vector, we test whether this location is sufficiently close
to a target region. This indicates that the location belongs to that region

with high probability. In particular, we test for a distance less than the
size of one cell of the grid structure at which the ESA values have been
computed. The total number of matches from the source to the target
region, as well as the percentage of points of the source region that are
matched to a certain target region is stored. The number of matches is
used in the split-merge diagram described below to indicate the size of
matched regions, and the percentage of matched locations is used to
filter out region pairs that are only connected weakly.

Secondly, we use the OF, now oriented backward in time, to estimate
from where in the source field a physical quantity was moved over the
current time step. We could do this via a semi-lagrangian advection
step known from fluid simulation, where the motion vectors in the
target field are simply reversed, yet the explicit backward step using
OF enables us to employ a bidirectional matching according to the
distribution of the values in both fields. The result of the backward step
is used in the following way: Firstly, we establish a new link in exactly
the same way as in the forward step, and we store the number and
percentage of matched locations. The computed links are now filtered
with respect to a prescribed percentage threshold: If for a given pair of
matched regions in both the forward and the backward step this thresh-
old could not be reached, the link is disconnected. Fig. 7 illustrates
these two scenarios. Our partners from meteorology liked in particular
the possibility to interactively change the percentage threshold and see
immediately the resulting matches in the spatial view (see below). By
this, it was easy for them to explore all suggested pathways of weather
events and select those in best agreement with their domain-specific
assumptions.

Fig. 7: Schematic illustration of bidirectional OF-based region tracking.
Matches (indicated by arrows) identified between regions in time step
ti (green circles) and ti+1 (orange circles) are shown for forward and
backward OF tracking. Arrow width indicates number of matched
locations. Dashed lines indicate weak matches which are filtered out.
Final result is the union of remaining matches.

4.3.2 Visual encoding of region tracks
The computed matchings between source and target regions over the
entire simulation time are displayed in a split-merge diagram, where
every sensitivity region is represented as a node and edges between
nodes are established if a match has been established (Fig. 8b). The
number and percentage of matched locations for a selected region is
used to adjust the width of edges in this graph (Fig. 8b). The diagram
orders all extracted regions along the horizontal time axis, yet the re-
gions in one single time step are drawn along the vertical axis in an
unordered way. It is clear that this can lead to significant changes in
the edge orientations from time step to time step. However, since the
split-merge diagram is solely used as an additional support tool for
selecting a region that can then be tracked in the spatial view, we did
not focus on improving its visualization. Improved layouting strategies
for such diagrams are discussed by Widanagamaachchi et al. [45]. In
the split-merge diagram time decreases along the horizontal axis. The
resulting unusual ordering of time steps was specifically requested by
our collaboration partners from meteorology. Since relevant sensitivity
structures are defined close to the selected event and then traced back-
ward in time, our partners wanted to see the same temporal evolution
in the diagram.

In the diagram the user can now pick a time step and let all extracted
regions in that time step being displayed in the linked spatial view.
Furthermore, we let the user select a region in the spatial view, and
show all regions that were merged with this region or which emerged
due to a split of this region. From this set of regions, i.e., the connected
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(a)

06:00 UTC 28 September 2016

(b)

Fig. 8: (a) ESA sensitivity between precipitation and moisture flux
(color). Stippling covers regions with less than 95% significance. The
region with positive ESA close to the user-placed pole (red dot) is
selected for tracking, which is performed towards the initial time of the
simulation with increasing time-difference to the precipitation event.
(b) The split-merge graph with 10% filtering shows that the selected
region can be traced back (orange path) to the initial time step. There
is a merge event which connects two major tracks (black arrow).

component C in the diagram containing the selected region, a so-called
swipe-path is generated in the spatial view. The swipe-path encodes the
spatio-temporal evolution of the selected region, by assigning to every
location that was overlaid by a region in C a scalar value indicating
the first time this location was covered. In this way, the evolution of
a region is encoded in a scalar field, which can then be visualized by
isocontouring, 2D color plots, or direct volume rendering in 3D (see
Figs. 11c and 1c). We do not smooth the resulting spatial structure
to keep the grid resolution visible, which was also requested by our
partners from meteorology. When mapping scalar values to colors,
gradually changing colormaps are beneficial since neighboring time
steps can be identified while the whole evolution remains clearly visible.

