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Abstract

Recent work has demonstrated that the interior material layout of a 3D model can be designed to make a fabricated replica satisfy
application-specific demands on its physical properties, such as resistance to external loads. A widely used practice to fabricate such
models is by layer-based additive manufacturing (AM), which however suffers from the problem of adding and removing interior
supporting structures. In this paper, we present a novel method for generating application-specific infill structures on rhombic
cells so that the resultant structures can automatically satisfy manufacturing requirements on overhang-angle and wall-thickness.
Additional supporting structures can be avoided entirely in our framework. To achieve this, we introduce the usage of an adaptive
rhombic grid, which is built from an input surface model. Starting from the initial sparse set of rhombic cells, via numerical
optimization techniques an objective function can be improved by adaptively subdividing the rhombic grid and thus adding more
walls in cells. We demonstrate the effectiveness of our method for generating interior designs in the applications of improving
mechanical stiffness and static stability.
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1. Introduction

The shape of 3D models can be designed by a variety of ge-
ometric modeling tools. To create a physical replica of such
shapes, instead of manufacturing the object with a solid inte-
rior, a typical practice in AM is to use a uniform infill with an
adjustable percentage of voids. The purpose is to balance the
mechanical quality and the cost associated with material con-
sumption and fabrication time. To serve specific purposes such
as load bearing [1] or standing [2], a number of studies have
been devoted to the generation of optimized interior.

However, in many (if not all) cases, the optimized structures
cannot be directly fabricated by layer-based AM. Specifically, if
the shapes have a relatively large overhang, the manufacturing
material cannot be deposited on a layer where there is no mate-
rial below it. Recent developments in AM address this problem
by automatically generating support structures below the layers
with overhang (e.g., [3, 4, 5]).

A support structure can be fabricated by either a dissolvable
material or the same material as the main body. If a dissolvable
material is employed, exterior supports can be removed auto-
matically in a post-process (ref. [6]). The removal procedure
has to be performed manually if single-material manufactur-
ing is employed (e.g., SLA and the low-cost FDM machines1).

1SLA and FDM stands for Stereolithography Apparatus and Fused Deposi-
tion Modeling, which are two widely used approaches in AM.

Figure 1: An optimized shape can be affected by support structures if they are
considered separately: (a) an unbalanced model, (b) an optimized model that
can stand, (c) the model becomes unbalanced again when support structures are
added.

In some recent works, methods have been proposed to reduce
the effort involved in the manual removal process by optimiz-
ing the direction of fabrication [7, 8, 9] and the shape of mod-
els [10, 11]. However, the existence of support structures be-
comes more problematic when an optimized structure has inte-
rior voids, because they cannot be removed at all. As a conse-
quence, these additional material structures counteract the goal
in shape optimization to create shapes with a particular physi-
cal property. For example, since additional mass is added, the
result of mechanical stiffness optimization where the volume
(and thus the total weight) is controlled becomes invalid [12].
Moreover, for an optimization targeting at static stability [2],
additional interior support can make an optimized model lose
its balance (see Fig. 1 for an example).
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Therefore, the effect of support structures must be considered
simultaneously in the optimization process, or the need for such
structures must be avoided entirely, for instance, by limiting
the maximum allowed overhang during topology optimization
(ref. [13]). This approach, however, cannot completely ensure
that no overhang is generated. Moreover, adding the respective
constraints into the optimization process increases the problem
complexity and deteriorates the convergence of the employed
numerical simulation schemes.

To overcome the aforementioned problem in interior struc-
ture optimization, we present a new method for infill optimiza-
tion that ensures the resultant structures are self-supporting. A
structure is said to be self-supporting if its surfaces have an
overhang-angle smaller than a prescribed maximum overhang-
angle, and thus the structure can be fabricated without adding
supports below all its surfaces. Our method restricts the com-
putational domain to a special class of spaces which are self-
supporting and let control the size of the smallest features.
Specifically, we advocate the use of rhombic cell structures
as composites of the interior, where the maximum overhang-
angle and the minimum wall-thickness can be specified explic-
itly. With these composites, we carry out an optimization pro-
cess to gradually update the interior structures of a given model
towards different specific usages, at the same time enforcing
manufacturability of the results. The specific contributions of
our work are as follows:

• We account for manufacturability explicitly by restricting
topology optimization to generate structures living in a
manufacturability-ensured space, i.e., represented by a hi-
erarchical grid of rhombuses.

• We demonstrate the use of grid refinement and cell-to-
shell operators to efficiently perform the optimization pro-
cess.

• We demonstrate the effectiveness of our approach for the
optimization of mechanical stiffness and static stability.

To the best of our knowledge, our proposed approach is the
first that can ensure the manufacturability (i.e., bounds of the
maximum overhang-angle and the minimum wall-thickness) of
optimized interior structures.

