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Infill Optimization for Additive Manufacturing
–Approaching Bone-like Porous Structures

Jun Wu, Niels Aage, Rüdiger Westermann, Ole Sigmund

Abstract—Porous structures such as trabecular bone are widely seen in nature. These structures are lightweight and exhibit strong
mechanical properties. In this paper, we present a method to generate bone-like porous structures as lightweight infill for additive
manufacturing. Our method builds upon and extends voxel-wise topology optimization. In particular, for the purpose of generating
sparse yet stable structures distributed in the interior of a given shape, we propose upper bounds on the localized material volume in the
proximity of each voxel in the design domain. We then aggregate the local per-voxel constraints by their p-norm into an equivalent global
constraint, in order to facilitate an efficient optimization process. Implemented on a high-resolution topology optimization framework, our
results demonstrate mechanically optimized, detailed porous structures which mimic those found in nature. We further show variants
of the optimized structures subject to different design specifications, and we analyze the optimality and robustness of the obtained
structures.

Index Terms—Infill, additive manufacturing, trabecular bone, porous structures, topology optimization.
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1 INTRODUCTION

In additive manufacturing, which is also known as 3D print-
ing, the term infill refers to the interior structure of an object
that is printed. The infill often has a regular structure, which
is selected by the user in the slicing software in addition to
a specific volume percentage. The infill pattern and volume
percentage significantly influence the printing process as
well as physical properties of the printed object. In general,
a higher volume percentage leads to a print that is more
resistant to external loads while consuming more material
and prolonging the print time. To assist users in designing
lightweight and mechanically strong prints, i.e., to find infills
that are further optimized regarding these properties, in
this work we propose a new approach combining structural
analysis and optimization.

Our approach is inspired by the architecture of bone.
Bone is composed of two types of structures – compact
cortical bone forming its outer shell, and spongy trabecular
bone occupying its interior (see the cross section of a human
femur in Fig. 1). This composite results from a natural
optimization process during which the bone adapts itself
to the mechanical load (Wolff’s law [1]). As a consequence
of this natural adaptation, micro-structures of trabecular
bone are aligned along the principal stress directions. This
is illustrated in the second image of Fig. 1. The resulting
composition is lightweight, resistant, robust with respect to
force variations, and damage-tolerant [2], [3]. These proper-

• Jun Wu, Niels Aage and Ole Sigmund are with the Department of
Mechanical Engineering, Technical University of Denmark, Lyngby,
Denmark.
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ties make bone-like structures an appealing option as infill
for additive manufacturing.

In this paper we present a new approach for the gener-
ation of bone-like porous structures. This approach builds
upon and extends the general, voxel-wise topology opti-
mization scheme [6], [7]. It maximizes the mechanical stiff-
ness by optimizing the distribution of a prescribed amount
of material in a given design domain under a given set of
external loads. In particular, to generate porous structures
we propose a formulation to measure local volume fractions,
and then impose constraints on such values in order to
regulate the local material distribution. Under the objective
function to maximize stiffness, the porous structures are
automatically aligned to accommodate the mechanical loads
in an optimized manner.

The specific contributions of our paper are:

• A novel formulation for generating porous structures
firmly based on structural optimization.

• Insights into optimal structures from a mechanical
perspective, analyzed via a detailed parameter study.

The remainder of this paper is organized as follows.
After reviewing related work in Section 2, in Section 3 we
present the problem formulation and the techniques for
solving the infill optimization problem. In Section 4, we
discuss extensions to steer the optimization process. Results
and analysis are presented in Section 5, before conclusions
are drawn in Section 6.

2 RELATED WORK

In 3D printing, much research has been devoted to the
modelling of geometric shapes with specific physical prop-
erties. In this section, we review techniques related to
the optimization of mechanical properties. For a thorough
overview of geometric and physical modeling approaches
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Fig. 1: From left to right: Cross-section of a human femur showing cortical structures on the shell and trabecular structures
in the interior [4]. Illustration of principal stress directions under major mechanical loads [5]. Cross-section of the optimized
porous infill in a 3D bone model. The 3D printed bone model.

for 3D printing, let us refer to the recent survey article by
Gao et al. [8] and the tutorial by Liu eat al. [9].

Early work by Smith et al. [10] addressed the layout
of truss structures for optimizing bridges and towers with
respect to mechanical stiffness. Wang et al. [11] and Lu et
al [12] respectively, introduced skin-frame structures and
honeycomb-like Voronoi structures as lightweight compos-
ites for the shape interior. To assist users in the design of
3D printable shapes, Stava et al. [13] presented a system for
detecting structural deficiencies by means of a finite element
analysis. A set of correction operations including hollowing,
thickening, and strut insertion was proposed to improve a
shape’s structural soundness. Zhou et al. [14] presented an
efficient analysis to detect worst-case loads for stress and de-
formation criteria, making no assumptions on the placement
of the forces. Manufacturing constraints regarding toolpath
restriction and overhang avoidance were addressed by Zhao
et al. [15] and Wu et al. [16], respectively. The assembly of
shapes from manufacturable micro-structures has been in-
vestigated in computer graphics [17], [18], [19] and topology
optimization (e.g., [20], [21], among others). Our work is
inspired by these works, yet it avoids the use of prescribed
micro-structures to generate structural compositions that are
less limited in the mechanical properties they can achieve.

Topology optimization Topology optimization is based
on a volumetric element-wise parametrization of the design
domain. This general formulation does not prescribe the
topology a priori, but allows structures to appear and adapt
during the iterative optimization process. For a thorough
review of topology optimization techniques let us refer to
recent survey articles [22], [23]. Our work is based on the
density approach, which is known as Solid Isotropic Mate-
rial with Penalization (SIMP) [24]. The method is related
to the length scale problem in the literature of topology
optimization, where the interest is to control the minimal
and/or maximal structure size for manufacturability [25],
[26]. In particular, we follow the idea of the projection fil-
ter [27], [28] in our implementation to impose local volume
constraints. Different from exact length scale control, we
propose a projection method in an approximate manner to
facilitate fast numerical solutions. In our work we employ
the potential of numerical multigrid schemes to enable

topology optimization at high resolution and efficiency [29].
Approaching bone-like structures While we approach
bone-like porous structures for their superior mechanical
properties by using topology optimization, we note that
other directions—considering different aspects of bone—
exist for generating such structures. One such direction is
material reconstruction. For instance, Liu and Shapiro [30]
proposed to reconstruct 3D micro-structures from 2D sam-
ple images using example-based texture synthesis [31], such
that the synthesized structures preserve statistical features
of the given sample.

