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Figure 1: a) Visualization of a 2D ensemble of wind velocity fields. The median iso-contour determined by our method is shown in red, and
the local centrality with respect to the ensemble is color coded from dark blue (high centrality) to yellow (low centrality). For the marked
regions, (b) and (c) show the directional distributions of vectors to closest points that were used to classify the centrality. d) For a 3D scalar
ensemble field, the locally best matching median surfaces are combined in one single shape. Colors indicate different ensemble members.

Abstract

We propose a new approach for analyzing the central tendency (cen-
trality) of an ensemble of shapes in 2D or 3D space. Our approach
provides means to determine the most central shape from a given set
of shapes, to quantify the region-wise centrality of the shapes, and
to compute a locally most representative shape. Unlike previous
approaches, which build upon binary functions or signed distance
fields to locate domain points with respect to orientable shapes, we
introduce a closest point representation for the analysis of ensem-
bles of shapes. By using this representation, our approach can han-
dle arbitrary non-parametric shapes regardless of dimension and
orientability. Shapes are first converted into an implicit represen-
tation based on vectors to closest surface points, and the resulting
directional distributions are then used to perform region-wise clas-
sifications. Shapes are either analyzed separately by evaluating the
classifications over the shape, or additional fields are derived from
these classifications, in which specific shapes like the locally best
mean are given as level-sets. We demonstrate the effectiveness of
our approach on synthetic and weather forecast ensembles in 2D
and 3D.

Keywords: Ensemble visualization, closest point representation,
statistical summaries

Concepts: •Computing methodologies→ Image processing;

1 Introduction

Ensemble or multi-run simulations are used to estimate the uncer-
tainty inherent in the prediction of physical quantities, by providing
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a representative sample of the possible states that could evolve out
of perturbed initial conditions and different models. From the vari-
ability of the ensemble members at a particular time step, the un-
certainty of the current prediction can be estimated, and, by deter-
mining the prediction that best summarizes the ensemble, a central
tendency of the ensemble can be conveyed.

Analyzing the variability of a scalar field ensemble is often per-
formed by looking at spaghetti plots of specific features in the data,
such as iso-contours. Each spaghetti plot shows the contours in
all ensemble members at one single time step simultaneously. De-
scriptive statistics has been used to describe the main features of
contours. Contour boxplots [Whitaker et al. 2013] build upon the
concept of statistical data depth to measure the centrality of a con-
tour within the set of contours. Contour variability plots [Ferstl
et al. 2016b] model statistically the distribution of contours and
generate confidence intervals to emphasize their Euclidean spread.
However, these methods require closed and consistently oriented
contours to generate indicator fields that allow classifying locations
with respect to the contours.

In this work, we aim at developing an alternative approach for ana-
lyzing the central tendency of ensembles of curves and surfaces, as
illustrated in Fig. 1. Our approach is inspired by the work of Fer-
stl et al. [2016b], where signed distance fields are used as indicator
fields. In these fields, closed shapes are defined implicitly as zero
level-sets. In contrast, we adopt a vector-to-closest-point represen-
tation. In this representation, every location is characterized by a
distance and direction to the closest point, and a shape is defined
implicitly as the zero-vector level-set. We use such representations
as indicator fields, which allows us to handle arbitrary shapes and
obtain an improved classification of domain points with respect to
an ensemble of shapes.

Our specific contributions to ensemble visualization are:

• Classification of domain points with respect to the distribu-
tion of vectors to closest points: We consider ensembles of
vector-to-closest-point fields and classify the point-wise di-
rectional distributions using mixtures of von Mises-Fisher dis-
tributions.

• Computation of a statistical representative shape: By evaluat-
ing the classifications over the shape of each ensemble mem-
ber, the shape most central to the entire sample in a least-
squares sense can be determined.

• Quantification of the region-wise centrality of shapes: We in-
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corporate directional distribution information into our process
to classify the representativeness of local central tendencies.

• Computation of a locally most representative shape: In addi-
tion to the most central ensemble member, we use the vector-
to-closest-point distributions to determine the locally most
representative shape. The piecewise-defined representatives
are then combined to form a new shape.

We believe that the proposed method has the potential to improve
the analysis of ensembles of shapes. For instance, the method can
be applied to ensembles of stream surfaces or deforming flow sur-
faces, as well as ensembles of surfaces of material or anatomical
structures to generate atlas representations. We demonstrate for
closed and consistently oriented contours that our method produces
the same or very similar results as existing approaches.

