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Time-hierarchical Clustering and Visualization of
Weather Forecast Ensembles

Florian Ferstl, Mathias Kanzler, Marc Rautenhaus, and Rüdiger Westermann

Fig. 1. Interactive exploration of time-varying iso-contours in a weather forecast ensemble: Based on our time-hierarchical clustering
(bottom left) the user can animate through visualizations of selected time steps (bottom right). An overview of all time steps is shown
as a stacked plot (center), and a representative space-time surface can be shown for a selected cluster (inset, top right).

Abstract—We propose a new approach for analyzing the temporal growth of the uncertainty in ensembles of weather forecasts
which are started from perturbed but similar initial conditions. As an alternative to traditional approaches in meteorology, which
use juxtaposition and animation of spaghetti plots of iso-contours, we make use of contour clustering and provide means to encode
forecast dynamics and spread in one single visualization. Based on a given ensemble clustering in a specified time window, we merge
clusters in time-reversed order to indicate when and where forecast trajectories start to diverge. We present and compare different
visualizations of the resulting time-hierarchical grouping, including space-time surfaces built by connecting cluster representatives
over time, and stacked contour variability plots. We demonstrate the effectiveness of our visual encodings with forecast examples of
the European Centre for Medium-Range Weather Forecasts, which convey the evolution of specific features in the data as well as the
temporally increasing spatial variability.

Index Terms—Ensemble visualization, uncertainty visualization, meteorological visualization, iso-contours, time-varying data, clus-
tering.

1 INTRODUCTION

Ensemble weather forecasts have been well established in meteorol-
ogy as a tool to provide estimates of the uncertainty inherent in nu-
merical weather predictions [4]. Based on perturbed initial conditions
or different forecast model formulations, ensemble methods provide a
representative sample of possible future states of the atmosphere [26].
Analysis of the temporal evolution and variability of an ensemble fore-
cast is an important task. For example, a forecaster needs to judge
whether a prediction can be trusted in a particular region and forecast
time window. Also, information on possible future atmospheric sce-
narios the ensemble predicts and their likelihood are of interest [9].
Furthermore, spatio-temporal analysis of an ensemble forecast can
provide information on where and when ensemble members start to di-
verge, allowing inference on atmospheric phenomena that cause mem-
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bers to evolve in different ways.
Spaghetti plots have been established as a common visualization

tool to analyze the variability of iso-contours in meteorological scalar
field ensembles (e.g., [50]). Typically, these plots simultaneously
show contours of all ensemble members at a single time-step. For anal-
ysis of the temporal evolution and variability of the displayed scalar
fields, animation of sequences of spaghetti plots is frequently used
(see, e.g., the website of the National Oceanic and Atmospheric Ad-
ministration’s Storm Prediction Center [29]). When viewing such ani-
mations, however, connections between contours in consecutive time-
steps are difficult to establish, due to the huge amount of visual infor-
mation that needs to be memorized by the viewer. As pointed out by
Gleicher et al. [14, p. 294], animation ”requires the use of the viewer’s
memory and attention shifts to make connections between objects”,
making it problematic in general for spatio-temporal analysis. A num-
ber of visual abstractions of spaghetti plots have been proposed in re-
cent years [42, 48, 11]. They, however, also represent single time-steps
and rely on animation to visualize the temporal development.

In this work we develop an alternative approach to analyze the
spatio-temporal evolution of iso-contours obtained from ensemble
weather predictions. We target a setting in which the ensemble mem-
bers are started from perturbed but (relatively) similar initial condi-
tions. This is true, e.g., for the operational ensemble forecast pro-
duced by the European Centre for Medium-Range Weather Forecasts
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Fig. 2. Multi-run plot [12] of an ensemble of 51 iso-contours to a fixed
iso-value in a geopotential height field, over the first 8 days of a weather
forecast in time-steps of 6 hours. Each line represents the evolution
trajectory of one ensemble member. Each line vertex corresponds to
an iso-contour in a specific time-step. The data is projected to a 3D
space using a multi-dimensional scaling projection, so that large vertex-
to-vertex distances correspond to large dissimilarities between the cor-
responding contours.