Another direction is the simulation of bone tissue adap-
tation using biology-inspired models. For instance, Huiskes
et al. [32] proposed a biological model following Wolff’s
bone re-modeling theory [1] to simulate the process of
bone resorption and formation under given mechanical
stimuli. Numerical modeling of bone adaptation has been
performed in computational mechanics by applying two-
scale simulations (e.g., [33], [34], [35]), which date back to
the seminal work by Bendsøe and Kikuchi [6]. The two-
scale approach combines a fine scale composed of pre-
defined optimal micro-structures with a coarse scale that
is guided by finite element analysis and topology opti-
mization. Besides the challenge of obtaining continuous
micro-structural details between neighbouring coarse cells,
the resulting structures are typically regular repetitions of
(a limited amount of types of) cells. In contrast to these
approaches, which strictly separate local and global scales,
we propose to control local details by embedding geometric
constraints into a unified simulation and optimization scale.
This is similar to the approach by Alexandersen et al. [21],
yet our approach provides higher geometric flexibility in
that the resulting structures vary smoothly across the entire
domain and geometric features are not restricted to a set of
prescribed cell types.

3 INFILL OPTIMIZATION

We start by formulating a discrete optimization problem
to generate porous structures, then introduce relaxations to
enable an efficient numerical solution of the problem, and
finally summarize the proposed algorithm. A 2D example
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is used to demonstrate and explain the consequences of our
derived formulation for the resulting structures.

3.1 Discrete Formulation

Our formulation is based on a regular hexahedral discretiza-
tion of the design domain Ω that is covered by a given shape.
For each volumetric element (i.e., voxel) e in the discretized
model, a boolean value ρe ∈ {0, 1} is assigned to indicate a
solid (ρe = 1) or an empty voxel (ρe = 0). This leads to a
binary field ρ representing the material distribution in Ω.

We define ρe to quantify the (local) material distribution
in a neighbourhood surrounding the voxel e. In particular,
ρe measures the percentage of solid voxels over all voxels in
a prescribed neighbourhood Ne, i.e.,

ρe =

∑
i∈Ne ρi∑
i∈Ne 1

. (1)

Ne is the set of all surrounding voxels with a centroid that
is closer than a given influence radius Re to the centroid of
voxel e, i.e.,

Ne = {i| ||xi − xe||2 ≤ Re}, (2)

where xi and xe are the centroids of the voxels. The posi-
tions and lengths are measured in units of voxels. A local
volume percentage ρe = 0.0 (resp. ρe = 1.0) means that all
voxels in the defined neighbourhood are empty (resp. solid),
and a value between 0.0 and 1.0 means that both empty and
solid voxels exist.

With ρ and ρ defined, the optimization problem is given
as

min
ρ

c =
1

2
uTKu, (3)

s.t. Ku = f, (4)
ρe ∈ {0, 1}, ∀e, (5)
ρe ≤ α, ∀e. (6)

The objective is to minimize the compliance, measured by
the strain energy c, with u and K being the displacement
vector and stiffness matrix, respctively. The displacement
vector u is obtained by solving the static elasticity equation
Eq. 4 under the external force vector f . Eq. 5 restricts the
design variables to take discrete values 0 (empty) or 1
(solid).

The novel part in our formulation is Eq. 6. This con-
straint restricts the local material accumulation. For in-
stance, α = 0.6 implies that at most 60% of all voxels in
Ne are solid while the other 40% are empty. Note that while
this constraint restricts the percentage of the solid/empty
voxels, it does not prescribe which specific voxels are solid
or empty: Determining the specific solid and empty voxels
is left to the optimizer, under the goal of minimizing the
objective function. The rational behind this constraint is that
it prevents material from being accumulated to form large
solid regions, and as a consequence, the material will be
distributed more evenly over the domain. This is in line
with what we observe in nature when looking at porous
structures such as trabecular bone.

We note that additional constraints such as a maximum
total volume known from classical topology optimization

can be integrated into this formulation as well. Its influence
on the resulting structures, as well as the influence of other
parameters will be discussed in Section 4.

3.2 Relaxations
The optimization problem given in Eq. 3-6 is a discrete
optimization problem, with several millions of variables (cf.
per-voxel design variable in Eq. 5) and constraints (cf. per-
voxel constraint in Eq. 6) in some of our test cases. In the
following, we present a number of relaxations to make the
numerical optimization tractable.

3.2.1 Constraint Aggregation
The per-voxel local volume constraint (Eq. 6) gives rise to a
large number of constraints. These constraints are equiv-
alent to max

∀e
(ρe) ≤ α, which reduces the large number

of constraints into a single constraint. However, it is not
differentiable and, thus, not directly applicable to numerical
optimization schemes. To overcome this problem, we use
the p-norm function to approximate the max function,

max
∀e

(ρe) ≈ ||ρ||p = (
∑
e
ρpe)

1
p . (7)

As p goes to infinite, ||ρ||p becomes equivalent to max
∀e

(ρe).

To account for the difference between max
∀e

(ρe) and ||ρ||p
when the value of p is not infinitely large, we write the
consolidated constraint max

∀e
(ρe) ≤ α by

(
∑
e
ρpe)

1
p ≤ (

∑
e
αp)

1
p , (8)

which can be rearranged to

( 1
n

∑
e
ρpe)

1
p ≤ α, (9)

where n is the number of elements. A larger p more strictly
enforces the per-voxel constraints while increasing the non-
linearity of the problem. In our examples we choose p = 16.