2 Related Work

Our method falls into the category of uncertainty visualization. For
recent surveys on this topic let us refer to the summary article by
Potter et al. [2012] and the book by Bonneau et al. [2014]. In en-
semble visualization, it is assumed that uncertainty is represented
by a set of possible data occurrences, rather than a stochastic un-
certainty model. Obermaier and Joy [2014] classify ensemble vi-
sualization techniques into feature-based and location-based ap-
proaches. Our method can be seen as a hybrid approach, using
location-based summary statistics to analyze the variability of spe-
cific shape features.

The uncertainty present in ensembles of 2D scalar fields can be
conveyed via spaghetti plots of iso-contours [Potter et al. 2009;
Wilks 2011; Sanyal et al. 2010]. Since the resulting visualiza-
tions usually suffer from visual clutter, simplifications and visual
abstractions have been proposed. Sanyal et al. [2010] introduced
glyphs and graduated ribbons to convey the uncertainty along iso-
contours. Different kinds of confidence bands, i.e., regions rep-
resenting the Euclidean spread of a set of iso-contours, were pro-
posed by Whitaker et al. [2013] and Ferstl et al. [2016b]. Both
approaches use indicator fields to classify locations in space with
respect to an ensemble of contours. While Whitaker et al. [2013]
use binary fields indicating inside and outside locations, Ferstl et
al. [2016b] build upon the concept of standard deviation of signed
distance functions. Therefore, both approaches require closed and
consistently oriented contours.

Contour boxplots were later extended to parametric curves by
Mirzargar et al. [2014]. For the same class of curves, Ferstl et
al. [2016a] proposed the use of Principal Component Analysis
(PCA) to extract the major geometric trends in ensembles of curves.

To visualize the uncertainty in the position and structure of iso-
surfaces, previous approaches use confidence envelopes [Pang et al.
1997; Zehner et al. 2010], surface displacement [Grigoryan and
Rheingans 2004], as well as animation of the sequence of sur-
faces [Brown 2004; Lundstrom et al. 2007]. The concept of numer-
ical condition was introduced by Poethkow and Hege [2011] for the
visualization of the variability of iso-surfaces implicitly represented
in uncertain scalar fields. Level crossing probabilities for uncertain
iso-surfaces were introduced by Pfaffelmoser et al. [2011], and used
for extracting surfaces from ensembles exhibiting local correlation
structures [Pöthkow et al. 2011].

Signed distance function representations, as used for the ensemble-
wise classification of domain points in [Ferstl et al. 2016b], were
proposed by Gibson [1998] to obtain a higher-order interpolant of
3D surfaces. For a thorough overview of applications of signed
distance transforms and algorithms for computing such transforms
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Figure 2: Overview of our method.

from polygon models, see [Jones et al. 2006; Frisken et al. 2000].
Bruckner and Möller [2010] derive a metric for the comparison of
iso-contours from signed distance functions. Rathi et al. [2006] and
Leventon et al. [2000], use PCA on distance functions for shape
analysis. Fofonov et al. [2016] apply dimension reduction tech-
niques to ensembles of distance functions.

Closest point representations, which comprise a grid structure that
encodes a surface implicitly via the vectors to closest surface points,
have been used in [Ruuth and Merriman 2008; Macdonald and Ru-
uth 2008] for solving differential equations on surfaces. In the con-
text of fluid simulation, Auer et al. [2012] proposed a volume ren-
dering technique that samples directly from a uniform closest point
grid. Demir and Westermann [2015] improved on this technique by
introducing a hierarchical closest point representation and provid-
ing means to intersect rays with a zero-vector level-set more accu-
rately.

3 Method Overview

Our method starts with an ensemble {s1, ...,sN} of N 2D or 3D
shapes, the ensemble members. Without loss of generality, we as-
sume that shapes are given either as polygonal curves or surfaces.
Nevertheless, any other representation is possible, as long as for a
given location we can compute the point closest to that location on
the shape.

Starting with the initial ensemble, our method proceeds in two
stages: the preprocessing stage and the rendering stage (see Fig. 2).
In the preprocessing stage, we first generate the bounding volume
enclosing all shapes, and we discretize this volume using a Carte-
sian grid structure. If the shapes were extracted from values on a
Cartesian grid, e.g., the shapes are level-sets in scalar fields given
on such a grid, we use the resolution of the initial grid to discretize
the volume. Otherwise, we try to match the resolution of the in-
put shapes, i.e., we adapt the grid resolution to the smallest features
represented by the shapes. This is done by iteratively increasing the
grid resolution, as long as interpolated closest points differ signifi-
cantly from their true values on the finer resolved grid points.