The remainder of this paper is organized as follows. After
reviewing work that is related to ours in Section 2, the overall
methodology of our infill optimization framework is introduced
in Section 3. The use of adaptive rhombic structures as the com-
putational domain is discussed in Section 4. The formulation
for optimizing the mechanical stiffness and the static stability
is given in Section 5 to exemplify the use of our method. Re-
sults are shown in Section 6 to verify the effectiveness of our
approach.

2. Related Work

With the development of additive manufacturing techniques
in recent years, more and more research has been devoted to

geometric and physical modeling for AM (also called 3D print-
ing). The purpose of this section is to discuss the strengths and
limitations of approaches most closely related to ours, rather
than providing a comprehensive survey. For the latter, let us
refer to [14, 15].

Interior Shape Optimization The interior structure of a
model can be optimized to meet different objectives on physical
properties. The static balance has been considered in [2, 16],
which is later extended to dynamic balance [17] by changing
both the surface of an input model and its interior infills. Tar-
geting a variety of stability objectives, Musialski et al. [18] op-
timize the interior by proposing a reduced-order parametriza-
tion of offset surfaces. Wu et al. [19] present an analysis of
the optimal topology regarding static and rotational stability,
and propose a reduced yet accurate optimization based on ray-
reps. A heuristic method is developed in [20] to construct meso-
structure inside a model to change its mechanical property. A
skin-frame structure is optimized in [21] for enhancing the me-
chanical stiffness of objects fabricated by 3D printing. Lu et
al. [1] compute the interior structure for a similar purpose but
use different structures – honeycomb-cells. Among all these
approaches, except [16] which fills the interior void by pre-
defined regular patterns, interior structures generated via op-
timization faces the problem of large overhangs. As a result,
the interior structure cannot be fabricated directly without sup-
port structures. We tackle this problem by using self-supporting
rhombic structures in the optimization process.

Support Structures during 3D Printing Adding supports to
a model leads to the problems of material waste, longer fabri-
cation time and lower surface quality. Approaches have been
developed to reduce the usage of support structure to resolve
these problems. For example, an optimal printing direction is
searched in [4] according to the total area of facing down re-
gions (i.e., places where support structures need to be added).
As a result, the total volume of the used support structure and,
thus, additional material cost can be reduced. In the recent work
of Zhang et al. [8], a perceptual model is developed using a
training-and-learning strategy to consider multiple influences
that will be given on a fabricated model by support structures.
The best printing directions are determined by composing all
the factors including contact area, visual saliency, viewpoint
preference, and smoothness entropy. Given a fixed printing di-
rection, the shape of an input model is optimized in [10, 11]
to reduce the area of facing down regions so that less support
structures are needed. Some approaches consider another as-
pect of supports – the stability. Unlike the tree structures used
in [4, 8], bridge structures are suggested in [3, 5, 22]. Different
from such techniques for reducing the usage of external sup-
ports, we optimize interior structures with the goal to ensure
that they are self-supporting and thus can completely eliminate
the usage of additional interior supports.

Topology Optimization Topology optimization has been
widely used for product and structure design, and very compact
code has been developed for well-posed problems (e.g., [23]).
Recently, Wu et al. [24] have developed a high-throughput sys-
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tem to improve the efficiency of topology optimization on 3D
solids. Unlike the prior method which computes optimized
shape and topology on a fixed structure of grids, Wang et
al. [12] represent the structural boundary by a level-set model
that is embedded in a scalar function of a higher dimension. The
parametric control is realized in [25] by presenting level-sets of
a higher-dimensional function derived from B-splines and com-
bining primitives with R-functions. Different representations
have been developed to control the domain of computation, in-
cluding the B-spline space [26], the medial zone [27], and the
dynamically changed simplicial complex [28]. Our research is
related to these works in the sense that we follow the idea of
restricting the computational domain to fully control geometric
features. In particular, our framework computes on an adap-
tive rhombic grid to ensure the manufacturability constraints
including self-support and a minimum thickness constraint for
wall structures.

Self-Supporting Structures In computer graphics, the term
”self-supporting” has been used in related-but-different con-
texts other than concerning the overhang-angle. Specifically,
self-supporting in architectural geometry refers to structures
which as a whole stand in static equilibrium without external
support. The structure of self-supporting masonry was studied
in [29, 30], and nonlinear optimization was used in [29] to ap-
proximate an arbitrary surface by such structures. Instead of
assembling self-supporting structures, Whiting et al. [30] pro-
posed an approach to guide the design process so that a self-
supporting shape is formed. The self-supporting surface can
also be constructed with the help of regular triangulation as
studied in [31]. The assembly of building blocks to form a self-
supporting structure is investigated in [32] to govern the process
of construction. Recently, self-supporting shape is computed
on parametric surfaces, which is a standard representation of
freeform surfaces in CAD systems (ref. [33]). However, only
the shape of a surface (but not topology) is optimized in most
of these approaches.