(ECMWF) Ensemble Prediction System (ENS; e.g., [26]). Due to the
chaotic nature of the atmosphere and the techniques used to select
initial ensemble members, the variability, or spread, of such forecast
ensembles on average increases over time [26]. As demonstrated in
Fig. 2, this diverging nature can be visualized with “multi-run plots”
as proposed by Fofonov et al. [12]. They compute a similarity ma-
trix of all contours and visualize their trajectories using a multidimen-
sional scaling projection. Note, however, that besides restricting the
visualization to the three most significant axis in the multidimensional
feature domain, the method cannot show where in the spatial domain
the spread is large or low.

To analyze the spatio-temporal evolution of such ensemble predic-
tions, we target the following objectives:

• Temporal evolution similarity: Group ensemble members with
similar temporal evolution in a specified region and time window
(following operational but static practice at ECMWF [9], we as-
sume that the user is interested in grouping ensemble members
according to similar forecast scenarios in a user-specified region
and time windows, and in analyzing the temporal development
of the obtained groups prior to and after the selected window).

• Time-hierarchical variability: Develop approaches that show the
hierarchical temporal evolution of such groups of members and
that help to determine the spatial and temporal locations at which
differences between the ensemble members start to occur.

• Space-time visualization: Develop visual encodings to analyze
the temporal evolution of spatial variability in an effective way.

Contribution: To achieve the aforementioned goals, we propose
new approaches for clustering weather forecast ensembles with respect
to their temporal evolution, and for visualizing the resulting cluster
hierarchies in a spatio-temporal context. Our specific contributions
are with respect to the following aspects:

• Clustering of iso-contours with similar time evolution: We con-
sider sets of sequences of iso-contours and cluster these sets to
find iso-contours with similar dynamics. Each sequence is com-
prised of iso-contours in a given ensemble member over an arbi-
trary given time window.

• Time-hierarchical clustering of iso-contours: By taking into ac-
count the characteristic behavior of weather forecast ensembles,

we propose merging of clusters from a specified time window in
the forecast range in time-reversed order. This creates a cluster
tree, with the root node being the initial conditions from which
the temporal integration of the ensemble simulations has started.

• Space-time cluster visualization: We develop visualization tech-
niques to assess in a single view where variations in the predicted
atmospheric states occur and when they start occurring.

We believe that our findings can significantly help to improve and
accelerate the analysis of ensembles of iso-contours extracted from
meteorological simulation output starting from perturbed but similar
initial conditions. In particular, we demonstrate that our approach has
significant advantages over the animation of spaghetti plots, since it
can reveal information which is difficult to grasp from such plots. We
demonstrate the effectiveness of our approach with real-world forecast
examples obtained from ECMWF.

2 RELATED WORK

Uncertainty visualization is one of the top challenges in scientific vi-
sualization [5, 37]. Uncertainty in scientific data is often estimated
by means of ensembles—a representative sample of possible realiza-
tions of a simulated phenomenon, obtained by running simulations
with different initial conditions and physical models. Such data is typ-
ically spatiotemporal, multivariate, and multivalued [22, 28], making
the analysis and visualization processes difficult. Typical methods to
simplify the data evaluate summary statistics and visualize these us-
ing color maps, contours, surface deformation, opacity, boxplots, or
glyphs [28, 33, 36].

For vector fields, Wittenbrink et al. [51] propose uncertainty vec-
tor glyphs to show the magnitude and angular uncertainty. For time-
varying uncertain vector fields, Hlawatsch et al. [18] introduce flow
radar glyphs. To consider the transport uncertainty, Otto et al. [32]
use particle density functions to obtain an uncertain topological seg-
mentation for Gaussian-distributed steady vector fields and Hummel et
al. [19] compare the material transport in time-varying flow ensembles
by computing individual and joint vector field variances.

Other visualization techniques for dealing with the complexity of
ensemble data include coordinated multiple views, which are com-
monly used to study multivariate relations via linking and brush-
ing [22] and parallel coordinates [17]. Nocke et al. [30] use coordi-
nated multiple views for climate ensembles. Piringer et al. [34] pro-
pose a design on three levels of details for a comparative visual analy-
sis of 2D function ensembles.