Even though a swipe-path, conceptually, is a rather simple visual
representation of the temporal evolution of selected regions, especially
its use for depicting the motion of 3D regions was very well received by
our partners from meteorology. For the first time ever, meteorologists
could investigate the vertical movement of sensitivity regions, including
the geometric changes these regions undergo over time. The domain
experts argued explicitly against the use of glyphs for depicting the
temporal evolution of a selected region, to be able to directly read both
the spatial and temporal changes a region undergoes.

5 RESULTS AND EVALUATION

All components of the proposed visual workflow have been inte-
grated into the open-source meteorological visualization tool “Met.3D”
[25, 30]. The existing data processing pipeline of Met.3D, as well as
existing visualization functionality for meteorological maps and direct
volume rendering, provided a suitable pre-existing infrastructure. Also,
integration into an existing tool eases promulgation of our approach
into the meteorological community.

Firstly, we demonstrate the use of the workflow to investigate sensi-
tivities in weather forecasts related to the extratropical transition (ET)
of tropical cyclone “Karl” in late September 2016. The case is a fo-
cus of current NAWDEX analyses, aiming at identifying atmospheric
processes that may have caused deficiencies in the predictability of
the subsequent weather evolution (cf. [37]). In the days considered,
Karl moved into the middle latitudes, merged with a pre-existing weak
extratropical cyclone, rapidly re-intensified during this extratropical
transition and thereby impacted the jet stream over the North Atlantic
and northern Europe. This period was characterized by large forecast
errors. Visualization methods to investigate further aspects of the case
were already presented by Kumpf et al. [19] and Kern et al. [18]. We use

data from the ECMWF ensemble prediction system (ENS; e.g., [20]);
all results are produced from data on a regular latitude–longitude grid
with a grid spacing of 0.5°(1° for precipitation), using levels of constant
pressure in the vertical.

We consider an extreme precipitation event that occurred along the
Norwegian coast at the end of Karl’s life cycle on 28-29 September
2016. In some places, more than 116 mm of rain fell in less than
24 hours. A large-scale and a smaller-scale perspective are analyzed,
yielding first insights into the atmospheric processes involved.

5.1 Large-scale perspective: Geopotential height error
Fig. 9 shows the forecast error (the difference between forecast and
subsequently observed values) of 300 hPa geopotential height (gravity-
adjusted height above sea level) of the ensemble control forecast at
00:00 UTC 28 September 2016, valid at six days lead time from the
forecast initialized at 00:00 UTC 22 September 2016, as well as the
ensemble mean absolute forecast error of the same date. Contour lines
of geopotential height show two key features: A large gradient over
the North Atlantic indicates the jet stream, a low-gradient region over
eastern Europe indicates the remnants of a high-pressure system over
Scandinavia that dominated northern European weather in the days
before. The decay of this structure (referred to as “block”) enabled
the jet over the Atlantic to extend over Scandinavia, which steered
the cyclone that developed in the wake of Karl into Norway, causing
extreme precipitation.

(a)

00:00 UTC 28 September 2016

(b)

00:00 UTC 28 September 2016

Fig. 9: (a) Geopotential height error (m) of control forecast, and (b)
geopotential height mean absolute error (m), at 300 hPa with a lead
time of 144h. Contours show geopotential height of control run (a) and
analysis (b).

Of interest are forecast errors over northern Europe associated with
the decay of the block and the jet impinging on Norway. The error field
exhibits very different structure in different members of the ensemble
(not shown), yet still in the ensemble mean of the absolute errors, errors
associated with this jet are very large, with a maximum over Scotland
(Fig. 9b). It is a natural choice to first consider this error maximum;
we hence aim at investigating the sensitivity of errors in this region to
geopotential at earlier forecast times.

