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ABSTRACT

We propose a novel approach that enables a comparative visual exploration of the transport variability in ensembles

of 2D flow fields. To reveal when and where divergences in transport occur, we first present a new approach to

analyze the time-varying pairwise dissimilarities of ensemble trajectories, by using Gaussian Mixture Models

(GMMs) to identify the distribution modes and the Mahalanobis distance to refine the dissimilarity measures.

This enables drawing enhanced spaghetti plots, by using the color of the contour of each trajectory to encode the

temporal evolution of the member, and the opacity for its representativeness relative to the ensemble behavior. To

also allow a global view of the transport variability across selected sub-domains, we introduce a new graphical

abstraction based on the visualization of miniaturized versions of the enhanced spaghetti plots in a small-multiples

layout. To achieve this, we propose a new kind of downscaling that preserves the relevant trends in the transport

behavior. We have designed a user interface comprising multiple linked views to visualize simultaneously global

and local transport variations, as well as how similar the transport behavior of the ensemble members is.
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1 INTRODUCTION

In many scientific disciplines, ensemble simulations are

used to estimate the uncertainty inherent in the de-

velopment of physical fields, by providing represen-

tative samples of the possible states that could evolve

out of perturbed initial conditions and different models.

Weather forecasting is one such example, where mul-

tiple forecasts are performed simultaneously to obtain

probabilities of occurrence of specific weather events.

Analyzing the temporal variability of an ensemble helps

determine when and where divergences occur, and, im-

plicitly, the locations where and the time intervals over

which a simulation is more or less reliable.

Analyzing the ensemble variability is, however, not

straightforward: Firstly, transport divergences occur

gradually over time, due to spatial variations of the

transport paths and the transport velocity along them.

Analyzing the flow variability requires new concepts
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to determine these divergences and, in particular, when

the divergences started occurring. Secondly, visualiz-

ing the temporal variability of an ensemble – locally,

at a selected domain point, or globally, to compare the

transport across the domain – is challenging, since it re-

quires new graphical abstractions to show the complex

spatio-temporal ensemble evolution in an intuitive way.

Contribution: We propose a visual analytics approach

to address the aforementioned challenges and explore

the temporal variability of ensembles of vector fields.

We provide novel means to perform a local and global

visual analysis of the dissimilarities of ensemble mem-

bers across the domain.

To analyze the transport deviations over time statisti-

cally, we introduce the application of the Mahalanobis

distance on Gaussian Mixture Models (GMMs). Ap-

proximating the distributions of tracer particles at ev-

ery grid point with mixtures of Gaussian modes en-

ables the use of the Mahalanobis distance to assess the

pairwise member dissimilarities relative to the variabil-

ity allowed by each mode. To quantify the ensem-

ble divergence over time further, we define the diver-

gence count of an ensemble member per time step as

the (normalized) number of members dissimilar to it.

As members evolve, their pairwise dissimilarities and

divergence counts change, revealing the time steps and

locations of new (dis)similarities to others members.



The information we derive from the pairwise dissimilar-

ities and divergence counts is then encoded graphically,

to enable an effective local and global visual analysis.

We propose the following novel approaches:

• Divergence Visualization: We enhance the

spaghetti plots of the ensemble trajectories by

encoding the transport evolution and divergence

counts over time; this shows when and where

ensemble members behave (dis)similarly, and is

especially effective in cases when trajectories ex-

hibit similar geometric shapes, but trajectory points

considered at the same time instant are dispersed.

• Small-Multiples: We compare the transport vari-

ability across selected sub-domains via a new graph-

ical abstraction based on miniaturized versions of

enhanced spaghetti plots in a small-multiples lay-

out. We present a new downscaling method that pre-

serves the relevant trends in the transport behavior.

• Similarity visualization: We cluster ensemble

members based on their flow similarity across the

domain and visualize the dynamical evolution of

the clusters using parallel sets.

The proposed approaches are combined into an inter-

active visual analytics tool, to give insight into the var-

ious aspects of the flow variability. We evaluate our

approach on several meteorological ensembles and in-

clude an assessment by domain experts.