Standard approaches for dealing with large and complex data are to
restrict to subsets of the data using, e.g., feature based querying [23],
or to use clustering [21]. The clustering of iso-contours in 2D is re-
lated to the clustering of parametrized curves. This can be achieved
using a variety of different geometric distance measures, e.g., as com-
pared by Zhang et al. [52] for 2D trajectories in surveillance videos,
or by Oeltze et al. [31] for 3D streamlines of blood flow simulations.
In contrast to clustering curves, the clustering of iso-contours based
on geometric representations is more involved because iso-contours
do not have a natural parametrization and are often composed of mul-
tiple, fragmented parts. Several alternative representations have been
used to analyze iso-contours like, e.g., rotation and scale invariant fea-
tures [46] or histograms and iso-surface statistics [7]. In particular,
signed distance functions are a popular choice for representing iso-
contours because each contour can be directly mapped to a point in
a high-dimensional Euclidean space by sampling the corresponding
signed distance function on a fixed grid. Bruckner and Möller [6] use
signed distance functions to analyze different iso-contours of the same
scalar field, Rathi et al. [39] use such functions for shape analysis, and
Ferstl et al. [11] have recently proposed to use signed distance fields
for clustering ensembles of iso-contours.

The clustering of time series data has been shown to be effective
in several domains like computer vision, data mining and visualiza-
tion. Previous approaches have focused mainly on the clustering of
uni- or multivariate time series data, i.e., sequences of scalar values
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Fig. 3. Method overview: a) Ensemble of time-varying iso-contours. b) Time-hierarchical clustering of the ensemble members. c) Spaghetti plots
of clustered contours & variability plots. d) Our visualizations: Space-time cluster surface, interactive cluster selection and visualization, stacked
time-cuts.

which can be interpreted as vectors and clustered using, for instance,
Euclidean distances [35] or root-mean-square distances [49]. Alterna-
tive approaches perform clustering based on derived features instead
of the raw data [15]. For a thorough overview of approaches for the
clustering of time series let us refer to the articles by Denton [8] and
Liao [27]. While several works consider the clustering of time-series
of data points which are more complex than simple scalars or vectors,
to the best of our knowledge, no method yet has considered time se-
ries data exhibiting the slowly diverging nature like weather forecast
ensembles, which gives rise to the time-hierarchical clustering we pro-
pose in this work.

The visualization of variability in ensembles of 2D scalar fields is
often performed using spaghetti plots of iso-contours, especially when
applied to weather forecast data [50, 38]. Because the resulting visu-
alizations often suffer from visual clutter, several simplifications and
visual abstractions have been introduced in recent years. Sanyal et
al. [42] use glyphs and graduated ribbons to convey the uncertainty
along iso-contours. Different kinds of confidence bands—regions rep-
resenting the Euclidean spread of a set of iso-contours—are introduced
by Whitaker et al. [48], which build upon the concept of statistical
band depth, and by Ferstl et al. [11], which build upon the concept of
standard deviation of signed distance functions.

The visualization techniques for time-varying 2D scalar ensembles
we propose in this work build upon the concept of space-time cubes.
Space-time cubes define a three-dimensional coordinate system, where
two dimensions refer to space and the third dimension refers to
time [16, 24]. Many variants of space-time cubes have been pro-
posed, which we cannot attempt to review here, however, a thorough
overview of space-time cubes and their application-specific variations
is given in the state-of-the-art report by Bach and co-workers [3]. An-
drienko et al. [2] use space-time cubes for the visualization of temporal
events at specific locations in geographic information systems. Tomin-
ski and Schulz [47] propose the Great Wall of Space-Time, which ex-
trudes a piece-wise linear spatial trajectory along the time dimension.

3 METHOD OVERVIEW

Our method starts with an ensemble {s[1;m]
1 , ...,s[1;m]

n } of n 2D time-
dependent scalar forecast fields, where each forecast predicts a phys-
ical quantity such as geopotential height at consecutive time-step
ti, i = 1, ...,m, over a certain period. Subscripts and superscripts, re-
spectively, denote the ensemble member and time-steps over which
the dynamics are considered. For a prescribed forecast interval [ta; tb],
the sub-sequences s[a;b]

1 , ...,s[a;b]
n are treated as n single elements. For

a given value ν , the iso-contours where the forecast fields of these
sub-sequences take on ν are clustered into k clusters. k, a and b are
given by the user. The iso-contours in the selected sub-sequences are
clustered so that those having similar geometry and similar motion
trajectories fall into the same groups.