3. Methodology

To ensure the manufacturability of infill structures, our
method performs the computation using a hierarchical grid rep-
resentation. In particular, we develop a tree structure with
rhombic cells that is self-supporting and with controlled small-
est feature sizes (see Section 4.1). Topology of the tree structure
can be changed using adaptive spatial refinement similar to an
octree, yet it subdivides rhombic cells.

Given a fabrication direction and the maximally allowed
overhang-angle α, the orientation and aspect ratio of the rhom-
bic cells are first determined to initialize a root rhombus bound-
ing the input model. Starting from this root rhombus, the grids
are adaptively refined to construct a hierarchy so that every leaf
node corresponds to a rhombus completely inside the given in-
put model, as shown in Fig. 2. Details can be found in Sec-
tion 4.3. By applying so called carving operations (Section
4.2) to each leaf node of the rhombic tree, the rhombic cell
is converted into a rhombic shell with a given wall-thickness.

Figure 2: Overview of infill optimization using a rhombic structure. An initial
model-covering rhombus (left), i.e., the root, is refined adaptively (top-middle)
to fit the geometry of an input model. Only the leaf nodes completely inside a
model are retained. The rhombic tree is then converted into a self-supporting
structure formed by rhombic shells (bottom-middle). During the optimization
for a specific physical objective, structures (and material) are added by refining
recursively the rhombic cells represented by the affected leaf nodes (right).

The rhombic cells and their corresponding shells form the dual-
representation employed in our optimization method. We sub-
sequently call the composition of rhombic shells the rhombic
structure. By setting appropriate geometric parameters, manu-
facturability of a rhombic structure can be guaranteed.

The optimization process for infills works on the rhombic
structure by using a splitting operator to refine the rhombic
grid adaptively and, thus, to reduce the value of the objective
function. Applying the splitting operator to a rhombic cell re-
sults in eight cells with smaller size, yet the total volume and
weight of the rhombic structure increases due to the added cells
(Section 4.2). Starting from the given rhombic tree, an iterative
optimization process is performed to modify the rhombic struc-
ture towards application-specific purposes. In each iteration, we
perform a structural or stability analysis. Based on this analy-
sis, the rhombic cells are subdivided adaptively using a greedy
strategy. Details about this procedure are given in Section 5.

4. Adaptive Rhombic Structures

Given a polygonal mesh representing the boundary of a solid,
we construct a set of rhombuses as composites of the object’s
interior and exploit the geometry of these composites for satis-
fying manufacturing constraints. The representation of rhom-
bic cells and shells, the associated geometric operators, and the
construction method for the adaptive rhombic structure are pre-
sented in this section.

4.1. Rhombic cells and shells

For the sake of simplicity, in the following we describe our
proposed method in a 2D setting, yet the extension to 3D is
straightforward and can be realized by extrusion.
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Figure 3: Illustration of the rhombic cell which is used as a self-supporting
element in our computation. Manufacturability of this cell can be ensured by
tuning the thickness t and the aspect ratio h

w according to different materials
and machines in additive manufacturing.

A rhombus (♦) is a parallelogram with four equal edges that
can be represented uniquely by a tuple (w, h), with w and h de-
noting the width and the height respectively. The geometry of
a hollowed rhombic cell is referred to as a rhombic shell. It is
represented by a triple (w, h, t), where t indicates the thickness
of the shell in 3D space. As shown in Fig. 3, the gray-shaded
region is interpreted as solid (i.e., where material will be ac-
cumulated), and the white region inside the rhombic cell is a
cavity. In our dual-representation, a rhombic grid stands for
a lattice of rhombic cells with no thickness, while a rhombic
structure is composed of a set of rhombic shells with thickness.

Self-support A rhombic shell is said to be self-supporting
if it can be fabricated without adding support structures in the
cavity. It is intuitive that the condition to ensure self-support of
a rhombic shell is

h
w
≥ tan(

π

2
− α), (1)

where α is the allowed maximum angle of overhangs, which is a
device-dependent parameter taking different values depending
on the used 3D printers.

Wall-thickness The wall-thickness of a rhombic structure is
2t because each wall is shared by two adjacent cells. There-
fore, according to the minimum plate thickness tmin that can be
fabricated by a particular 3D printer, the following condition
must be satisfied to ensure the manufacturability of a rhombic
structure:

t ≥
1
2

tmin. (2)

To ensure that the least possible material is added via the
splitting operator and fine control over the material accumula-
tion is achieved, the optimized structure should be as sparse as
possible. To achieve this goal, we let h

w = tan( π2 −α) and t = tmin
2

when constructing the rhombic structures.

Adaptivity A rhombus can be divided by a regular 1:4 split,
i.e., by inserting new vertices at the mid points of each edge and
at the cell center (see Fig. 4). This results in four equally-sized
smaller rhombuses. The new cells are self-supporting since they

Figure 4: Illustration of adaptive rhombic subdivision and the dual rhombic rep-
resentation: (top row) adaptively refined hierarchy of rhombic grids, and (bot-
tom row) corresponding rhombic structures. The two geometric operators—
carving and splitting—are also illustrated.

inherit the aspect ratio ( h
w ) from the parent cell. Note that while

the size of the new cells is halfed along each dimension in ev-
ery subdivision step, the same thickness is maintained to en-
sure manufacturability. As a consequence, the volume of solid
increases as the rhombic cell is subdivided.