2 RELATED WORK

Uncertainty visualization, one of the top challenges

in scientific visualization [1, 2], is often estimated by

ensembles – representative samples of realizations of

simulated phenomena, obtained by running simulations

with different initial conditions and models. Such data

is typically spatio-temporal, multivariate, and multival-

ued [3, 4], making its analysis and visualization diffi-

cult. Typical methods evaluate summary statistics and

visualize these using color maps, contours, surface de-

formation, opacity, boxplots, or glyphs [5, 4, 6, 7].

For vector fields, Wittenbrink et al. [8] propose glyphs

to show the magnitude and angular uncertainty. Lodha

et al. [9] show the flow uncertainty using envelopes

and animation. Pfaffelmoser et al. [6] present circular

glyphs to convey the uncertainty of gradients in mean

and orientation in 2D uncertain scalar fields. Jarema et

al. [10] use lobular glyphs to visualize multimodal dis-

tributions for 2D directional data. Other local methods

include texture mapping [11] and a reaction-diffusion

model [12]. Allendes Osorio and Brodlie [13] present a

modified LIC version for 2D uncertain steady vectors.

For time-varying uncertain vector fields, Hlawatsch et

al. [14] introduce flow radar glyphs. In the crisp case,

Hlawatsch et al. [15] downscale individual pathlines,

whereas we downscale entire ensembles of trajectories.

To consider the transport uncertainty, Otto et al. use par-

ticle density functions to obtain an uncertain topologi-

cal segmentation for 2D [16] and 3D [17] Gaussian-

distributed steady vector fields; Schneider et al. [18]

analyze the transport uncertainty for unsteady vector

fields. Hummel et al. [19] compare the material trans-

port in time-varying flow ensembles by computing indi-

vidual and joint vector field variances. We analyze the

transport variability based on pairwise trajectory dis-

similarities, rather than variances, which allows us to

identify when divergences occur.

Clustering is another standard method for dealing with

large and complex data [20]. Bruckner and Möller [21]

propose density-based clustering to identify similar vol-

umetric time sequences in physically-based ensemble

simulations. Bordoloi et al. [22] perform realization-

and distribution-based hierarchical clustering of ensem-

ble data. Hierarchical clustering is also used to clus-

ter trajectories, e.g., for streamlines modeling blood

flow [23] or meteorological data [24]. Hollister and

Pang [25] cluster streamlines using DBSCAN to derive

scalar fields capturing cases when ensemble members

may exhibit strong separation along trajectories, but a

weak terminal separation. Although our analysis is per-

formed on trajectories, it clusters trajectory positions

and not the trajectories themselves. Thus, we are able to

determine not only whether divergences occur along the

trajectories, but also when they occur. Jarema et al.[10]

use GMMs to cluster ensemble members based on the

extent of their directional similarity locally. We extend

this method to cluster ensemble members by their trans-

port similarity, where the dissimilarity of two members

is obtained by applying the Mahalanobis distance on the

modes identified by means of a GMM approximation.

Fitting GMMs has been used before in uncertainty vi-

sualization. Correa et al. [26] use GMMs to model un-

certainty in the visual analysis process, while Hollis-

ter and Pang [27] apply GMMs to perform probability

distribution interpolation. Liu et al. [28] employ mul-

tiple Gaussian components for a volume rendering of

stochastic fields. The Mahalanobis distance [29] has

been used, e.g., for uncertain scalar fields, to assess the

positional uncertainty of isosurfaces [30] or reveal the

possible locations of critical points [31].

Other techniques for dealing with the complexity of en-

semble data include coordinated multiple views, which

are used to study multivariate relations via linking and

brushing [3], and parallel coordinates [32] or parallel

sets [33]. Nocke et al. [34], and Molchanov and Lin-

sen [35] use coordinated multiple views for climate en-

sembles. Piringer et al. [36] analyze 2D function en-

sembles on three levels of details (member-oriented,

domain-oriented, and surface plot).



Figure 1: Multiple linked views for an ECMWF (European Centre for Medium-Range Weather Forecasts) time-

varying ensemble. The spatial view (A) shows the aggregated flow variability over the domain and an enhanced

spaghetti plot at a user-selected location. For the selected region marked by a green square, the detail view (B)

shows downscaled spaghetti plots. View (C) shows the hierarchical clustering of the members with perturbed

initial conditions. View (D) shows the variability of the clustering solution at selected time steps.