For each shape and at each grid vertex, the vector to the closest
point on this shape is computed. This results in an ensemble of vec-
tors to closest points at each vertex. We subsequently call this grid
the vector-to-closest-point ensemble (VCPE) grid. For the compu-
tation of the VCPE grid, we basically follow the GPU implemen-
tation by Auer et al. [Auer et al. 2012], with some adaptations to
account for the fact that the closest point computations are not re-
stricted to a narrow band around the surface. Therefore, the shape
is first partitioned using a regular grid. One GPU thread then com-
putes the closest point of exactly one grid vertex, by sequentially
going over the cells of this grid in increasing distance of the cell
centers to the vertex position. For each cell, the closest point to
the shape contained in this cell is computed, for instance, by iterat-
ing over all lines or triangles of the polygonal structure. Processing
of cells is stopped once the current closest point is closer than the
closest corner of the next cell. Since many grid vertices can be pro-
cessed in parallel on the GPU, the computation time was always
below 5 seconds even for the largest shapes and grid resolutions.
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Figure 3: Different cases relevant for centrality quantification.
a) With a uniform distribution, placing closest points along the
same direction is not possible, resulting in a low degree of central-
ity. b) Points are lying closer together, which implies that the devi-
ation decreases, and centrality is thus greater. c) Ordering along a
single direction and finding a suitable choice as the median is pos-
sible. d) Although these closest point vectors can be ordered, the
current point represents a poor choice, as it deviates significantly
from the mean vector to closest point (colored in red).

The ensembles of vectors at each grid vertex are now analyzed re-
garding their local directional variability. Based on a statistical
model describing the directional distributions of these vector en-
sembles, we quantify the local variability at each vertex, and, in
particular, we derive a measure quantifying how central the posi-
tion of the respective grid vertex is to the surrounding closest points.
Intuitively, a vertex is most central, i.e., it is suitable as a median
point, if its position coincides with the geometric center of the sur-
rounding closest points and it is possible to order these points along
a single direction. This gives a measure of centrality that depends
on both the distance to the closest points and the modality of the
directional distribution. For instance, a bimodal distribution with
an equal number of vectors captured by each mode and modes ori-
ented inversely to each other indicates perfect centrality. Fig. 3
shows different cases that are relevant in this regard. We now iden-
tify the most central shape by minimizing its overall centrality to
the other members. Finally, we generate local statistical attributes
to convey the spatial distribution of local centrality to the user.

Precomputed data is then visualized by either sampling the VCPE
grid along the rays of sight as proposed in [Demir and Westermann
2015], or performing a single lookup in case of 2D shapes. We
provide options to render the median shape by testing for intersec-
tions with the most central shape, or fuzzy structures surrounding
the median to convey the local centrality.

4 Modeling Vectors to Closest Points

Given a VCPE grid, the vectors to closest points at each grid point
are used in two different ways: Firstly, their directional distribution
is modeled statistically to enable quantifying the local directional
variability and, thus, deriving indicators of the centrality of each
grid point with respect to the ensemble of shapes. Secondly, the
derived models are used to determine the most central member, i.e.,
the median. Unlike generating a statistical mean member, our al-
gorithm guarantees that the median is an existing member of the
initial ensemble. Thus, our technique conveys information to the
user, which truly exists in the original data set.

4.1 Quantifying the Local Centrality

At each grid vertex, we compute a value representing the local
centrality. This value quantifies how well the respective point in
space is suitable as a median point. Intuitively, this happens if the
point coincides with the geometric center of the surrounding closest
points and it is possible to order these points along a single direc-
tion. Fig. 3 shows different cases that are relevant in this regard.