2D-to-3D Extrusion A 2D rhombic cell can be lifted to 3D by
extruding the edges orthogonal to the 2D plane by a certain dis-
tance. We extrude about the length of a rhombus’s edge. Since
the sparsity of the rhombic structure depends on the orientation
of the cells, we construct initial structures with different orien-
tations and choose the sparsest one.

4.2. Geometric operators

Two geometric operators are developed for optimizing the
infill on the rhombic structures: 1) carving and 2) splitting.

The carving operator is applied on the leaf nodes of the hier-
archical grid. Given the geometry of a rhombus, it can be con-
verted into a rhombic shell by adding the surface of its cavity,
which is the offset of the rhombus about a fixed value t. The ori-
entation of each facet must be inverted to represent a cavity. As
a rhombic cavity is carved from a rhombus completely inside
the input modelM, there is no intersection between the shell’s
surface and the surface of M. The final model with rhombic
structures as infill can be represented by combining the facets
ofM and the facets of the rhombic cavities.

The splitting of a grid is realized by our method as an op-
erator for optimization. Specifically, each 3D rhombus is uni-
formly split into eight sub-rhombuses with equal size. During
the optimization process, a dual representation is kept for each
instance. As a result, it is easy to convert from a rhombic grid
into a rhombic structure to analyze physical properties (e.g.,
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Figure 5: Initialization of the root cell. The bounding box of the input model
(yellow) is fully contained within an inner box (green) within the spacial extent
of the root cell. A 3D illustration is shown on the right.

stress and strain), and to further refine the grid to adhere to ad-
ditional optimization constraints.

4.3. Hierarchy construction

Given an input model M, we construct an adaptive rhom-
bic grid representing the interior of the model using the device
depended parameters tmin and α. The idea is to first initialize
a large rhombic cell covering the entire M and satisfying the
constraints of manufacturability. Using this cell as a root, the
hierarchical rhombic grid structure can be constructed by recur-
sive subdivision.

Initialization The root cell is positioned at the centroid of
the bounding box of the input model. The height-to-width ratio
is determined by the overhang-angle as h/w = tan( π2 − α). The
orthogonal extrusion distance is also set to w. To ensure that the
root cell covers the entire modelM, we create the root cell by
letting the bounding box of M with dimensions (Lx, Ly, Lz) fit
into an inner box of the rhombus (see the green one in Fig. 5).
As the dimensions of the inner box are (w/2,w, h/2), we should
have

(w/2,w, h/2) ≥ (Lx, Ly, Lz), (3)

which leads to

w = min
{
2Lx, Ly, 2Lz/ tan(

π

2
− α)

}
. (4)

Recursive Subdivision By applying the splitting operator, a
rhombic cell on the i-th level is subdivided regularly into eight
cells on level (i + 1). The resulting finer cells can be either par-
tially or fully inside or outside M. Cells fully outside M are
excluded from further computations. Those partially inside are
further refined, and the subdivision stops at the cells which are
fully insideM and stored as leaf nodes of the tree. Moreover,
the subdivision is also stopped when the distance between op-
posite faces in a rhombus is less than 2tmin, as no cavity can be
formed that preserves the minimal thickness of the walls. This
procedure results in fine cells along the boundary and coarse
cells in the interior (see Fig. 2 for an example).

Classification A key geometric computation in the construc-
tion process is to determine the membership of a rhombus –
whether it is in, out or intersected with M. To facilitate such
a classification, we rely on a high-resolution and regular Carte-
sian discretization of the domain. We build a distance field stor-
ing the signed distance from the centroid of each Cartesian grid
cell (also known as a voxel) toM, with a sign representing in-
side (‘+’) or outside (‘-’). Based on this grid, a rhombus is
classified as inside if all voxels it covers have a distance value
larger than τ, or as outside if all covered voxels have negative
values. Otherwise, the rhombus is considered as intersecting
the boundary zone ofM. To incorporate the width $ of voxels
and the thickness tbnd (tbnd ≥ tmin) of boundary hollowing, the
value of τ can be assigned as τ = tbnd +

√
2

2 $.

5. Infill Optimization

Starting from an adaptive rhombic grid, the optimizer itera-
tively modifies the grid by subdividing selected cells, based on
the evaluation of a specific objective function. In particular, we
demonstrate the optimization with respect to mechanical stiff-
ness and static stability. The basic idea behind the optimization
process is that subdividing a cell can improve its mechanical
stiffness since more material is allocated, and can shift the cen-
ter of gravity of the input model towards the centroid of the sub-
divided cell. Rather than subdividing the entire grid uniformly,
we adaptively subdivide cells which are selected by a greedy
strategy. We ensure that the subdivision does not violate the
manufacturability of the 3D printed shapes, and the resulting
model can be obtained without modifying the boundary mesh
of the input model.