3.2.2 Continuous Design Variable, Filtering, and Projection
The discrete design variable (Eq. 5) necessitates expensive
integer programming. To facilitate efficient gradient-based
numerical optimization, we follow the study in [36] and
introduce a per-voxel design variable φe which is allowed
to take a scalar value continuously varying between 0.0 and
1.0,

φe ∈ [0.0, 1.0]. (10)

The field of design variables φ is first smoothed via a local
convolution filter, and the filtered field φ̃ is projected to
obtain the material distribution ρ.
Filtering φ → φ̃ The purpose of the filtering φ → φ̃ is
to remove checkerboard patterns (i.e., regions of alternating
solid and void voxels) resulting from numerical instabili-
ties [37]. In particular, the local filter calculates a weighted
average of the neighbouring values via

φ̃e =

∑
i∈Me ωi,eφi∑
i∈Me ωi,e

. (11)

Here, Me is the set of voxels close to voxel e, i.e.,

Me = {i| ||xi − xe||2 ≤ re}, (12)
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with filter radius re. This filter size is different and smaller
than the radius Re in Eq. 2. The weighting factor ωi,e
depends linearly on the distance between the considered
voxels, i.e.,

ωi,e = 1− ||xi − xe||2
re

. (13)

Projection φ̃ → ρ The purpose of the projection φ̃ → ρ
is to ensure a 0-1 solution. An intermediate value between
0.0 and 1.0 is thresholded at the value of 1

2 to a discrete 0/1
value by

ρe(φ̃e) =

{
1 if φ̃e ≥ 1

2 ,
0 otherwise.

(14)

For numerical optimization, we relax ρe to a scalar threshold
function and approximate this non-differential function by

ρe(φ̃e) =
tanh(β2 ) + tanh(β(φ̃e − 1

2 ))

2 tanh(β2 )
. (15)

The parameter β controls the sharpness of the threshold
function, as illustrated in Fig. 2. An infinite β leads to a
strict binary classification as in Eq. 14. Instead of directly
applying a large β value, which results in highly non-linear
equations, we start with β = 1 and double its value after
a certain number of iterations. This process is known as
parameter continuation, which is a common technique for
improving convergence behaviour [36].

Fig. 2: The projection function Eq. 15 for various β values.
As β increases, the function approaches the discrete function
Eq. 14.

Material Interpolation With ρe being relaxed via Eq. 15
to a scalar, the Young’s modulus corresponding to a voxel
with continuous material distribution ρe is interpolated by

Ee(ρe) = Emin + ργe (E0 − Emin). (16)

Here E0 is the stiffness of the solid voxels, Emin is a very
small stiffness assigned to empty voxels in order to prevent
the global stiffness matrix from becoming singular, and γ
is a penalization factor (typically γ = 3). Assuming a fixed
Poisson’s ratio the stiffness matrix of intermediate voxels
then becomes

Ke = Ee(ρe)k0, , (17)

where k0 is the element stiffness matrix for a voxel with unit
Young’s modulus. This interpolation scheme is known as
modified Solid Isotropic Material Penalization (SIMP) [38].

3.3 Relaxed Formulation

With the above relaxations the optimization problem be-
comes

min
φ

c =
1

2
uTKu, (18)

s.t. Ku = f, (19)
φe ∈ [0.0, 1.0], ∀e, (20)

g(φ) =
( 1
n

∑
e ρ

p
e)

1
p

α
− 1.0 ≤ 0.0. (21)

Here, the design variable is the continuous variable φ. This
continuous optimization problem is solved iteratively by us-
ing gradient-based optimization schemes. In each iteration,
three major steps are performed sequentially:

1) solve the state equation Ku = f for the unknown
displacement vector u,

2) do sensitivity analysis to get the derivatives of the
objective and the constraint function with respect to
the design variable φ, i.e., ∂c∂φ and ∂g

∂φ , and
3) update the design variables by a numerical opti-

mization solver.

These three steps continue until the change of design vari-
ables in successive iterations falls below a prescribed thresh-
old ε, or the number of iterations exceeds a maximum value
Itmax. For the numerical optimization solver in step 3) we
use the method of moving asymptotes (MMA) [39], [40].

Algorithm 1 details the optimization process. It takes as
input the prescribed local volume fraction α and outputs the
density field ρ representing the material distribution.

Algorithm 1 Infill optimization

Input: Local volume fraction α
Output: Density field ρ

1: Design variable φ = α
2: Iteration index i = 0
3: Design change ∆ = 1.0
4: Projection parameter β = 1.0
5: while ∆ > ε and i ≤ Itmax do
6: i = i+ 1
7: φ̃← φ via Eq. 11
8: ρ← φ̃ via Eq. 15
9: K ← ρ via Eq. 16 & 17

10: u via solving Ku = f
11: c← (u,K) via Eq. 18
12: ρ← ρ via Eq. 1
13: g ← (ρ, α) via Eq. 21
14: ∂c

∂φ & ∂g
∂φ as in Appendix

15: φ←
(
c, g, ∂c∂φ ,

∂g
∂φ

)
via the MMA solver [40]

16: ∆ = max
∀e

(|φie − φi−1e |)
17: if mod(i, 40) == 0 or ∆ < ε then
18: β = 2β
19: ∆ = 1.0
20: end if
21: end while
22: Compute φ→ φ̃→ ρ
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Fig. 3: (a) Illustration of the design domain, boundary conditions, and the local volume measurement region indicated by
the size of the white disk. (b) Structure optimized by the proposed topology optimization with local volume constraints, i.e.,
the scalar field ρ. (c) Structure optimized by classical topology optimization with a total volume constraint. The compliance
of (b) and (c) is 76.86 and 57.13, respectively, meaning that the structure considering local volume constraints is somewhat
less stiff. (d) Visualization of the stress tensor field in the initial solid design domain. (e) The scalar local volume fraction ρ.
The grey scale is linearly mapped from the volume fraction. (f) The histogram of the obtained material distribution ρ. The
values converge to a 0-1 solution. (g) The histogram of the local volume fraction ρ. Most values fall below the prescribed
local volume limit of 0.6.