3 OVERVIEW

Our method starts with a vector field ensemble given on

a 2D grid structure, and identifies at every grid point the

time steps and locations of dissimilar behavior. From

this, we derive measures for the temporal evolution of

the transport variability, to show the variability over the

domain (cf. background in Fig. 1(A)) and generate en-

hanced spaghetti plots at selected locations (cf. fore-

ground in Fig. 1(A)). The enhanced plots reveal the

flow variability even when particles follow geometri-

cally similar trajectories, but with significantly different

speeds, being temporally actually dispersed.

To explore and compare the flow variability at multiple

locations simultaneously, concurrent spaghetti plots

lead to massive clutter and occlusion. Hlawatsch et

al. [15] juxtapose miniaturized trajectory images to

overcome this limitation for crisp vector fields. Our

ensemble visualization builds upon the concept of

small-multiples [37], but includes the derived transport

variability to construct small-multiples preserving the

main trends of the particle trajectories (cf. Fig. 1(B)).

This is achieved by downscaling trajectories based on

a selection of salient time steps.

Finally, our method clusters members based on their

global transport similarity, and shows these clusters

via dendrograms (cf. Fig. 1(C)). The temporal evolu-

tion of clusters is encoded visually via parallel sets

(cf. Fig. 1(D)), from which splitting and merging events

over time can be deduced.

To quantitatively assess the flow variability, our

method determines when and where members behave

dissimilarly, without imposing any synthetic thresholds

beyond which the behavior is considered dissimilar

(cf. Sec. 4.1). This allows us to assess the spatial

variability at individual time steps or over a forecast

interval, and obtain the salient time steps for the small-

multiples layout (cf. Sec. 4.2). We also use the method

to cluster ensemble members based on their transport

similarity throughout the domain (cf. Sec. 4.3).

4 TRANSPORT VARIABILITY

To find out when and where changes in the transport be-

havior occur, we assess members as (dis)similar based

on their deviation at every time step, but without impos-

ing any artificial thresholds. For normally distributed

data, the Mahalanobis distance [29] specifies natural

thresholds. Due to its use of the covariance matrix, it

is scale-independent and unaffected by correlations be-

tween variables. Members are thus (dis)similar based

on their deviation relative to the data variability. En-

semble data is, however, often not Gaussian distributed.

We thus model the distribution of 2D particle positions

(seeded at the same point) at every time step with a mix-

ture of Gaussians, and apply the Mahalanobis distance

to assess pairs of members as (dis)similar relative to the

variability of the corresponding mode.

The intuition behind this fine-grained analysis is illus-

trated in Fig. 2(b) for four selected members of an en-
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Figure 2: Pathline variability: (a) trajectories of 51 members; particle positions are shown at steps 137 and 199 with

green and orange markers, respectively, and different symbols for different clusters; (b) four singled-out members:

8 (green), 14 (orange), 28 (blue), and 2 (pink), with markers for all members and ellipses for the Gaussian modes

at steps 58 and 199; (c) grayscale encoding of the time step divergence count; as the divergence counts increase,

the stripes (d) fade to white in the enhanced spaghetti plot and (e) become less opaque in the downscaled version.

semble: members 2, 8, 14, and 28. Even though a

bimodal distribution is fitted only at step 137 and no

synthetic threshold is defined for the spread, member

8, initially an inlier, is, up to step 58, similar only to

member 28 relative to the local variability (step 58 is

marked by brown concentric ellipses for the Gaussian

mode and circles for the particle positions). Thereafter,

it also becomes and stays similar to member 14, both

following the downward trend. As the deviation be-

tween members 8 and 28 increases, the two become

dissimilar shortly after step 58; members 8 and 2 are

dissimilar from the very beginning, despite the spread

being initially very low. Actually, member 2 is dissim-

ilar for most of the time even to 28, although they both

show geometrically similar trajectories and follow the

upward trend. This happens because the particles travel

at different speeds (at, e.g., step 199, where the three

fitted modes are shown by concentric gray ellipses and

all members are marked with pluses, note that positions

are modeled by different modes).

4.1 Pairwise Dissimilarity Analysis

We consider flow field ensembles – collections of

n vector fields defined over the same grid structure.