5.1. Mechanical stiffness

Given an initial rhombic grid, we want to determine whether
a leaf cell should be subdivided. Encoding this as a Boolean-
valued design variable βc per leaf cell C, and discretizing the
computational domain by a hexahedral finite element scheme,
the optimization problem is formulated as follows,

minimize
β

E =
1
2

uT K(ρ)u, (5)

subject to K(ρ)u = f , (6)

V(ρ) =
∑

e

ρe ≤ V∗, (7)

ρe(β) =

1.0 e ∈ solid,
ρmin e ∈ cavity,

(8)

βc ∈ {0, 1},∀C. (9)

Here the objective is to minimize the strain energy E – i.e.,
which corresponds to the maximization of the stiffness. We use
a finite element discretization and assemble the stiffness matrix
K from elementary stiffness matrices Ke =

∫
Ωe

BT DB dx, where
Ωe is the domain of the finite element, B is the element strain
matrix, and the linear material law is applied in D. The dis-
placement vector u is calculated from the equilibrium equation
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Figure 6: The initial rhombic structure (left) is iteratively optimized with respect to the given boundary conditions (yellow). The optimized structures with 70%
volume and 78% volume are shown in the middle and right, respectively.

Eq.(6), which describes the static state of the object under the
given external force f . The volume constraint Eq.(7) restricts
the material consumption to a desired threshold V∗, measured
in terms of the number of elements. In Eq.(8), hexahedral el-
ements located in the cavities or in the solid region are distin-
guished by introducing an imaginary density value ρe per finite
element e. A non-zero small constant ρmin = 0.001 is prescribed
for elements in the cavities in order to prevent the singularity of
the global stiffness matrix K.

The optimization is taken as an iterative process. In each
iteration, the following three steps are carried out sequentially:

1. Finite element analysis of elasticity (i.e., solve the state
equation Eq.(6));

2. Evaluate the sensitivity;
3. Update the rhombic structure by subdividing selected

cells.

During optimization, the material consumption gradually in-
creases as a certain number of cells are subdivided in each it-
eration. The iterative optimization is thus terminated as soon
as a further subdivision would lead to a volume exceeding the
prescribed volume constraint Eq.(7). A 2D example of the op-
timization process is given in Fig. 6.

Finite Element Analysis We use a hexahedral finite element
discretization in our analysis. To fully capture the thin walls in
a hexahedral Finite Element Analysis (FEA), the discretization
is conducted at a very high resolution so that thin walls can be
represented by at least 3 voxels. This results in some millions
of elements to be simulated by the optimizer. To this end, a
memory-efficient multigrid solver as presented in [24] is em-
ployed. The elementary stiffness is expressed using the power-
law relationship as Ke = (ρe)pK0, where p = 3 is a penalization
parameter [34], and K0 is the stiffness matrix of a solid element
(i.e., ρe = 1.0).

Sensitivity Analysis With the displacement vector u com-
puted by FEA, we can evaluate the functions in Eqs.(5) and (7).
We are particularly interested in how much the subdivision of
a leaf cell (i.e., change βc from 0 to 1) affects the strain energy
and the volume. Derivatives can be calculated by the chain rule
as

∂E
∂βc

=
∑

e

∂E
∂ρe

∂ρe

∂βc
and

∂V
∂βc

=
∑

e

∂V
∂ρe

∂ρe

∂βc
,

with

∂E
∂ρe

= −
p
2

(ρe)p−1uT
e K0ue, (10)

∂V
∂ρe

= 1.0, (11)

∂ρe

∂βc
=

1.0 if e ∈ {Sβc },
0.0 otherwise.

(12)

Here {Sβc } represents the set of elements which become solid if
the leaf cell C is subdivided.

We can then measure the sensitivity of strain energy with re-
spect to the change of volume for each design variable as

Gc =
−∂E/∂βc

∂V/∂βc
. (13)

This sensitivity, which is a positive value for compliance mini-
mization, serves as an indicator of how much the strain energy
will be decreased if the material consumption is increased due
to the subdivision of the leaf cell C.

Design Update Based on the sensitivity, the optimizer sub-
divides the rhombic cells in a greedy manner, i.e., the element
that leads to the largest reduction is refined first. To this end,
we sort all cells by their sensitivity in descending order and the
first 2% cells are subdivided successively in each iteration of
the optimization process. After subdivision, new leaf cells are
created which become design variables for the next iteration.
Iteratively subdividing leaf cells leads to a model with strong
mechanical stiffness while the total volume (and, thus, also the
weight) is controlled. An example is given in Fig. 6 and more
can be found in Section 6.

Concerning the granularity of volume change due to the sub-
division of cells, let us consider a 3D model discretized by a res-
olution of 2563, and the subdivision of a relatively large rhom-
bic cell of the size 163. The induced volume increase of this cell
subdivision is 162×3×2

2563 < 0.01%. This means that the granularity
is very high.