Let {vcpi (p) : i ∈ I} denote a set of N = |I| closest point vectors at
a grid vertex p. Moreover, let d⋆

Cutoff denote a global cutoff-value
with respect to the length of all closest point vectors, which is used
to scale the vectors to unit length. Now, we consider three criteria
indicating whether p can be deemed as suitable for a point of the
most central shape, each giving a value ranging between 0 (least
suitable) and 1 (most suitable):

Bimodality angle. The point is likely to be representative if the di-
rections of the closest point vectors can be modeled by two clusters
having means with approximately the same direction, but contrary
orientation. To determine whether this is the case, we model the
distributions of vectors to closest points using mixtures of prob-
ability density functions (pdfs); this allows us to characterize the
directional distributions with relatively few parameters: for each
mixture component, its mean, the variation around this mean, and
the weight of the component. An appropriate mixture model for
spherical data is a mixture of von Mises-Fisher (vMF) components.
In 2D, this reduces to the von Mises distribution on the circle. How-
ever, due to space considerations, in the following we restrict the
discussion to the 3D case.

A unit vector v follows a mixture of vMFs if its pdf is given by

f (v) =
M

∑
i=1

αi
κi

4π sinh(κi)
exp

(

κiµ
T
i v

)

, αi > 0,
M

∑
i=1

αi = 1, (1)

where M is the number of vMF components, the unit vectors µi

are their mean directions, κi the concentration parameters, and αi

the weights of the components. The concentration parameter deter-
mines the shape of the distribution, with higher values indicating
stronger concentrations around the mean direction. The parameters
of a mixture of vMFs are estimated using an implementation of the
EM soft-moVMF algorithm introduced by Banerjee et al. [Banerjee
et al. 2005].

To qualitatively estimate the bimodality value, we always fit two
vMF components. For clearly unimodal distributions, one of the
two weights αi will be 0; thus, the bimodality value is also 0 and no
further computations are performed. Otherwise, we compute the bi-
modality value as the smallest angle between the confidence cones
of the two components, normalized by π . Uniform distributions are
also fitted using two components, but the wide confidence cones
lead to very small bimodality values. To derive a confidence cone
around each mean direction µ , we use two approaches [Fisher et al.
1987], depending on the size n of each component. For n < 25,
we need to apply a bootstrap technique. When n ≥ 25, a simpler
method is available. Computing the mean resultant length R and
estimated spherical standard error σ̃ of the sample mean direction

σ̃2 = d/
(

nR
2
)

,where d = 1−
1

n

n

∑
i=1

(µ ·vcpi)
2, (2)

a 95% confidence cone for µ has a semi-vertical angle equal to
q = arcsin(1.7308σ̃).

To visualize the directional distributions, as can be seen in Fig. 1bc
and Fig. 6a, we use oriented glyphs, as proposed by Jarema et
al. [2015]. At every grid point, the corresponding mixture of vMFs
is represented by at most two lobes (one lobe per component),
where the mean direction, weight, and confidence cone of each
component are mapped to the orientation, length, and opening angle
of the corresponding lobe.

Length of the mean closest point vector. For this quantity, we first
determine the mean closest point vector

vcp(p) =
1

N

N

∑
j=1

vcp j (p) .



Criterion Variable a) b) c) d)

Bimodality ϕ 0.0 0.0 0.9 0.95
Mean length 1− µ̂ 1.0 1.0 1.0 0.2
Maximum length 1− d̂Max 0.0 0.7 0.0 0.0
Centrality σ 0.0 0.7 0.95 0.44

Table 1: For the cases in Fig. 3, the respective values of the differ-
ent criteria are shown. The last row contains the resulting centrality
as computed by our method. In all cases, our method coincides with
the intuitive understanding of a good median choice.

Note that the geometric center of any given set of points
xi ⊂ R

D, i ∈ I,D ∈ N in Euclidean space, is obtained as

c =
1

N

N

∑
j=1

xi.

That is, the mean closest point vector points to the geometric cen-
ter with respect to the closest surface points of all members at any
given position. Consequently, we can compute the distance from p
to the closest point on a locally optimal median shape as the length
of the mean closest point vector. This holds, first, since the geomet-
ric center minimizes the mean squared Euclidean distance to each
point. Second, because the closest point vector of the potential me-
dian member vanishes at all of its surface points. Third, because
this vector’s length is the shortest distance to its underlying shape.
We now compute the result as the scaled length of the mean closest
point vector. The Saturate function is here used to restrict the value
to the range [0,1].

µ̂ (p) = Saturate

(

1

d⋆
Cutoff

· ‖vcp(p)‖

)

We consider this value in order to decide to which extent the point
p can be regarded as a good representation of the geometric center.
Here, smaller values correspond to better degrees. Consequently,
we use the value 1− µ̂ to determine the suitability as median.