3.4 Example

To demonstrate the effects of the proposed changes to
classical topology optimization, a simple 2D example is
used in the following. Fig. 3 (a) shows a rectangular 2D
design domain. The left edge of the design domain is fixed,
meaning that the displacements of the vertices along this
edge are constrained to zero. On the right edge an external
force is applied to the mid point. The design domain is
discretized using a 400× 200 uniform grid. A local volume
fraction of α = 0.6 and an influence radius of R = 6 are
prescribed.

Fig. 3 (b) shows the optimized structure, where black and
white indicate solid and empty elements, respectively. The
structure has several distinctive features. First, compared to
classical topology optimization with a prescribed volume
constraint (Fig. 3 (c)), the material distribution does not
evolve towards large solid and empty parts. The reason is
that in the proposed formulation at most 60% of all voxels
in each local neighbourhood are set to the solid state.

Second, the structure is dominated by crossing elongated
sub-structures. As shown in Fig. 3 (d), where the stress
tensor field in the initially solid design domain is visualized
via ellipsoidal glyphs, the sub-structures largely follow the
principal stress directions. The axes of the ellipses encode
the principal stress directions and magnitudes at every
voxel center. In addition, the colour of the axes indicate
compression (red) or tension (green). While crossing sub-
structures appear almost everywhere in the domain, single
separated elongated structures can be found at the top and
bottom of the left boundary. In theses regions the stresses are
highly anisotropic (Fig. 3 (d)), and the material distribution
has evolved primarily along the largest principal stress
direction.

Third, the material is distributed across the entire design
domain. This results from the objective to minimize compli-
ance. If the constraint on material volume is not enforced,
the minimization of compliance leads to a completely filled
solid. Since local volume constraints are imposed, the op-
timizer tends to place material at every location up to the
maximum allowed volume (60% in this case). The local
volume values ρ are shown in Fig. 3 (e), and the histogram
showing the frequency of occurrence of values is given in
Fig. 3 (g). It can be seen that the majority of local volume
values is below the prescribed limit of 0.6. At a few places,
however, the prescribed local volume limit is exceeded,
because the p-norm approximation does not represent the
max function accurately. These values are mostly located in
regions where the stress is very high.

The local volume constraint is parametrized by two
values, the local volume limit α and the influence radius
R. The effect of both parameters on the optimized structure
is examined in Fig. 4. It can be seen that the local volume
limit controls the local porosity, while the influence radius
controls the empty space between substructures. As the
influence radius increases, the locality constraint becomes
less strict, leading to stiffer structures. If the influence radius
becomes larger than the size of the design domain, the local
volume constraints become equivalent to a total volume
constraint, resulting in the stiffest structure as it would be
generated by classical topology optimization.

4 EXTENSIONS

To provide further control over the optimized structures,
we present several extensions to the infill optimization
using Eq. 18-21 (referred to as the basic formulation in the
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Fig. 4: From left to right, the local volume limit α deceases from 0.6 to 0.4. This leads to increasing porosity and a natural
increase in the compliance value thereof. Structures in the bottom row were generated using a larger influence radius
R, resulting in a less strict locality constraint and increasing stiffness of the structures thereof. In all examples, the same
boundary conditions as illustrated in Fig. 3 (a) were applied.

following). The resulting infill structures are then compared
to those resulting from the basic formulation.

4.1 Total Volume Control

By prescribing a maximum value for the total material
volume, the user can control the expected cost of a print.
Representing the voxel volume by ve, which is constant in
the regular discretization, the solid volume normalized by
the volume of the design domain is

ρavg =

∑
e
ρeve∑
e
ve

. (22)

The local volume constraint g (Eq. 21) implicitly imposes
an upper bound on the total volume. In fact, the local upper
bound α is a good indicator for the ratio of total volume
ρavg , i.e., if ρe = α,∀e, we get ρavg = α. However, since
the density values ρe are set to either 0 or 1, and due to the
domain boundaries, the resulting ρavg is smaller than α. For
instance, ρavg = 0.56 when setting α = 0.6 in the 2D test
example.

To support direct control over the total volume, we
integrate the following total volume constraint into the
optimization problem:

g1 = ρavg − αtotal ≤ 0.0, (23)

where αtotal is a user-selected limit on the total volume
ratio. The integration of this constraint into Algorithm 1 is
straightforward. The constraint value g1 and the value of its
derivative ∂g1

∂φ are calculated and fed into the optimizer, to-
gether with their counterparts controlling the local volume,
i.e., g and ∂g

∂φ .
Fig. 5 shows the result when different limits on the total

material volume are used for optimizing the infill of the test
shape in Fig. 3 (a). In all cases a local volume limit α = 0.6 is
imposed. In Fig. 5 (middle), as the total volume is controlled,
structures disappear in regions of lower stresses (cf. the

stress visualization in Fig. 3 (d)). In Fig. 5 (right), as the total
volume is further reduced, the material distribution shrinks
from low stress regions and evolves towards the structures
that are generated by classical topology optimization (cf.
Fig. 3 (c)).

4.2 Anisotropic Filter

In the basic formulation, we define the local volume fraction
in a circular neighbourhood and treat all elements in this
neighbourhood the same. However, since the stress distribu-
tion at some locations can be highly anisotropic, in such re-
gions the material will accumulate along the major principal
direction while leaving the other direction weakly or barely
connected. This can be seen in the top and bottom left parts
of the 2D object shown in Fig. 3-5. To further demonstrate
the effect of anisotropy in the stress distribution, we show
in Fig. 6 (a) a situation where the left edge of the cantilever
is fixed, while uniformly distributed horizontal forces are
applied to the right edge. Due to high uniaxial tension along
the horizontal direction, the optimized structure is almost
solely composed of horizontal bars (see Fig. 6 (b)).