5.2. Static stability

A shape stands if its center of gravity, when projected along
the gravity direction, falls within the convex hull of its contact
points with the ground. Our optimizer thus tries to shift the
center of gravity into the convex hull.
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Figure 7: Two models with optimized infill were directly fabricated via AM without additional support structures. Left: A kitten model optimized for mechanical
stiffness. Right: A model of the letter ’P’ optimized for static stability.

Figure 8: Left: The model would tip over since the projection of the center
of gravity cg does not fall into the convex hull of its contact points. Right:
By subdividing cells on the left hand side of cg, cg can be shifted leftwards to
satisfy the static stability.

As illustrated in Fig. 8 for a 2D case, it is intuitive that sub-
dividing cells on the left hand side of the gravity center cg will
shift it leftwards, i.e., closer to the convex hull of its contact
points. This heuristic can be derived numerically. We aim to
minimize the distance between the center of gravity cg and the
center of the convex hull ch, projected along the direction of
gravity,

minimize
β

Es = ‖(cg − ch)⊥g‖22, (14)

subject to βc ∈ {0, 1},∀C. (15)

The derivative of this objective function with respect to the de-
sign variable βc is

∂Es

∂βc
=

2mc

mc + mg
(cg − ch)⊥g · (cc − cg)⊥g, (16)

where mc represents the mass that is introduced by subdividing
a cell under consideration, mg is the mass of the current shape,
and cc denotes the geometric center of the cell under considera-
tion. This derivative indicates that if the sign of the dot product

of (cc − cg)⊥g and (cg − ch)⊥g is negative, subdividing the cell
decreases the distance and should thus be favored.

To update the rhombic structure, we sort the cells in ascend-
ing order of their derivatives (Eq.(16)), and sequentially sub-
divide those cells with small values until stability is reached.
Cells with positive derivatives are also included in the subdivi-
sion process. While subdividing these cells does not improve
the stability immediately, it enhances the flexibility (by gener-
ating more child cells) in the consequent subdivisions to better
control the location of the center of mass.

Note that the center of the model, cg, is updated incremen-
tally after each subdivision. In principle, the derivative values
should be immediately updated. However, since the change is
very small, we follow the delayed update scheme similar to that
proposed in [2], i.e., updating the derivatives and re-sorting the
cells are performed after a certain number of subdivision itera-
tions. In particular, we update after 2% of the cells have been
subdivided. The effectiveness of this delayed update scheme
has been validated by our tests.

6. Results and Discussion

Our proposed approach has been used for the optimization
of several models with different geometric complexities. To
demonstrate the manufacturability of the optimized shapes, we
have fabricated some models using a consumer-level 3D printer,
i.e., a MakerBot Replicator 2X using fused deposition mod-
eling. Fig. 7 shows two of such models which were printed
along the upright direction as prescribed for orienting the self-
supporting rhombic structures. No additional inner supports
were used during fabrication.

6.1. Mechanical stiffness

Examples Our first example is a kitten model as shown in
the first row of Fig. 9. On the most left is the initial rhombic
structure with an aspect ratio of h/w = 2.0, which consumes
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Figure 9: Comparison of the stress distribution in adaptively vs. uniformly refined rhombic structures on the kitten model (top row) and the letter ‘P’ model (bottom
row). In the results of adaptive refinement, progressive results with increased volume are listed from left to right starting from the initial rhombic structures.

60.0% volume of a solid shape. From the stress distribution,
it can be found that the external loads are transmitted from the
top, where external forces are applied, to the bottom mostly
through the neck. This initial structure is then adaptively sub-
divided by our method, which results in a gradual increase of
volume consumption (see the middle left and the middle right
of Fig. 9). The visualization of the stress distribution clearly
shows the improvement of the overall mechanical stiffness due
to the subdivision of cells with high stresses. For comparison,
we also generate a uniformly refined rhombic structure, which
is shown on the right of Fig. 9. Larger stress is observed on
the model with uniformly refined structure. In other words, our
adaptive refinement framework results in infill with better me-
chanical property.

The same test is also performed on a model of the letter ‘P’
(the second row of Fig. 9), where the rhombic cells have an
aspect ratio of 1.0. Again, the optimized infill is mechanically
stronger than a uniform infill.

Fig. 10 shows tests performed on the horse head model using
rhombic structures with different aspect ratios. Fig. 10 (a) and
(c) correspond to the initial rhombic structures with aspect ratio
1.0 and 2.0, respectively. The optimized structures (see Fig. 10

(b) and (d)) have reduced internal stress in both cases.
These tests are performed on a standard desktop PC equipped

with an Intel Xeon X5560 processor running at 2.80 GHz, 8 GB
of RAM, and an NVIDIA Tesla C2070 graphics card with 6 GB
memory. The total optimization time for each model is less than
12 minutes, with the finite element analysis of the infill struc-
ture being the computational bottleneck. The finite element
grids used for optimizing the kitten model, the letter ’P’, and the
horse head have a resolution of 218×198×334, 219×63×251,
and 250 × 179 × 247, respectively.