Maximum length of closest point vectors. This value represents
the scaled length of the closest point vector with the greatest Eu-
clidean length, namely,

d̂Max (p) = Saturate

(

max{‖vcpi (p)‖ : i ∈ I}

d⋆
Cutoff

)

.

This value indicates how closely together the closest points of all
members are located. Again, smaller values stand for better de-
grees, because this implies that the maximum deviation between all
members decreases. In particular, if the maximum length is equal
to 0, all members are locally identical, meaning that any member
is a perfectly good choice as the median. Hence, we use the value

1− d̂Max to determine the suitability as median.

We compute the local centrality based on the aforementioned crite-
ria as

σ = max
{

1− d̂Max,
√

ϕ̂ · (1− µ̂)
}

This formula accounts for all criteria and was verified to produce
meaningful results in our test cases. The values corresponding to
the cases in Fig. 3, as well as the resulting qualities are shown in
Table 1.

4.2 Finding the Median

To find the median, we calculate a global deviation wrt. the whole
ensemble for each member. The member with the smallest devia-
tion in a least-square sense is then selected as the median. For each

Algorithm 1: Finding the Median

Input: Ensemble of N = |I| vector-to-closest-point grids vcpi

Result: Median index i ∈ I
/* Select surface points */

for i ∈ I do
Pi← surface points of member i

end
/* Iterate over all members */

for i ∈ I do
/* Compute centrality */

for pi ∈ Pi do

σ (pi)← Centrality
{

vcp j (pi) : j ∈ I
}

end
/* Insert into uniform grid */

Choose resolution r ∈ N
d

Ci← /0r

for pi ∈ Pi do
Let ci ∈Ci, such that ci contains pi

ci← ci∪σ (pi)
end
/* Compute global deviation */

∆i← 0
weight (∆i)← 0
for /0 6= ci ∈Ci do

∆i← ∆i +∑σ∈ci
σ/ |ci| weight (∆i)← weight (∆i)+1

end
∆i← ∆i/weight (∆i)

end
return argmin{∆i : i ∈ I}

ensemble member i ∈ I, we first select a sufficiently large set of
points, Pi. For polygonal meshes or line strips, we use the original
vertex positions for that purpose. Now, we iterate over all ensemble
members j ∈ I and over all surface points pi ∈ Pi. For each run,
we gather the vectors vcp j (pi), i.e., the closest point vectors at all
given surface points wrt. to all members. Here, vcpi (p) denotes the
closest point vector at point p for member i. Gathering is performed
by bi- and tri-linear interpolation in the VCPE grid. Based on the
set of interpolated vectors, we quantify the local centrality, σ (pi),
described in the previous section.

We then obtain the global median deviation ∆i as the expected
squared local centrality at a uniformly randomly selected position
on the shape’s surface. Note that it is not sufficient to simply aver-
age over the centrality values, since the points pi are not necessar-
ily distributed uniformly, which would result in assigning unequal
weights to regions that are sampled at a denser or less dense res-
olution than the average. As an example, consider a shape given
as an adaptively resolved triangle mesh, where the vertex positions
are used as the set of surface points. Even if they were derived from
a uniform Cartesian grid, the surface points need not be resolved
uniformly, since, depending on the underlying geometry, distant
closest point vectors can point to locations close to each other. To
overcome this issue efficiently, we proceed in the following way.
First, we insert the squared centrality values into a Cartesian grid of
lower resolution, such that each cell ci contains the average of all

values σ (pi)
2, for all pi belonging to ci. Second, we compute the

average over all cells containing at least one value Ci, and return the
result as the global deviation with respect to the ensemble, i.e.,

∆i =
1

|Ci|
∑

ci∈Ci

σ (ci) .

Here, the key idea is to choose the grid resolution such that both



the distribution of points within each cell and the distribution of the
cells near the initial shape’s surface is roughly uniform. We achieve
this by picking the finest resolution such that the largest primitive
of the original geometry fits into one cell, with the restriction that
it is at most as fine as the underlying VCPE grid. Alternatively, we
could utilize a binary search between 1 and the grid resolution in
each dimension. Finally, we obtain the median index as the member
with the least global deviation, i.e.,

Median(I) = argmin{∆i : i ∈ I} .

A complete overview is shown in Algorithm 1.