The user selects a seed location at 300 hPa over Scotland, at 00:00
UTC 28 September 2016, and the system computes an extended corre-
lation clique with low stochastic variation (see Fig. 10) It captures the
error region over Scotland and extends vertically throughout the entire
atmosphere but does not include the southern Scandinavian region.
The ESA signal (sensitivities) at the selected time (Fig. 10b) show a
distinct dipole correlation pattern indicating that members with smaller
forecast errors have lower (higher) geopotential height north (south)
of the large gradient. Furthermore, the dipole pattern extends to the
east of the large gradient. This pattern indicates that the actual jet was
stronger and extended farther to the east than in the ensemble mean.
The sensitivities, however, quickly vanish as we trace them backwards
in time (illustrated in Fig. 10c for the positive ESA signal north of
the large gradient). Evidently, the error maximum within the largest
gradient is thus not associated with geopotential features at previous
times earlier than 12-24h and no meaningful insight is gained into
which earlier processes may have caused the error. As the region of
large errors is located in a region of a strong gradient, however, the
considered error maximum may be dominated by uncertainties in the
north-south location of the jet.

Our interest here, however, is rather on the zonal extent of the jet
and thus to investigate the situation further, we consider the lower-
gradient region at the eastern end of the jet. A correlation clique in
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00:00 UTC 28 September 2016

(c)

Fig. 10: (a) Correlation clique of geopotential height error, seeded at
300hPa over Scotland (pole and white cut). (b) ESA at 300hPa, using
the clique from (a). (c) 3D swipe-path of sensitive region north of Great
Britain (black arrow in (b)). The sensitivity signal vanishes after 18 h.

(a) (b) 00:00 UTC 28 September 2016

(c)

Fig. 11: (a) As Fig. 10a, but seeded over Denmark (pole). (b) ESA
between geopotential height error and geopotential height at 300hPa
using root mean square error of clique (turquoise) from (a) as input
metric. Blue contours show mean pressure of geopotential height,
stippling covers statistically insignificant regions to black contours
marking 95% confidence. The red region indicated by a black arrow
was later tracked. (c) Swipe-path of sensitivity feature over Denmark
to correlation clique (a) seeded at dark red pole. Color changes in 6
hourly steps. Darker color indicates earlier valid times. Blue colors in
the east show that the initial feature must have split before the second
time step.

this region, centered at 300 hPa over Denmark (Fig. 11a), also yields a
very coherent spatial structure, both in the horizontal and in the vertical,
similar in this respect to the one associated with the error maximum
discussed above. The ESA signal now exhibits a “tripole” structure
with an elongated region of strong negative correlations overlapping the
clique and positive correlations to the north and south. Hence, members
with smaller forecast errors exhibit a stronger and more northerly jet
and a stronger block to its east than the ensemble mean, and in addition
more pronounced wave breaking over the western Mediterranean.

Fig. 11c shows the 3D swipe-path obtained from tracking the nega-
tive (red) ESA feature. The sensitivity pattern can be traced up- (west-
wards) and downstream (eastward ) in time, respectively, with notably
faster speed “upstream” than “downstream”. This error pattern in the
large-scale flow therefore has both an upstream component, as well as
a more local “block” component. Importantly, the sensitivity pattern
gets gradually more confined to the upper troposphere when tracing
back in time, which emphasizes the importance of the jet structure over
the North Atlantic two days before the development over Scandinavia.
Focusing on this upstream propagation of the ESA feature, we find that
the statistically-significant signal is lost at 18:00 UTC 25 September
2016 in the ridge over the western North Atlantic. This is the time at
which the extratropical transition of Karl started to impact the ridge
development ( [37]). Inspecting the ESA map at this time (at 300 hPa,
Fig. 12a), we note a statistically-significant positive signal near the base
of the trough upstream of the ridge. Going further back in time reveals
that this signal highlights persistently the region between the tropical
cyclone Karl and the upstream trough in the preceding 24 h (illustrated
at 12:00 UTC and 00:00 UTC 25 September 2016, Fig. 12b,c). This
signal is consistent with the high sensitivity of the outcome of the ex-
tratropical transition to the occurrence of the tropical cyclone and the
upstream trough [8].