Our approach is designed for both stationary and

time-dependent 2D vector fields, but the analysis can

be extended directly to 3D. We obtain the trajecto-

ries by numerical integration, e.g., using 4-th-order

Runge-Kutta methods. At every grid point, each of

the n trajectories comprises mi integration steps. To

make all trajectories of equal length m, we repeat the

final positions m−mi times, where m = maxi=1,n(mi).
Otherwise, members with similar trajectories, but of

slightly different lengths mi > m j, e.g., members 8

and 14 in Fig. 2(b), would be artificially dissimilar

in the mi − m j interval. Members with trajectories

of considerably different length and behavior are

dissimilar as soon as their deviations are large relative

to the allowed variability or the positions are modeled

by different modes, e.g., members 8 and 28 in the same

figure. Moreover, the (dis)similarity of two members

(i, j) is fixed after step max(mi,m j).

The pairwise analysis occurs in two stages, performed

at every grid point and integration step of the mem-

ber trajectories seeded at that grid point: In the first

stage, we use GMMs to model the distribution of par-

ticle positions at each time step. We determine both

the number of modes and their shapes automatically,

by adapting for 2D data the procedure described in [10]

for 2D directional data. Thus, unless the positions can

be assumed Gaussian distributed, an Expectation Max-

imization (EM) algorithm fits two Gaussian modes to

the positions and assigns each member to the mode that

is more likely to model the observation. The process

repeats until the members in each partition can be as-

sumed Gaussian distributed (cf. Fig. 2(b) for an exam-

ple of GMM partitions – shown using concentric el-

lipses – at several time steps). Depending on the initial

conditions, EM algorithms may lead to non-repetitive

solutions. To alleviate this problem, we run the GMM

algorithm several times with different starting values,

and use silhouettes – validation techniques for algo-

rithms that use random initial guesses – to select the

best solution from those having the most frequently met

modality.

A sample of 2D observations xi = [Xi,Yi], i = 1,n, is

modeled with a mixture of N Gaussian modes

f (x) =
N

∑
j=1

α jN (µ j,Σ j), α j > 0,
N

∑
j=1

α j = 1, (1)

where each Gaussian mode N (µ j,Σ j) has a weight α j

and is parameterized by its mean µ j and covariance ma-

trix Σ j. Each observation xi, i = 1,n, is modeled by

Gaussian mode j with probability p j,i, where j = 1,N

and ∑
N
j=1 p j,i = 1. The GMM creates a first partition-

ing of the members, depending on which mode is more

likely to model the observations. We use soft clustering,

where observations are dissimilar only if they belong

with high probabilities to different modes. Thus, obser-



Figure 3: Small-multiples displays for ensembles are significantly more cluttered when downscaled in (left) a

straightforward manner than (right) with sampling and variability encoding in opacity.

vations located on the boundary of two modes are sim-

ilar to observations modeled by both modes, as shown

in Fig. 2(a): a bimodal distribution is fitted for the first

time at step 137 (cf. the green markers, of two types,

circles and pluses); a few members (with cyan dots in

the middle of the markers) are at the boundaries of both

modes and thus similar to all members. However, just

because only at this step there is enough proof for bi-

modality, this does not necessarily mean that members

now modeled by different modes have started diverging

at this step. Their deviation may have been large rel-

ative to the local variability already earlier, e.g., mem-

bers 8 and 28, or 8 and 2 in Fig. 2(b).

Thus, in the second stage, for every pair of similar

members (xi,x j), we compute the Mahalanobis distance

relative to the corresponding covariance matrix Σk

MD(xi,x j) =
√

(xi − x j)Σ
−1
k (xi − x j)T. (2)

Members are dissimilar if MD(xi,x j)> 2.3, which cor-

responds statistically to less likely deviations falling

outside one confidence region (68%) for a bivariate

Gaussian distributionN (µk,Σk). For boundary mem-

bers, we compute the distance relative to both modes

and take the higher value. Out of the six members in

the previous example, only the one in the upper mode

still exhibits similarities to members in the other mode.

This occurs because the covariance matrix allows more

variation in the vertical direction than in the horizontal

one. For the same reason, the member with a magenta

dot in the middle is dissimilar to all others.