To distribute the material along all directions, and thus
to simulate natural bone remodelling, we suppress unidi-
rectional growth by using anisotropic filters for defining the
local volume fractions. Two and three such filters are used
in 2D and 3D, respectively, with a 2D example shown in
Fig. 7. Here, 90◦ degree orientations were used, yet other
configurations can be used as well. For instance, one could
use 60◦ oriented filters to obtain a higher degree of isotropy,
or the filter axes could be oriented automatically along the
principal stress direction determined by the finite element
analysis of the initial shape. In 3D, the isotropic local volume
measure ρe is substituted by three local volume measures
corresponding to three different filter orientations,

ρe,s =

∑
i∈Ne,s ρi∑
i∈Ne,s 1

, s ∈ {x, y, z}, (24)
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Fig. 5: In addition to a local volume limit of α = 0.6, limits of αtotal = 0.5 (middle) and αtotal = 0.4 (right) were imposed on
the global material distribution. The compliance increases due to the use of less material. The applied boundary conditions
are shown in Fig. 3 (a).

Fig. 6: Comparison of 2D structures optimized with isotropic and anisotropic filters. (a) Illustration of the design domain
and boundary conditions. (b) The structure optimized with an isotropic filter, the size of which is indicated by the blue
disk. (c) The structure optimized with anisotropic filters. The compliance and the total volume of (b) and (c) are 22.6 with
59.8% volume, and 34.6 with 51.7% volume, respectively.

Fig. 7: Illustration of the influence region of a 2D isotropic
filter (left) and two orthogonal anisotropic filters (right).

where Ne,s is the set of elements in the anisotropic influence
region. Consequently, the constraint ρe ≤ α,∀e is replaced
by

ρe,s ≤ α,∀e, s ∈ {x, y, z}. (25)

Fig. 6 (c) shows the result when the structure in (a) is
optimized using two anisotropic filters. It can be seen that
the horizontal bar-like structures are broken up, and instead
the optimization process tries to connect short horizontal
and vertical sub-structures.

In Fig. 8, the effects that can be achieved by us-
ing anisotropic filters in 3D are demonstrated. When the
isotropic filter is used (top row), only a few connections
along the y-axis evolve due to larger stresses in the xz-
plane compared to those along the y-axis. When anisotropic
filters are used (bottom row), more bridge-like connections
between the planes parallel to the xz-plane are formed.

4.3 Truss- vs. Wall-like Structures

The local volume constraint suppresses the emergence of
large solid domains. The two types of sub-structures that
emerge primarily from this constraint are thin walls and
trusses. A mix of both types evolves when optimizing 3D

shapes (see Fig. 1). In the following, we discuss the param-
eters used to control the type of sub-structures and propose
reformulations to prioritize or suppress certain types.

It has been shown recently [41] that thin-walls are the
most effective 3D structures for stiffness optimization, as
opposed to truss-like structures. Nevertheless, truss-like
structures do appear very often in structural optimization,
primarily due to an insufficient resolution of the underly-
ing simulation grids. The spatial discretization implicitly
requires the walls, if they exist, not to be thinner than
one simulation element (and more if filtered). If the local
material allowance is not sufficient for creating wall-like
structures, holes are formed in the (not yet developed)
walls. Given a higher resolution discretization, wall-like
structures connecting the truss-like structures from a low
spatial discretization emerge.

While from the perspective of solid mechanics closed-
walled structures are more optimal, truss-like structures
are found to dominate in trabecular bone. This can be
attributed to the involved biofluid mechanics [42], i.e., truss-
like structures allow unblocked interaction between the
solid structures and the surrounding fluid environment.
Truss-like structures are also preferable for their superior
manufacturability, i.e., reducing the possibility of trapped
powders in the post-processing of printed models. Since
wall-like structures below the minimum feature size will
fall apart into truss-like structures, the idea is to prescribe
a larger minimum feature size (or alternatively a smaller
maximum local volume) and, thus, to explicitly enforce the
breakdown of closed-walled structures. The minimal feature
size can be controlled by the filter radius r in the projection
φ→ φ̃ [27], [36].

Fig. 9 compares the structures that were optimized with
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Fig. 8: Comparison of 3D structures optimized with isotropic and anisotropic filters. (a) Illustration of the design domain
and boundary conditions. (b) The structure optimized with an isotropic filter. (c) The structure in (b) viewed from top, with
a cut-plane parallel to the xy-plane. (d) The 3D density field is projected onto a 2D xy-plane, visualizing the distribution of
averaged densities along rays parallel to the z-axis. (e,f,g) The structure optimized with anisotropic filters. The compliance
and total volume resulting from isotropic and anisotropic filters are 79.4 with 27.9% volume, and 125.6 with 23.8% volume,
respectively.

Fig. 9: As the minimum thickness increases from left to
right, the wall-like structures are more and more replaced
by truss-like structures.

different minimal feature sizes of r = 2 (left) and r = 3
(right). It can be seen that with increasing feature size some
walls are substituted by a sparse set of trusses. Along with
the breakdown of closed-walled structures, we observe a
decrease of stiffness by a factor of up to 20%.

The relation between the minimal feature size and the
structural types can be derived analytically. Consider a
location xe in the design domain. The influence region of
an isotropic filter with radius R has a volume of Vsphere =
4
3πR

3. A wall with a thickness of 2r takes a volume of
Vwall = 2πrR2 − 2

3πr
3. To suppress the emergence of the

wall, the allowed volume ratio α should be smaller than the
required volume fraction, i.e.,

α <
Vwall
Vsphere

. (26)

This equation leads to the lower bound of the radius r under
a prescribed volume allowance of α, and interchangeably,
the upper bound of volume ratio α under a prescribed
feature size r.

The above analysis is based on the assumption of strictly
enforced local volume constraints, which is computationally
prohibitive to realise. In our implementation, since we ap-
proximate the local volume constraints by a global p-norm,
the actual volume fraction at locations where the stress
is extremely high can be larger than the prescribed limit.
Consequently, at such locations wall-like structures may still
emerge.

4.4 Passive Elements
To fix a thin shell below the surface of a 3D input model,
we prescribe elements close to the surface mesh as passive
and denote the remaining elements as active. We compute
a distance field in the design domain Ω to represent the
shortest distance from the centroid of each element to the
surface mesh. Elements with a distance below a prescribed
layer thickness t are identified as passive. The thickness
value can be adjusted by the user, and it was set to 2 times
the voxel size in our experiments.