Our approach facilitates the intuitive building of hypothesis chains.
As one example, it is now of interest if the error identified in the ridge
is indeed associated with tropical cyclone Karl during its extratropical
transition. To this end, we select a clique of geopotential errors from the
center of the negative ESA signal in the ridge at 00:00 UTC 26 Septem-
ber 2016 and investigate its correlation with low-level features (using
925hPa geopotential). At this time, the ridge error is associated with a
statistically significant dipole in 925hPa geopotential elongated in the
direction of Karl’s track (not shown), indicating that ridge errors corre-
late with the position of Karl. This dipole pattern can be traced back
for 96h (Fig. 13), using the positive part of the signal, until the start of
the forecast. The signal, however, is statistically significant only in the
first and last 24h of the considered time period. Still, Fig. 13b indicates
that errors in the track of Karl lead to errors in the ridge formation
over the North Atlantic, which in turn leads to errors in the large-scale
flow over Scandinavia two days later. Application of our method thus
greatly facilitates building a hypothesis chain that ultimately relates
the extreme precipitation event in southern Norway to the evolution of
tropical cyclone Karl. It is a promising task for future work to further
elaborate on this hypothesis.

5.2 Smaller-scale perspective: Moisture flux

The second perspective focuses more directly on the extreme precipita-
tion event, aiming at identifying the sensitivity of the forecast precipita-
tion amount to uncertainties in the forecast moisture flux (the product
of humidity and wind) at earlier times. When selecting a square target
region enclosing a significant weather event, as in common meteorolog-
ical workflows, a rather weak ESA signal is computed (see Fig. 4b,c).
By using our workflow, the user has picked different seed locations
(see Fig. 3), until a coherent correlation clique (Fig. 1a) yields clear,
significant ESA signals (Fig. 4d). The interpretation of the signal is
rather straightforward: The positive signal over southern Norway and
upstream (to the west) reveals that stronger precipitation is associated
with stronger antecedent moisture flux. Interestingly, our case does
not exhibit a dipole pattern close to the region of extreme precipitation,
which indicates sensitivity to the location of antecedent moisture flux
and has often been found in other studies. Here, instead, the sensitivity
is to the magnitude of the moisture flux over a relatively broad area.

The automated tracking clearly traces the signal back to the be-
ginning of Karl’s extratropical transition approximately 4 days earlier
(Fig. 1c). The split-merge graph (Fig. 8b) and the mean tracking vectors
in Fig. 1c indicate that the signal undergoes several merge and splitting
events during this time. In particular before 00:00 UTC 26 Septem-
ber 2016, the sensitivity regions are of relatively small scale before
they merge into a spatially more coherent pattern (Figs. 8b, 1c). By
inspecting the individual ESA maps we visually verified the automated
tracking. The ESA signal found in the moisture flux thus corroborates
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(a)

18:00 UTC 25 September 2016

(b)

12:00 UTC 25 September 2016

(c)

00:00 UTC 25 September 2016

Fig. 12: ESA to clique over Denmark (cf. Fig. 11). (a) The last significant part of the tracked red region vanishes. A new significant signal is
detected close to Karl. (b,c) It appears in earlier time steps as well, indicating a link between the error over Denmark and the early stage of Karl.

(a) 00:00 UTC 26 September 2016

(b)

Fig. 13: (a) Sensitivities between geopotential height error at 300hPa
(clique marked in turquoise) and geopotential height at 925 hPa. (b)
Swipe path for the positive (green) sensitivity feature marked by the
arrow in (a).

the hypothesis chain developed using the geopotential correlations, i.e.,
that the extreme precipitation event in Norway is sensitively linked to
the evolution of tropical cyclone Karl.