4.3 Spatial Attributes

We now discuss the generation of statistical spatial attributes, which
are presented to the user as fuzzy structures along with the median
shape. In our implementation, this data is stored in the VCPE grid
in addition to the index of the median shape and the local central-
ity data. This allows us to render simultaneously the shape and the
fuzzy centrality volume during ray-casting. We begin with comput-
ing a fuzziness at each point of the VCPE grid. During rendering
this value determines, whether a fuzzy or crisp structure should be
drawn at a respective point, as well as its opacity. For this purpose,
we compute two different values.

The minimal distance is given as the minimum of the Euclidean dis-
tances to all ensemble members from a given point in space. Note
that we can easily obtain this distance as the length of the corre-
sponding closest point vector: Thus, we have

dMin (x) = min{‖vcpi (x)‖ : i ∈ I} .

Using the minimal distance as the fuzziness allows the user to see
all regions where at least one member resides.

Using the minimal distance enables the user to identify all regions
potentially of interest. However, it does not reveal how many mem-
bers cross a certain region, i.e., the density of shapes at a given point
in space. To compensate for this, we propose a weighted distance
value, given as an adjusted mean of all distances,

dWeighted (x) =
∑

N
i=1 (‖vcpi (x)‖ · exp(−α · ‖vcpi (x)‖))

∑
N
i=1 exp(−α · ‖vcpi (x)‖)

,

where α ∈ R
+ denotes an importance parameter giving an addi-

tional weight to smaller distances. This allows us to retain regions
containing outliers, whereas choosing α too small would result in
smoothing out fine structures distant to most other members. On
the other hand, choosing α too large would produce results similar
to the minimal distance measure. In our test cases, α ≈ 3 yielded
good results. Using the weighted distance criterion enables the user
to quickly identify outliers, as these are regions characterized by a
relatively low fuzziness.

5 Ensemble Visualization

To visualize the median shape in combination with the local central-
ity information, we use a volume ray-caster sampling the extended
VCPE grid along the view rays. Since both the closest point vec-
tors and centrality values are stored in the same grid, visualizing
both structures can be performed simultaneously in one rendering
pass.

Ray-casting the VCPE grid is performed in essentially the same
way as proposed by Demir and Westermann [2015]. Thus, we give
only a brief overview and explain the differences to our implemen-
tation. To render the median shape via ray-casting, we march along

the view rays through the VCPE grid and interpolate the closest
point vectors corresponding to the shape at the sampling points.
Now, if the length of the closest point vector is less than a given
threshold ε > 0, we assume the shape was hit and compute the
color by a local illumination model. At this point, the approach
in [Demir and Westermann 2015] terminates. However, as we in-
clude transparency effects to visualize the centrality information,
we continue the process until the accumulated opacity reaches a
prescribed threshold or the ray position lies outside of the VCPE
grid. In addition, these visualization options are provided:

Local best median. While traversing the VCPE grid along the rays,
we test for the minimum centrality value of all ensemble shapes. If
this value falls below a user-selected threshold, the shape for which
the value is determined is visualized, i.e., a unique color assigned
to this shape is rendered and the ray is terminated. In this way,
we obtain a shape composed of many different shapes, depending
on which of these shapes represents the locally best median. This
combined shape is one that does not exist in the initial ensemble,
but allows determining local trends and conveying the ensemble
member that best follows the local trend.

Fuzzy regions. To visualize the ensemble centrality around the
median, we render a semi-transparent fuzzy structure, similar to
the approach by Grigoryan and Rheingans [2004]. The fuzziness,
mapped to opacity, is computed according to a user-selected crite-
rion: Either the minimal distance, dMin, or the weighted distance,
dWeighted, can be picked by the user. In the first case, we choose a
threshold d⋆

Min such that the structure is rendered only if the mini-
mal distance is less than the diameter of a grid cell. For this, we set
the fuzziness to 1, if dMin < d⋆

Min, and to 0 otherwise. In doing so,
we ensure that fuzzy structures only occur where initial members
exist. By determining the fuzziness according to dWeighted, the user
is able to explore the density of shapes in each region. Again, to
avoid visualizing non-existent data, we combine both the weighted
and the minimal distance in this case, i.e, we set the fuzziness to
dWeighted, if dMin < d⋆

Min, and to 0 otherwise. For coloring the fuzzy
structures, we use the local centrality, mapped from dark blue (high
centrality) to yellow (low centrality).

2D ensembles. We provide the option to visualize 2D VCPE grids.
Therefore, a grid of depth 1 is generated, and one single lookup per
ray retrieves all the information necessary to determine whether the
median shape is hit and what the local centrality at the sampling
points is. This information is then color-coded.