The local material distribution of passive elements is
set to ρe = 1.0 and they are excluded from the design
update step. Yet these solid elements are considered in the
finite element analysis, since they can sustain forces as well.
Passive elements are also excluded from the calculation of
the local volume fraction for active elements. This is realised
by augmenting the set of neighbouring elements, Ne in Eq. 2,
by

Ne = {i| ||xi − xe||2 ≤ Re, i 6∈ Ωs}, (27)

where e refers to an active element and Ωs is the set of
passive elements.

5 RESULTS AND ANALYSIS

We have implemented the proposed infill optimization
method in 2D based on the Matlab code provided in [38],
and in 3D based on the high-performance multigrid solver
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Fig. 10: Topology optimization in a 2D femur-shaped design
domain. Left: Classical topology optimization with a total
volume constraint. Right: Proposed topology optimization
with local volume constraints.

Fig. 11: Visual comparison of a cubic sample taken from the
optimized infill in Fig. 1 and a real bone sample from CT
scans (Image courtesy of R. Müller [45]).

for topology optimization proposed in [29]. In 3D, a surface
mesh is constructed from the optimized scalar density field
via the Marching Cubes algorithm [43] with a threshold
value of 0.5

1
γ , where γ is the penalization factor in material

interoperation (Eq. 16) and takes a value of 3 in our exam-
ples. This mesh is smoothed via Taubin smoothing [44] with
λ = 0.5 and µ = −0.53 to eliminate staircase artifacts. In the
following, we present and discuss a number of additional
infills that have been generated by our method.

5.1 Bone Models
To verify that the proposed formulation leads to infills
with a similar structure to trabecular bone, we prescribe a
2D femur-shaped design domain as shown in Fig. 10. The
optimization is carried out with a total volume constraint
(left) and local volume constraints (right). The porous infill
on the right clearly follows the principal stress directions as
depicted in Fig. 1.

As already indicated by Fig. 1, the 3D results are also
very promising. The femur model is simulated with a reso-
lution of 280 × 185 × 364, leading to a total of 5.56 million
finite elements. The femur model with the optimized infill
was fabricated by using selective laser sintering using strong
flexible plastic as printing material. The physical replica has
a dimension of 12.32 cm× 5.85 cm× 16.00 cm.

Fig. 11 compares cubic samples taken from the optimized
infill (left) and from a human femur CT scans (right). It can
be seen that both samples are composed of sparse trusses
and a few wall-like structures.

5.2 Robustness

With respect to material deficiency An advantage of
distributed porous structures is their damage tolerance, i.e.,
the infill remains stiff even if parts are broken. Local failure
can be caused by a high internal stress or by an accidental
event. Stress-constrained topology optimization is formed
to prevent stress-induced failure. Here we examine the
structural integrity when local failure happens, for instance,
due to collision, explosion, corrosion, fatigue failure, and
manufacturing error. In particular, we employ a simplified
local damage model [46] and assume that a quadrilateral
region of a fixed size is damaged, and that this region can
be placed anywhere in the design domain. It is desired that
in case of damage a high stiffness can be maintained.

We test the damage tolerance of different structures
generated for the half MBB-beam at a grid resolution of
200 × 100 (see Fig. 12). We first optimize with respect
to local volume constraints using a local volume limit of
α = 0.4 (middle). The influence radius is selected based on
the assumed damage size, effectively controlling the amount
of empty space between porous structures. The resulting
volume (αtotal = 0.368) is then considered in a second
optimization with respect to the total volume constraint
(left). A regular grid (right) with the same volume serves
as a reference. To exactly match the prescribed volume, the
thickness of the horizontal bars is slightly enhanced at the
bottom.

To simulate damage, we remove the material in a cer-
tain region—indicated by the orange squares in Fig. 12—
from the optimized structures. The damaged shapes are
then compared with respect to their compliance. While the
total volume constrained infill (left) has a compliance of
101.4 before and 1763.8 after damage, the local volume
constrained infill (middle) has a compliance of 132.6 before
and 187.3 after damage. This suggests that the infill that was
optimized with respect to the total volume is very sensitive
to material damages – The compliance changes by a factor of
17.4, while it changes only by a factor of 1.4 for the porous
infill.

To consider the sensitivity of the structural compliance to
the applied damage, we vertically move the damage region
downwards and consecutively evaluate the compliance. The
curves in Fig. 13 show the resulting changes for all three
test structures. It can be seen that the bone-like infill (green
curve) exhibits only small variations in the compliance val-
ues. The total volume constrained structure undergoes large
changes under some damage conditions. For the regular
infill, even though it also shows only minor variations, the
compliance values are about 4 times larger than those of the
bone-like infill.
With respect to force variations The second benefit of
porous structures is their robustness with respect to force
variations as they often occur in practical use cases. To
demonstrate this, we evaluate the robustness of the 2D
bone model to varying force conditions (see Fig. 14). The
structures are optimized with respect to the forces indicated
by the dashed grey arrows, under a total volume constraint
(left) and the local volume constraints (middle). We then
rotate the forces by π

4 as represented by the solid blue
arrows and re-calculate the compliance of the structures
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Fig. 12: Illustration of local material damage. Without damage, the structure constrained to a total volume (left) has the
smallest compliance c of the three structures. When damaged as indicated by the orange square, this structure’s compliance
becomes worst. The middle structure was generated by constraining the local volume limit. A regular grid structure (right)
serves as reference.

Fig. 13: Change in compliance with respect to a constantly
relocated damage region for the three designs in Fig. 12. The
bone-like porous infill (green) has a smaller variation and a
small worst-case compliance.

under the new force condition. The total volume constrained
infill is very sensitive to this change of direction, i.e., the
compliance changes from 30.54 to 45.83. In contrast, the
compliance of the local volume constrained version changes
only from 36.72 to 36.23.