Finally, it is important to note that the statistically coherent struc-
tures in the moisture flux field are relatively small compared to the ones
in the geopotential height field (Fig. 5), i.e., the moisture flux region
exhibits more nontrivial smaller-scale structures. Hence, more atmo-
spheric observations are required to adequately sample the sensitive
moisture flux region. If targeted observations were collected to reduce
the uncertainty in the forecast of the extreme precipitation event, the
analysis suggest that it might be more efficient to sample the sensitive
geopotential height region using less observations. Depending on the
forecast horizon, the observations should be collected in the region be-
tween Karl and the upstream trough, to improve the forecast of Karl’s
track, or directly within the ridge after the completion of the ET.

5.3 User discussion
We discuss our first experiences with the method from the point of
view of the meteorological domain experts in the author team. To
our knowledge, this is the first interactive end-to-end workflow for
ESA (providing guidance from selecting the region for J to tracking
of sensitivities, including guidance on robustness of results and pos-
sibly further locations of interest, i.e., supporting hypothesis chain
building). Compared to our current script-based workflow, ESA is
therefore greatly facilitated during all necessary steps of the analysis.
Definition of a suitable region for J using correlation cliques greatly
facilitates selection of a meaningful (in a statistical sense) region. In our
script-based workflow, region selection was guided by meteorological
intuition. Now, the selection of the initial point is guided by intuition,
the region is proposed by the automated method. The user can check if
the proposed region contains the event of interest.

Tracking of sensitivity features and subsequent depiction of a swipe-
path provides a quick, succinct overview of the evolution of the sen-
sitivities, thus enabling fast judgement if further investigation of the

sensitivities should be conducted. If yes, attention of the investigation is
directed to the “end” (in a backward tracking sense) of the swipe-path,
which can be the starting point of any further sensitivity analysis (in the
context of building hypothesis chains). In particular, the 3D depiction
of the swipe-path provides unprecedented insight into the evolution of
the 3D structure of the sensitivities. The split-merge diagram provides
guidance for the robustness of the signal. If many split and merge
events are present, the user needs to evaluate the sensitivities carefully
to judge their physical relevance; few, distinct events, on the other hand,
may indicate physically meaningful evolutions. For example, the lack
of split events between 28 and 26 September in the orange curve in
Fig. 8b is guidance to interpret the track as physically meaningful back-
ward propagation of the sensitivity signal from the initially selected
weather event of interest to the Western Atlantic near Karl.

6 CONCLUSION

We have proposed a novel visual analysis workflow to facilitate an
interactive analysis of sensitivities of a forecast metric J on another
forecast field. Our workflow enables the user to interactively identify
regions of intercorrelated grid points from which J is computed, and to
automatically track features of high sensitivity through time. A “swipe-
path” visualization showing the track of a sensitivity feature in time
has been proposed that allows the user to immediately see geographical
regions from which sensitivities originated. Swipe-paths are generated
from user-selected features and can be displayed both in 2D and 3D.
In particular, the novel interactive sensitivity tracking in 3D opens the
door to analyses considering all spatial dimensions, as not possible with
existing 2D meteorological workflows.

The workflow has been integrated into the open-source software
Met.3D. Its benefit has been demonstrated with a real-world case study
taken from ongoing analyses of the NAWDEX atmospheric field cam-
paign. Compared to script-based tools commonly applied in the mete-
orological community, the workflow proposed here greatly simplifies
ensemble sensitivity analysis by providing an interactive end-to-end
workflow that encapsulates all steps required for sensitivity analysis in
a single framework. At the same time, important information about the
reliability of the results is provided, and a fully 3D analysis is facilitated.
In the near future, the method will actively be used in further data anal-
ysis activities related to the NAWDEX campaign. Future work might
include detailed statistics of sensitivity structures, a manual correction
tool for the tracking and further enhancement of the swipe-path using
glyphs to compensate for occlusion.
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