Parameter Analysis We perform additional tests to analyze
some parameters of the rhombic structure, and in particular the
aspect ratio and the direction of extrusion. These parameters af-
fect the sparsity of the initial structure and thus the correspond-
ing optimization space.

The first test is performed on the kitten model by using dif-
ferent aspect ratios to construct the initial rhombic structures
(i.e., α = 1.0, 2.0, and 4.0 respectively). As shown in the left
of Fig. 11, the horizontal axis represents the percentage of vol-
ume w.r.t. a complete solid model, and the vertical axis refers
to the compliance of a model with rhombic infill structures nor-

8



Figure 10: Comparison of the stress distribution in rhombic structures with different aspect ratios: (a) an initial structure with aspect ratio 1.0, (b) the optimized
infill by adaptive refining (a), (c) an initial rhombic structure with aspect ratio 2.0, and (d) the optimized result of (c). In both cases, maximal stresses are reduced.

Figure 11: Study of convergence in computation: (left) tested on the kitten model when having different sparsity caused by using different aspect ratios and (middle)
tested on the letter ‘P’ model with different sparsity according to different orientation of rhombic cells. Comparison of convergence using adaptive vs. uniform
refinement on the kitten model is also given in the right.

malized over the compliance of a fully solid model. The initial
structures are indicated by a ♦ symbol in the plot. The end-
ing structure of refinement in all cases is the same fully solid
model. The initial structures using different aspect ratios con-
sume different amounts of volume with α = 1.0 consuming the
least and α = 4.0 consuming the most amount. At a partic-
ular volume percentage on the horizontal axis (for instance at
V/Vsolid = 0.75) the green curve (with α = 1.0) is lower than
both the red curve (with α = 2.0) and the blue curve (with
α = 4.0). This verifies that, when constraining the volume of
material usage (i.e., letting V/Vsolid = constant), our framework
results in a better structure by using an aspect ratio close to 1.0
(i.e., with a more sparse initial structure).

We then study the behavior of optimization when extruding
rhombic structures along different orientations on the letter ‘P’
model. The input model is rotated along the z-axis before it
is loaded into the optimization routine. The four initial struc-
tures consume different amounts of volume (see the middle of
Fig. 11, where the initial status is indicated by the ♦ symbols).
Similar to the previous test on different aspect ratios, the end-
ing structure is the same solid. At a particular volume percent-
age (e.g., V/Vsolid = 0.75), the curve of computation starting
from the most sparse structure has the smallest compliance ratio
while the curves starting from denser structures monotonically
have larger values in compliance.

The above study verifies our heuristic that a sparser initial
structure (i.e., a smaller initial volume consumption) should be

favored, since the remaining optimization space is larger and
the optimized compliance is usually smaller when using the
same volume of materials.

The progress of the iterative process to reach a prescribed
volume is affected by the number of elements subdivided in
each iteration. In general, subdividing a smaller number of el-
ements in each iteration leads to structures with a smaller com-
pliance, at the cost of more iterations. Tests are conducted on
the kitten model by subdividing 5%, 2% and 1% elements in
each iteration respectively. The initial rhombic structure with
an aspect ratio of 1.0 consumes a volume of 53.7%. The pro-
cess is terminated when a further subdivision would result in
a volume exceeding 65.0%. The number of iterations to reach
this limit is 10, 26, and 52, respectively, resulting in a relative
compliance of 1.424, 1.407, and 1.406, respectively. While this
parameter can be specified by the user, we select 2% in our
other experiments by considering the trade-off between speed
and quality.

Adaptive or Uniform Refinement We compare the com-
pliance of adaptively refined rhombic structures with uniform
rhombic structures in the right of Fig. 11. The test is per-
formed on the kitten model with an aspect ratio of 1.0. The two
curves start from the same initial structure. As more materi-
als are allocated, both the adaptive refinement suggested by the
optimization and the uniform refinement can reduce the com-
pliance. However, compliance on the adaptively subdivided
structure (the green curve) drops much faster than that of the
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Figure 12: First row: The adaptively refined infill (left) and the uniform infill
(right) consume the same amount of material. Second row: Under the same
applied force of 62 N, the optimized infill deforms by 2.11 mm, while the uni-
form one has a larger deformation of 4.08 mm. Third row: When both deform
by 3 mm, the optimized infill supports a force of 90 N, while the uniform one
supports a smaller force of 58 N.

uniformly subdivided structure (the black curve). As a result,
the optimized structure generated by adaptive refinement has a
much smaller compliance when having the same value of vol-
ume percentage on the horizontal axis.