To examine the sensitivity of the compliance to varying
force directions, we consecutively rotate the force directions
out of an initial start configuration. Fig. 15 shows the com-
pliance values depending on the rotation of force direction.
The regular infill (blue, top) and the fully solid infill (cyan,
bottom) serve as references. At an angle of attack of zero
degrees, for which the structures were optimized, both the
total volume (red) and local volume (green) constrained
structures have a compliance close to that of the solid struc-
ture, with the total volume constrained structure performing
slightly better. At angles up to about 20◦ the red curve
remains below the green one, indicating a somewhat higher
stiffness of the total volume constrained structure. Beyond
20◦ the red curve exceeds the green one, indicating the
superiority of the local volume constrained structure as well
as the sensitivity of the total volume constrained structure
to large directional changes. At the rotation angle of 90◦,
both structures show their worst-case compliance.

Our test verifies the robustness of the local volume con-
strained structure, which is in agreement with the formation

of porous structures in bone. The mechanical load applied to
a bone is not static but varies during day-to-day work. Thus,
a bone permanently undergoes a dynamic natural optimiza-
tion process and produces porous structures accounting for
all different load conditions.

5.3 Convergence & Performance

Convergence Fig. 16 provides insights into the conver-
gence of the numerical optimization scheme applied to the
2D cantilever model. Along the horizontal axis we indicate
the number of iterations. The vertical axis represents from
left to right the compliance value, i.e., the objective in Eq. 18,
the constraint in Eq. 21, and the sharpness

s =
4

n

∑
e

(ρe(1− ρe)), (28)

to measure how close the continuous density field is to a
binary field [47]. Here n is the number of elements. On the
right and from top to bottom, three structures corresponding
to the density field at iterations 79, 159, and 279 are shown.

It can be observed that the compliance gradually de-
creases during the optimization process, indicating increas-
ing stiffness of the structure. The constraint value is main-
tained below 0.0, while a few jumps happen when the β
value is doubled every 40-th iteration. This β-continuation
is required to convert the intermediate values into a strict 0-
1 solution cf. earlier discretization. When the density values
are converged to a strict 0-1 solution the sharpness factor
becomes 0.0, and it becomes 1.0 if all elements take a value
of 0.5. The structures on the right indicate that the design
becomes more and more discrete with progressing optimiza-
tion. Even though the optimization can be stopped before
converging to a discrete design, which is common practice
when using classical topology optimization in industry, this
bears the risk of computing a misinterpreted topology.
Performance Table 1 reports on the complexity of the
used 3D simulation models and gives timing statistics for
different parts of the optimization process under local vol-
ume constraints. All experiments were run on a standard
desktop PC equipped with an Intel Xeon E5-1650 v3 pro-
cessor (12 cores) running at 3.50 GHz, 32 GB of RAM, and
an NVIDIA GTX1080 graphics card with 8 GB memory. We
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Fig. 14: The structures are optimized with respect to the force condition as indicated by the dashed grey arrows. Under
alternative forces (solid blue arrows), the local volume constrained structure (middle) is 1.3 times stiffer than the total
volume constrained structure (left). The regular grid with the same amount of volume on the right serves as a reference.

Fig. 15: The compliance with respect to changing force direc-
tions for the 2D femur model (Fig. 14). The bone-like porous
infill (green) is less sensitive to changes in the force direction
and has a smaller worst-case compliance compared to the
total volume constrained structure (red).

Model Resolution # Ele. Per iteration [s] # Iter. Total
FEM Sens. MMA [min]

Femur 280×185×364 5.6e6 6.85 5.44 2.52 500 121.2
Kitten 218×198×334 4.6e6 5.45 4.54 1.91 120 23.8
Cantilever 200×100×100 2.0e6 1.98 2.11 0.95 120 10.1

TABLE 1: Performance statistics for different models.

break down the computing time into three parts: FEM,
sensitivity analysis including data preparation for MMA,
and MMA. The computations involved in all stages consist
predominantly of matrix and vector operations, and they
are thus highly parallelizable. The FEM analysis, which
turns out to be the performance bottleneck, is accelerated
via a highly efficient geometric multigrid solver and GPU
parallelization [29]. The multigrid solver is terminated at
a residual reduction of 10−4. For the sensitivity analysis,
we execute the convolution operator with a larger R on the
GPU. All other matrix operations as well as the MMA solver
are parallelized with OpenMP [40]. The design optimization
is performed iteratively using a fixed number of iterations.

5.4 Comparison

Comparison to honeycomb structures Fig. 17 compares
the compliance-minimized structures subject to local and
global volume constraints to the volume-minimized hon-
eycomb structure subject to a critical stress [12]. The three
models are optimized with the same material properties
and boundary conditions. From the stress distribution (left)
it can be observed that the forces applied at the top of
the kitten model are transmitted mostly through the neck
and the tail to the fixed bottom part. This results in a
straight structure connecting the top and the bottom when
using classical topology optimization (middle). Since in the
new formulation the local volume is controlled, the vertical
structure splits into multiple curved structures (right). The
compliance values are normalized against the compliance of
a fully solid shape. The values indicate that the porous infill
is 1.5 times stiffer than the honeycomb structure, and has a
maximum von Mises stress that is 72.5% of the maximum
stress in the honeycomb structure.
Comparison to rhombic structures In Fig. 18, we show a
comparison to self-supporting rhombic infill structures [16].
This example employs the same boundary conditions as in
Fig. 17, but it uses a larger volume percentage in order to
allow the rhombic wall to be thicker than three voxels in a
stable finite element analysis. The optimized rhombic infill
(left) supports the forces by an adaptive refinement in the
vertical region. The uniformly refined infill (middle) serves
as a reference. The bone-like porous infill (right) exhibits a
similar trend as in Fig. 17 (right). The porous infill is about
1.14 times stiffer than the optimized rhombic structure at
comparable maximum stresses. Both optimized structures
perform better than the uniform grid.

The measure on 3D structures optimized via both the
conventional topology optimization and the proposed in-
fill optimization is based on black-white designs, i.e., the
solid shapes that are converted from the density fields by
a threshold value of 0.79 (i.e., 0.5

1
γ , with γ = 3). From

experiments we find that the difference in compliances due
to this conversion generally is small and at most 1%.
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Fig. 16: Convergence plots of the compliance (left), the constraint (middle), and the sharpness of the density field (right)
over the iterative optimization process. The density field, shown at three different stages on the right, gradually converges
to a 0-1 solution by using β-continuation in Eq. 15. This explains the discontinuities at every 40-th iteration.