4.2 Variability over the Domain

The analysis based on GMMs and the Mahalanobis dis-

tance identifies the pairwise (dis)similarities of the en-

semble members at every time step. To distinguish

between inliers and outliers within modes or among

all members, we define the member divergence count

(mdct
i) of ensemble member i at step t as the number

of dissimilar members at that instant, normalized by

the total number of members. For Gaussian distribu-

tions, positions closer to the mean have lower diver-

gence counts than those located further. For multimodal

distributions, the divergence counts generally increase

for both mode inliers and outliers.

To reveal the time steps and locations with higher flow

variability, we sum up and normalize the divergence

counts of all members at a time step tk to obtain a time

step divergence count (tdctk ). The aggregated time step

divergence count over a given time interval [t1, t2] is

median(tdctk)tk∈[t1,t2]. We use the median because it is a

robust measure of the central tendency of the data, but

other summary statistics could be used instead. More-

over, to distinguish between low and high divergence

counts, we define reference values, per member (the

median of the minimum divergence count at every grid

point (i, j), median(min(mdci, jt
k
)k=1,n, t=1,tmax

)), and per

time step (the median of the divergence counts at the

first time step, median(tdc1
i, j)).

We also use the divergence counts to find a selection of

time steps that preserves the transport behavior. Thus,

we downscale trajectories without obscuring the trans-

port trends and variability, as a straightforward down-

scaling would (cf. Fig. 3 (left)). For all members,

we keep the salient trajectory points – the steps with

changes in (dis)similarities. Other steps are sampled

regularly, the sampling rate being proportional to the

number of non-salient steps. While the information loss

in intervals with high curvature may lead to a coarser

curve approximation, the flow structure is qualitatively

well-preserved (cf. Fig. 3 (right)).

The time step divergence counts for the previous exam-

ple (with values in the [0.55,0.82] range) are encoded in

grayscale in Fig. 2(c). While there is not enough proof

for a departure from normality, the divergence counts

vary in the [0.55,0.61] range. A surge to 0.76 occurs

at step 137, when a bimodal distribution is fitted to the

data, succeeded by a small gradual decreases as more

particles follow the upward trend. Despite the geomet-

rical similarity of the trajectories going upwards, par-

ticles move at different speeds. This leads to a second

surge (0.81) at step 199, when three Gaussian modes

are fitted (cf. the orange markers in Fig. 2(a)). As par-

ticles approach their final positions (and since most of

them end up together, either in the bottom or the right

bundle), the divergence count decreases again, although

to values no lower than 0.69. During downscaling, the

non-salient time steps are sampled and around 60% of

the trajectory points discarded, but the flow structure

and variability are retained (cf. Fig. 2(e)).



4.3 Flow-based Similarity

To analyze the transport similarity of the ensemble, we

extend the work of Jarema et al. [10], who model direc-

tional data locally via GMMs and use the modes to clus-

ter members hierarchically based on their local angular

similarity over the whole domain. The binary similar-

ity of any two members at a point depends on the an-

gular deviation relative to local variation of their mode,

and the global similarity measure is defined as the per-

centage of similar locations out of the total number of

grid points. Here, we use the Mahalanobis distance to

determine deviations in particle positions (rather than

angles) that are statistically meaningful relative to the

mode variability. Moreover, we perform the clustering

over a whole forecast interval to cluster ensemble mem-

bers based on their transport similarity (rather than their

local angular similarity).

5 VISUAL ANALYSIS OF THE TRANS-

PORT VARIABILITY

Our user interface (cf. Fig. 1) comprises four linked

views, two for the variability over the domain and an-

other two for the variability of the clustering solution.

5.1 Flow Variability over the Domain

The spatial view (cf. Fig. 1(A)) shows the ensemble

variability (here the aggregated time step divergence

count for the entire forecast interval and all members)

over the domain using a sequential grayscale colormap.

A time slider allows an interactive visualization of the

variability for single time steps or aggregated over time

intervals, either for a selection of members or the en-

tire ensemble (by using the time step divergence count).

Users can select locations where to display enhanced

spaghetti plots. Grayscale colormaps permit the use

of a colorblind-safe red-to-blue variation for the trajec-

tories, making them stand out against the background.

Nevertheless, they suffer from simultaneous contrast ef-

fects, which hinders the correct interpretation of the dis-

played data [38]. To ease the variability evaluation, we

inform the user about the variability at the selected lo-

cation and show the global reference values.