Silhouettes. To enhance the user’s recognition of the shapes, espe-
cially if fuzzy structures are visualized in front of them, we extend
our rendering technique by adding silhouettes to the shape. They
are blended over the shapes, such that they are never obscured by
other structures. To detect silhouettes, we extend the raycasting
algorithm by a second threshold ε⋆, given by ε⋆ = ε · (1+ τ ·λ ) ,
where τ denotes the silhouette thickness and λ the distance trav-
eled along the ray. If, while marching along the ray, no silhouette
was hit so far, and the current closest point length is less than ε⋆,
we consider this a hit and store the distance to the camera, i.e., λ0.
If a hit occurs in the following steps, we check, if the current dis-
tance to the camera is close enough to the silhouette hit position,
i.e., λ < λ0 + ε . In this case, the silhouette is discarded, since it
does not lie on the boundary of the shape. By letting the silhouette
threshold depend on λ , we ensure that all silhouettes are of roughly
equal thickness.

6 Results

To demonstrate the practical application of the proposed method,
we discuss two synthetic data sets, two real-world weather forecast-
ing cases that occurred during an atmospheric research campaign,



and a synthetic ensemble of 3D fluid simulations. The first syn-
thetic data set is comprised of 50 Möbius bands, each represented
by a 5K triangle mesh, which were slightly perturbed to simulate an
ensemble with changing geometry. The second synthetic ensemble
comprises 50 polygonal spheres of 4K triangles each, which have
exactly the same geometry in most regions, but turn inward and
outward with varying strength and shape in one of the hemispheres.
Both synthetic data sets were discretized on a VCPE grid of res-
olution 128× 128× 128. The forecast data are obtained from the
ECMWF Ensemble Prediction System (ENS). The ensemble com-
prises an unperturbed control run (i.e., started from the “best” ini-
tial conditions) and 50 perturbed members. Our example region in
this ensemble covers the North Atlantic and Europe, encompasses
335× 135× 62, and comprises geopotential height, a typical mea-
surement variable in weather forecasting. 2D and 3D polygonal
iso-contours were first extracted from the physical fields, result-
ing in up to 16K triangles per surface, and these contours were
then used as input to our approach. Our last ensemble features a
Navier-Stokes fluid simulation over an ellipsoid obstacle. Here, 56
simulation runs with different viscosities were performed at a grid
resolution of 145× 49× 49. The vorticity magnitude of each run
was written out as a scalar field, and polygonal iso-surfaces were
extracted from each ensemble member.

All presented results were generated on a standard desktop PC (In-
tel Xeon X5675 processor with 6 × 3.0 GHz, 8 GB RAM and an
NVIDIA Geforce GTX 680). The time required to compute the
VCPE grids, including the statistical modeling of the directional
distributions per vertex, took less than 15 seconds on the GPU in
all of our experiments. This time scales linearly in the number of
grid points and the number of lines or triangles to which closest
points have to be computed.

In Fig. 4, we demonstrate the use of our method to find a median
surface in an ensemble of non-orientable 3D surfaces, and to visu-
alize the local centrality over the given surfaces with respect to the
median. As can be deduced from the surface coloring, the com-
puted median has very high centrality across the entire shape, while
the other shapes show locally low centrality, which is indicated by
the color shift towards yellow.

a) b) c)

Figure 4: From an ensemble of 50 slightly perturbed Möbius
bands, the median surface (middle) is computed using our method.
The left and right surfaces show the two ensemble member with the
highest overall deviation from the median. Color encodes central-
ity, ranging from dark blue (high) to yellow (low).

In Fig. 5, we use our method to analyze the central tendency in
the ensemble of spheres. Note that in this ensemble, roughly 3/4

of all spheres were perturbed outwards, and the remaining spheres
were perturbed inwards. Firstly, we show a rendering of the fuzzy
centrality volume to indicate the different shapes of the ensemble
members. It can be seen that, in one hemisphere, all members have
exactly the same geometry, while a high variability in the shapes
can be observed in the frontal region. Secondly, the median shape is

shown, color coded with local centrality. In the last two images, two
members exhibiting low centrality are shown, which is indicated by
the color shift towards yellow.

a) b)

c) d)

Figure 5: Visualization of an ensemble of locally perturbed 3D
spheres. a) The fuzzy volume indicating local variability of the en-
semble. b) The median surface. Color encodes centrality, ranging
from dark blue (high) to yellow (low). c) and d) Two members of
the ensemble being less central than the median.