Two specific instances are shown on the top row in Fig. 9:
The adaptively refined and the uniformly refined structures in
the kitten model. The optimized structure with a volume per-
centage of V/Vsolid = 69.8% has a normalized compliance of
1.21, which is much smaller than a compliance of 2.06 on the
uniformly refined structure with a close volume percentage of
V/Vsolid = 67.9%. The comparison is confirmed as well on the
letter ’P’ model (Fig. 9 the bottom row).

We further perform physical tests on a beam model. As
shown in Fig. 12 (first row), the beam is supported on its bottom
at two ends while a downward force is applied on its top in the
middle. These two models consume the same amount of mate-

rial. Numerical analysis suggests that the optimized infill (left)
has a normalized compliance of 1.25, smaller than 1.94 for the
uniform infill (right). The models have a physical dimension of
100 mm × 50 mm × 6.25 mm, printed with PLA flexible mate-
rial on a WiseMaker Pro W600 3D printer. The printing time is
comparable – 5.4 hours for the optimized infill and 5.48 hours
for the uniform one.

The physical tests are presented in the second and third row
of Fig. 12. When the same amount of force (62 N) is applied,
the optimized version has a displacement of 2.11 mm which is
almost only one half of 4.08 mm – the displacement on the uni-
form version (see the second row of Fig. 12). This difference
can be clearly observed from the image. In the third row, we
deform both versions by 3 mm. The optimized version supports
a force of 90 N, which is much larger than 58 N for the uniform
one. These physical tests verify that the optimized infill gener-
ated by our method is much stiffer than the uniformed infill.

6.2. Static stability

Examples Models optimized for standing are collectively
shown in Fig. 13. The optimization of each model takes less
than one minute. The static stability shown here is verified by
using MeshMixer [35] from Autodesk.

6.3. Discussion and limitations

Optimality We use a greedy strategy to select cells to refine,
and thus in theory the approach does not guarantee the global
optimality of results, especially in the nonlinear compliance op-
timization problem. However, given the fact that

• the number of design variables is relatively large, and

• the set of design variables changes during iterations as new
cells are created,

an exhaustive search over all possible refinements is impracti-
cal. In this sense, our approach provides a reasonable trade-off

between optimal and practical.
To infer how close the greedy strategy leads to an optimal

solution, we compare the adaptive refinement strategy with a
strategy which allows both refinement and coarsening. The
bidirectional updating strategy is akin to the voxel-wise discrete
optimization method [36], which is renamed as Sequential El-
ement Rejection and Admissions by Rozvany et al. in [37]. A
comparison of these two different updating schemes is shown in
Fig. 14, which is also tested on the kitten model for compliance
minimization. In both schemes, we start with a sparse initial
rhombic grid and update it until it reaches the configuration of
fully solid, which is similar to the tests shown in Fig. 11. The
green curve refers to the implementation that only 4% cells hav-
ing the largest strain energy are refined in each iteration. The
red curve refers to an implementation that 4% cells with largest
strain energy are refined while another 1% cells with smallest
strain energy are coarsened by removing their corresponding
walls. In our experiments, the difference between these two
curves is rather small. Although the bidirectional strategy does
introduce results with slight lower compliance, the scheme with
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Figure 13: On the left of each group, the initial solid shape would fall over since the projection of its center of mass (red dot) is not located within the convex hull
of the contact points (red contour). The right hand side of each group shows the optimized shape, the center of which (green dot) is shifted to a stable configuration.

Figure 14: Compliance comparison between the refinement only strategy (in
green curve) and the hybrid strategy of both refinement and coarsening (in red
curve). The difference between these two schemes is small.

only refinement has less parameters involved and is easier to
implement.

Alternative Design Variables The optimization problem
builds upon a uniform 1:8 subdivision of the leaf cells as design
variable. Alternative design variables are possible, for instance,
the thickness of the rhombic walls. However, it is unclear to
us based on which conditions a subdivision or an increase of
thickness should be favored. To this end, it would be necessary
to employ optimization algorithms which take different types
of design variables into account. Such algorithms have been
investigated by Wang et al. [21] for truss optimization.

Design Space Limitation Our solution space is limited by the
specific subdivision of rhombic cells. Better solutions which

are outside of this solution space cannot be reached. To en-
large the solution space, it is interesting to explore alternative
structures exhibiting sparsity and self-support, as well as corre-
sponding update rules.

7. Conclusion

In this paper we have presented a new method for infill opti-
mization taking into account the manufacturability of the gen-
erated shapes. The overhang constraint is seamlessly satisfied
by using rhombic structures as infill so that their self-support is
exploited. Our method has been validated in a number of exper-
iments with respect to mechanical stiffness and static stability.

We believe this work opens interesting directions in the area
of geometric and physical modeling for 3D printing. As future
work, we are particularly interested in extending this work from
infill optimization to design domains without a fixed bound-
ary. Furthermore, finding more sparse self-supporting struc-
tures will make the method even more effective. Last but not
the least, while currently we consider compliance minimiza-
tion, it is nevertheless relevant in many engineering applications
to consider constraints on the maximum stress [38].
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