Trajectory plots encode both the integration time and

the variability (member divergence counts). Each tra-

jectory is displayed as a curve stripe, the contour of

the stripe color-coding the time and the stripe itself

the variability. The color of each stripe is based on

that of its contour, fading to white as the member di-

vergence count increases relative to the local reference

value (the smaller value between the local minimum

and the global reference value). Thus, the stripe color

for members having divergence counts close to the local

reference value can hardly be distinguished from that

of the contour. As the divergence count increases, the

stripe color fades to white, making the trajectories of

Figure 4: In a straightforward downscaling (odd plots –

the first plot is the leftmost top plot) clutter and occlu-

sion obscure the flow trends and variability; downscal-

ing with sampling and variability encoding (even plots)

conveys the main flow patterns and variability.

members with higher variability stand out less against

the grayscale background than those with lower vari-

ability. The time information is nevertheless fully pre-

served in the color of the contours.

Fig. 2(d) shows the enhanced spaghetti plot for the pre-

vious example. The stripes begin to fade rapidly, as par-

ticles tend to spread out from an early stage. However,

up to step 137, when a bimodal distribution is fitted to

the data, the color of most stripes, albeit suggestive of

the proximate split, has yet to fade completely. There-

after, the stripes of several trajectories going upwards

fade to white, because particles travel at considerably

different velocities and member divergence counts are

high. Despite the geometrical similarity of the trajec-

tories, the fading reveals the flow variability (the in-

creasing dispersion of the particles and number of par-

titions). Also, the stripes fade less for most trajectories

in the lower bundle; their flow behavior is more simi-

lar, even if from their geometry alone they appear more

dispersed than the trajectories in the upper bundle.

5.2 Flow Variability over Subdomains

To allow the concurrent visualization of enhanced

spaghetti plots across selected subdomains with sig-

nificantly less clutter and occlusion, we propose a

small-multiples layout with miniaturized plots, where

the downscaling preserves the salient flow trends.

The detail view (cf. Fig. 1(B)) shows a predefined num-

ber of downscaled plots, computed at regular intervals

in the domain. A straightforward downscaling may ob-

struct the flow trends and variability (cf. Fig. 4). For ex-

ample, in the first plot, the ending spiraling structures of

several pathlines obscure the stable flow pattern at the

beginning. Instead, we determine a selection of time

steps that preserves the transport behavior (cf. Section

4.2). We also encode the integration time directly in

the color of the stripes and the variability in the opacity,

so that the main flow trends are clearly discernible in

the miniaturized versions. Notice how the opacity use

and the dense sampling of the spiraling parts (where the

flow variability hardly changes anymore) in the second



plot in Fig. 4 help bring out both the flow patterns and

the variability.

To enable a comparative visual analysis of the down-

scaled plots, all plots have the aspect ratio of the origi-

nal domain and the same domain section (shown in the

main spatial view by a purple rectangle). The area oc-

cupied by the detail view is displayed by a green square.

To preserve context information, the green square (cor-

respondingly scaled) is also shown in each downscaled

plot, along with a green anchor ball that marks the seed-

ing point of the trajectories. The initial domain section

is the bounding box containing all spaghetti plots, but

can be adjusted interactively (as was done in Fig. 1(A)).

5.3 Flow-based Similarity Visualization

The hierarchical clustering of the ensemble (based on

the global flow similarity over the whole time interval)

is summarized as a dendogram (cf. Fig. 1(C)). The en-

semble members are shown on the horizontal axis and

the clustering levels on the vertical axis. The dissimilar-

ity levels increase as subclusters are merged, joins be-

ing represented graphically as inverted U lines. Neigh-

boring larger subclusters are shown in different colors,

to make partitions stand out. Users can select (groups)

of members in the dendogram (or as text input) to visu-

alize their spatial variability.

Insight into the dynamical evolution of the clustering

solution is gained using parallel sets [33] (cf. Fig. 1(D),

with a selection of time steps along the horizontal axis

and the cluster ids along the vertical one). We perform

a hierarchical clustering at every selected time step. For

the sake of uniformity and simplicity, we partition the

members into at most three clusters, and track how the

clustering solution varies over the selected time steps.