In Fig. 7a, we show the computed median surface for one of the 3D
weather forecast ensembles. Below, for the same ensemble, the lo-
cally best matching median surface is visualized, by using color to
indicate which of the ensemble members provides the best median
surface locally. It can be seen that the surface in the bottom image
shows details not present in the median shape, i.e., meaning that the
median is not always the best representative locally. The same ex-
periment is shown in the top image in Fig. 6a, and in Fig. 6b for the
fluid ensemble. The visualization of the ECMWF data set reveals
certain features that become immediately apparent to the user. For
instance, one can discover the major regions where higher wind ve-
locities are predicted, namely above the Baltic Sea and to the south
of Greenland. Note that by analyzing other iso-values, we can ver-
ify that higher velocities occur within these region, although this
is not shown here. By studying the fuzzy structures, we can spot
a region located northwest of Africa exhibiting a lower degree of
centrality. This indicates the existence of outliers at that region. In
the fluid ensemble, three representative shapes extracted from dis-
junct subsets of members are shown on the top. The visualization
of a piecewise median is depicted at the bottom. By volume render-
ing the fuzzy structure, the user gets an overview of the distribution
regarding the remaining ensemble members.

The first three images in the teaser, and the bottom images in Fig. 6a
show 2D iso-contours in the ECMWF ensembles. In both figures,
spaghetti plots of all considered contours are shown, and the com-
puted median contours are highlighted in red. Here it is worth not-
ing that our approach yields exactly the same median contour as the
contour boxplots [Whitaker et al. 2013] do. In addition, we show
for selected regions the directional variability of vectors to closest
points, which was used to classify the local centrality. It can be seen
that the directional variability is a good indicator for classifying the
domain locally. While in central regions we see a clear bimodal-
ity with opposing directions, the distributions are tending towards
unimodality or uniformity in the more de-central regions.



a) b)

Figure 6: a) Top: 3D weather forecast ensemble. The coloring indicates the locally best matching median surface. Bottom: 2D slice from
the same ensemble. First, a spaghetti plot of all iso-contours for a selected threshold is shown. The contours contributing to the median are
highlighted. Next, the domain is colored according to local centrality, and the distribution of vectors to closest points is shown for a selected
region. b) Median and fuzzy regions are visualized in the same view for an ensemble featuring vorticity magnitude of a fluid simulation. On
the bottom right, is a single member rendered using streamlines.

b)

a)

Figure 7: Visualization of an ensemble of 3D iso-surfaces in wind
velocity fields. a) The median surface. Color encodes centrality,
ranging from dark blue (high) to yellow (low). b) The locally best
matching medians. Colors indicate different ensemble members.

7 Conclusion and Future Work

In this work, we have presented a new approach for visualizing the
spatial uncertainty that is represented by ensembles of shapes in 2D
or 3D space. We introduced a vector-to-closest-point representa-
tion in combination with techniques to statistically model the re-
sulting directional distributions, and use them to classify regions
and shapes with respect to centrality and uncertainty. For ensem-
bles of 2D curves, a comparison has shown results similar to those
achieved by alternative approaches. However, our approach does
not make any assumption about the input shapes and can be ex-

tended to 3D in a straightforward way. In combination with GPU-
based ray-casting of closest point grids, we provided an interactive
visual exploration tool for ensembles of multi-dimensional shapes.

In the future, we plan to extend and analyze our approach with re-
spect to the following aspects: Firstly, we will elaborate on the use
of closest point fields for clustering ensembles of shapes. In previ-
ous works, clustering has been performed on signed distance fields,
and it will be interesting to compare the resulting clusters quanti-
tatively and qualitatively. Secondly, we will analyze in more detail
the shape medians that are computed by our and other approaches,
especially with respect to the local representativeness. We have
observed that computing medians is sensitive to the VCPE grid res-
olution and the weighting of variability values in the mean square
integration over the shapes. Experiments using ground truth me-
dians have to be pursued to shed light on this aspect. Finally, a
more elaborate discussion of the locally best matching median has
to be performed, in the context of the application in which it is used.
This particular median includes sub-shapes from many different en-
semble members, and we need to analyze how well the resulting
shape can convey application-specific information concerning the
local trends in the data.
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