Fig. 17: Comparison between the honeycomb structure [12]
(left, model courtesy of Lu et al.) and structures generated
by topology optimization with a total volume constraint [29]
(middle) and with local volume constraints (right).

Fig. 18: Comparison between self-supporting rhombic in-
fill structures [16] that are refined adaptively (left) and
uniformly (middle), and the structure generated by local
volume constrained topology optimization (right).

5.5 Discussion

Robustness We have tested bone-like infills under differ-
ent robustness criteria. Natural materials seem to suggest
that structural robustness comes with organized complexity
in shape and topology [3]. The local volume constraint
serves this purpose by encouraging a structural organi-
zation of micro-structures to support prescribed external

forces. The very typical approach to ensure robustness to
uncertain loads in topology optimization is to optimize
with respect to multiple or worst case loading scenarios.
This is a wide spread concept (c.f. [48], or some quite
recent examples [49], [50], [51]). However, such approaches
require some a priori knowledge of the positions of these
uncertain loads; anti-optimization problems may have to be
solved to identify worst cases; and many load cases (c.f.
expensive finite element analyses) must be performed to
ensure a reasonable coverage of the uncertainties. To achieve
low sensitivity to loading positions and detailed structures
as shown in our work, dozens (if not hundreds) of loads
with varying location and direction would be necessary. In
contrast, our formulation involves only one (or possibly a
few) finite element analysis in each iteration. This makes the
new formulation more practical for processing the massive
models as we see in 3D printing.

Manufacturability While additive manufacturing enables
the fabrication of complex shapes, it still poses a few con-
straints, e.g., regarding feature size, enclosed voids, and
overhang surfaces. Ideally such constraints shall be incor-
porated into the optimization process. Otherwise a post-
process might become necessary, and this process can coun-
teract optimality. In our work we have taken into account
the minimum feature size by the well-established projection
method [27], [36]. Concerning the enclosed voids which
might trap unsintered powder in SLS (Selective Laser Sin-
tering), in Section 4.3 we have analyzed parameters which
influence the formation of wall-like structures. Neverthe-
less, a rigorous formulation to guarantee enclosed-void-free
is currently out of reach. Regarding overhang avoidance,
some progress has been made recently by embedding corre-
sponding constraints into density-based topology optimiza-
tion [52], [53], [54]. These methods are compatible to our
formulation, yet we leave the integration as future work.

To verify the manufacturability of bone-like infills, we
have fabricated the femur model using the SLS process (see
Fig. 1) and three additional models using more affordable
FDM (Fused Deposition Modelling) printers (see Fig. 19).
When using FDM printers, the models could be printed
without supports for the infill, since, in general, the bone-
like infills show small overhang areas that are within the
allowed tolerance. The absence of supports leaves a few
visual artefacts and unguaranteed mechanical property.
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Fig. 19: FDM printed replicas of some models generated by
our formulation.

6 CONCLUSION

We have presented a structural optimization method for
obtaining stiffness optimized porous structures. These nu-
merically optimized structures visually resemble trabecular
bone, which is lightweight and robust with respect to ma-
terial deficiency and force variations. This makes the opti-
mized interior structures an ideal candidate for application-
specific infill in additive manufacturing.

APPENDIX

In numerical optimization, the gradient of the objective c
and the constraint g with respective to the design variable φ
is needed. It is calculated using the chain rule as follows

∂c

∂φe
=
∑
i∈Me

(
∂c

∂ρi

∂ρi

∂φ̃i

∂φ̃i
∂φe

)
, (29)

∂g

∂φe
=
∑
i∈Me

∑
j∈Ni

(
∂g

∂ρj

∂ρj
∂ρi

)
∂ρi

∂φ̃i

∂φ̃i
∂φe

 . (30)

The derivative ∂c
∂ρi

is calculated using the adjoint analysis

∂c

∂ρi
= −γργ−1i (E0 − Emin)uTi k0ui. (31)

The other components can be derived as

∂ρi

∂φ̃i
=
β(1.0− tanh2(β(φ̃i − 1

2 )))

2 tanh(β2 )
, (32)

∂φ̃i
∂φe

=
ωe,i∑

k∈Mi
ωk,i

, (33)

∂g

∂ρj
=

1

αn

(
1

n

∑
e

ρpe

) 1
p−1

ρj
p−1, (34)

∂ρj
∂ρi

=
1∑

k∈Nj
1
. (35)
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Rüdiger Westermann studied computer sci-
ence at the Technical University Darmstadt, Ger-
many. He pursued his Doctoral thesis on mul-
tiresolution techniques in volume rendering, and
he received a PhD in computer science from the
University of Dortmund, Germany. In 2002, he
was appointed the chair of computer graphics
and visualization at the Technical University Mu-
nich. His research interests include scalable sim-
ulation and visualization algorithms, GPU com-
puting, real-time rendering of large data, and

uncertainty visualization.

Ole Sigmund is a Professor at the Department
of Mechanical Engineering, Technical Univer-
sity of Denmark (DTU). He obtained his Ph.D.-
degree 1994 and Habilitation in 2001 and has
had research positions at University of Essen
and Princeton University. He is a member of the
Danish Academy of Technical Sciences and the
Royal Academy of Science and Letters (Den-
mark) and is the former elected President (2011-
15, now EC member) of ISSMO (International
Society of Structural and Multidisciplinary Opti-

mization). Research interests include theoretical extensions and appli-
cations of topology optimization methods to mechanics and multiphysics
problems.


	Introduction
	Related Work
	Infill Optimization
	Discrete Formulation
	Relaxations
	Constraint Aggregation
	Continuous Design Variable, Filtering, and Projection

	Relaxed Formulation
	Example

	Extensions
	Total Volume Control
	Anisotropic Filter
	Truss- vs. Wall-like Structures
	Passive Elements

	Results and Analysis
	Bone Models
	Robustness
	Convergence & Performance
	Comparison
	Discussion

	Conclusion
	Appendix
	References
	Biographies
	Jun Wu
	Niels Aage
	Rüdiger Westermann
	Ole Sigmund