We sample the time steps more densely at the begin-

ning, e.g., in powers of two, because we noticed that the

divergence counts and local clustering solutions vary

more earlier in the integration (due, e.g., to changes in

flow regime occurring early). The clustering variability

is shown using branches connecting clusters at consecu-

tive selected steps, the thickness of each branch depend-

ing on the corresponding number of members. Clusters

are ordered so as to support id continuity from one step

to another. Thus, we compute the number of common

members for every pair of clusters at consecutive time

steps, and assign cluster ids in decreasing order. To fa-

cilitate tracking the split and join events, bars starting

from the same cluster have the same color: green, or-

ange, and purple for the first, second, and third cluster,

respectively.

This encoding reveals how the clustering solution varies

from one time step to another, but not how the cluster

memberships vary. To gain insight into this kind of vari-

ability, we determine, for the members in each branch,

the cluster ids at the previous step and compute their

cardinalities. We then map the ratio of the largest cardi-

nality to the number of members, to the opacity of each

branch. The more opaque the branch is, the less the

cluster componence has changed. To shed further light

onto the clustering variability, users can select a branch

to view the clustering evolution over all selected steps

for the members in the selected branch (cf. Fig. 6).

6 RESULTS

We illustrate our framework on two ECMWF (Euro-

pean Centre for Medium-Range Weather Forecasts) en-

sembles of dimensions 101 × 41, each comprising a

control run and another 50 members with perturbed

initial conditions. Details on the system are available

in [39].

6.1 Transport Variability Analysis

The first ensemble is a time-varying wind forecast at

a pressure level of 850 hPa, initiated on October 15,

2012. The geolocated variability field (aggregated over

the entire forecast interval for all members) is shown

in Fig. 1(A). Locations where data was not available at

this pressure level have been marked as “Not a Num-

ber (NaN)”. We noticed that pathlines seeded over het-

erogeneous color regions (cf. Fig. 1(B)) exhibit dissim-

ilar flow behavior, as opposed to those seeded over ho-

mogeneous areas. The detail view enables a compara-

tive visual analysis of the pathlines, revealing the nu-

merous changes in flow patterns and variability across

the subdomain. In Fig. 1(B), for instance, trajecto-

ries seeded in the bottom line (to the left), where most

pathlines go southwards, display aggregated divergence

counts similar to the time step reference value (0.55).

The variability increases to the right (to 0.65) as more

particles go northeastwards, and decreases again further

to the right, where most pathlines show no change of

regime. In the next row (to the left), most particles fol-

low a northeastward trend, but with various velocities

and increasing dispersion, in spite of the geometrical

similarity of the trajectories (values are around 0.7).

The variability increases further (close to 0.8) in the

third row, where the trajectories bifurcate geometrically

as well.

The clustering solution of the ensemble is shown in

Fig. 1(C) for the members with perturbed initial con-

ditions. At first, we performed a hierarchical clustering

of all members. However, because the control run was

very similar to the majority of the other members, the

large cluster forming around the dendogram hindered

the identification of natural divisions in the hierarchical

tree. Upon excluding the control run, we could detect

natural groupings in the dendogram, which revealed an

interesting pattern that should be further explored to-

gether with domain experts: ensemble member i was
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Figure 5: Spatial view for stationary ECMWF ensem-

ble showing the variability at the (top) first time step

and (middle) over the whole time interval. (Bottom)

Detail view with downscaled streamline plots.

typically considerably more similar to ensemble mem-

bers i+20 and, if available, i+40, than to other mem-

bers. Notice that, in the dendogram, groupings of two

or three members predominate at the low levels, larger

clusters forming at distinctly higher levels.

The second ensemble is a stationary wind forecast en-

semble at the same pressure level, valid on October 19,

2012. The geolocated variability for all members is dis-

played over the entire domain in Fig. 5, for the first time

step (top) and aggregated over the whole forecast inter-

val (middle). The isocontours of the geopotential height

field of the control run are shown as black contours. Ini-

tially, regions of high variability are found mostly at the

pressure centers, but their extent increases over time, as

particles seeded in regions of lower variability enter re-

gions of higher variability. This is also noticeable in

the detail view (bottom), where, at all locations, most

streamlines follow the southeastwards-northeastwards

trend of the isocontours before they begin to spread

out. In fact, the variability in this region remains rel-

atively low for much longer than in other regions. In

the end, the regions with low variability occupy much

smaller extents, e.g., the low-frequency elongated re-

gion of high pressure in the bottom left corner.

The clustering solution for this ensemble considers all

members. Fig. 6 (top) shows its time variability at seven

selected time steps. The clustering solutions appear

quite stable at the first two steps, but the variability in-

Figure 6: (Top) Clustering variability at selected time

steps (cluster ids on the vertical axis, time steps on the

horizontal axis). (Bottom) Membership variability for

selected subcluster.

creases afterwards. The opacity of the branches gives a

first insight into the cluster membership variability. For

instance, the thickest of the orange branches, joining

the second clusters at selected steps 16 and 32, is quite

transparent, implying that the members in the branch

are a mixture of those in the previous green and orange

branches. The orange branch joining the second and

third clusters is, however, opaque, as the componence

of its members has not changed from the previous step.

To gain further insight into the membership variability,

users can select branches to see how the cluster mem-

berships of their members vary at the selected steps.

Fig. 6 (bottom) shows an example for the green branch

joining the second cluster at step 16. Observe that, ex-

cept for a temporary split towards the end, the members

in the branch are always clustered together.

6.2 Implementation, Performance Analy-

sis, and Scalability

We ran our tests on a standard desktop PC, equipped

with an Intel i7-4790 quad-core processor running at

3.6 GHz and with 12 GB RAM. Fitting GMMs and

computing the pairwise (dis)similarities using the Ma-

halanobis distance can be performed in parallel at every

time step and every grid point. The operations can thus

be parallelized in a straightforward way on the GPU, re-

sulting in computation times of under five seconds for

all datasets. As shown in the accompanying video, we

are able to handle the comparative analysis session at

interactive frame rates.

Our approach is scalable for ensembles larger than

those used in our examples. Although the readability

of the dendogram may suffer if the number of members

is larger than a certain limit, 51 ensemble members,

like in our case, is a typical number for meteorological



ensembles. Similarly, the readability of the parallel

coordinates depends on the number of selected time

steps and may require focus and context techniques,

such as zooming and panning, which are part of our

future work. An increase in the grid dimensions affects

neither the two views for the clustering variability, nor

the detail view, since the number of downscaled plots

displayed is fixed, but only the spatial view, where the

size of the pixel of each grid point decreases.

7 CONCLUSION AND EVALUATION

In this paper, we proposed a novel framework that en-

ables an interactive comparative visual analysis of the

transport variability of ensembles of 2D vector fields.

We showed that our approach is able to determine the

pairwise (dis)similarities of the ensemble members at

every time step, without imposing artificial thresholds

for the deviations. To achieve this, we computed the

pairwise dissimilarities using the Mahalanobis distance

on the Gaussian components identified by a GMM algo-

rithm. Based on this fine-grained analysis, we proposed

means to convey the variability of the spatio-temporal

evolution of an ensemble and its clustering solution.

In developing our techniques, we collaborated closely

with domain experts from meteorology, and provide

herewith a summary of their informal feedback. The

experts found the proposed methods useful in gaining a

fast insight into the flow predictability over the domain

and the time interval over which the forecasts can be

trusted. They also described the techniques as useful

in determining regions of different qualitative flow and

highly appreciated our small-multiples approach that

enabled them to observe the flow behavior at several lo-

cations concurrently. Nevertheless, they were initially

puzzled about certain neighboring locations where the

flow looked similar, but the variability values were quite

different. Detailed inspections of such cases revealed

the dissimilarities in flow behavior that had lead to the

different variability values, although occasionally the

differences were caused by a suboptimal partitioning

of the GMM algorithm. The experts were also sur-

prised by the spread of particle positions along geo-

metrically similar trajectories and commended the en-

hanced spaghetti plots for bringing out the variability

in the flow. Regarding the clustering solution, they

were interested to further investigate the reason for the

pattern present in the clustering solution for the time-

varying data.

In the future, we plan to enrich the possibilities of ex-

ploring the variability of the clustering solution and the

dynamics of the ensemble. We also intend to extend our

analysis to 3D vector data. While the mathematical ex-

tension is straightforward, novel graphical abstractions

are necessary to reveal the ensemble variability that re-

duce the clutter and occlusion problems inherent to 3D.
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