Starting with the initial k clusters, our method proceeds backward
in time and reconsiders this clustering at every time-step ti, i = (a−

1), ...,1 with respect to the iso-contours of ensembles s[i,i]1 , ...,s[i,i]n . If
the dissimilarity of two clusters falls below a certain threshold at time-
step i, the two clusters are merged and in the next iteration the reduced
set of clusters is considered.

Even though many different clustering algorithms can be be used
for creating the cluster hierarchy, we decided to use the method pro-
posed by Ferstl et al. [11, 10]. It uses Agglomerative Hierarchical
Clustering (AHC), in combination with a similarity metric for iso-
contours that is based on a principal component transformation of
signed distance fields in which these contours are the level-0 sets. The
advantage of this method is twofold: Firstly, it comes with an abstract
cluster representation showing the variability of contours per cluster.
Secondly, it can be used efficiently to determine a median contour per
cluster. Both issues are important in our approach for encoding the
cluster hierarchy visually and, thus, to overcome the mentioned limita-
tions of spaghetti plots. A detailed description of the cluster approach
follows in the next section.

By using the information encoded in the hierarchical cluster tree, in
combination with abstract visual cluster representations, we provide
three different options for analyzing the contour data: a) The user can
interactively animate through the time-steps and let the contours or
clusters at every time-step being visualized. b) From the cluster medi-
ans a continuous space-time surface can be computed and visualized
for each of the k initial clusters. c) A plot of stacked time-cuts show-
ing the abstract cluster representation on a subset of time-steps can
be selected. The work flow and visualization options provided by our
approach are illustrated in Fig. 3.

4 TIME-HIERARCHICAL CLUSTERING

We start with an ensemble of n scalar forecast fields evolving over a
sequence of m time-steps. The general goal of our method is to com-
pute a clustering of the iso-contours in these fields to a fixed iso-value
ν . This clustering should reflect the diverging nature of the weather
forecast ensemble.

In general it is not possible to find a single clustering that is valid at
all time-steps. To account for this, we let the user select a time-window
of interest comprising all time-steps in the interval [ta, tb] (ta = tb is
allowed). We then perform an initial clustering of the iso-contours
according to a similarity of the contours “averaged” over this time-
window. Based on the initial clustering, our basic approach is to go
through the sequence of time-steps in reversed order, starting at time
t j−1, and recursively merge pairs of clusters as soon as their similar-
ity exceeds a certain threshold. Because we do not allow clusters to
split or individual members to change their cluster, this yields a tree-
like hierarchy of clusters, where each merge is associated to a specific
time-step. This is illustrated in Fig. 4.

4.1 Initial Clustering and Contour Variability Plots
To analyze the spatial variability of a set of iso-contours, Ferstl et
al. [11] represent the contours by signed distance functions (SDFs).
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Fig. 4. Time-hierarchical clustering: Based on an initial clustering of the
ensemble members in a user-selected window of interest, we build a
hierarchy of clusters by merging them in time-reversed order. All later
time-steps get assigned the clustering from the window of interest.

Let s1, ...,sn ∈ RM be a set of scalar fields (defined on a grid with
M vertices) in which the iso-contours of interest are given implicitly
via the iso-value ν . For each si, a signed distance transform accord-
ing to the given iso-value is performed which yields corresponding
SDFs di ∈ RM . Each input contour i is now represented by a SDF
di, which can be interpreted as a high-dimensional point in RM , and,
hence, the input set of iso-contours can be treated as an M-dimensional
point cloud. In this representation, standard clustering methods can be
applied to find clusters of iso-contours. For instance, AHC based on
Euclidean distances and average linking, followed by an automated
guess for an optimal number of clusters using the L-Method [41]. Fur-
thermore, a principal component analysis of the point cloud can be
performed first, to reduce the dimensionality of the space in which
clustering is performed from M to N << M, yet in our application we
omit this step because it does not improve performance.

Based on a given clustering of SDFs, a median contour can be com-
puted very efficiently. Let C ⊆ {1, . . . ,n} denote a cluster of SDFs,
given as a point cloud in M-dimensional space. The so-called geomet-
ric median is then computed as the point which has the least sum of
squared distances to all other points in the cluster (and generally does
not coincide with an existing point). Given this median point, respec-
tively the corresponding SDF, the median contour is implicitly given
as its zero-contour.

Furthermore, as proposed by Ferstl et al., a so-called contour vari-
ability plot can be obtained by drawing, for each cluster of contours,
a region, called band, which indicates the spatial standard deviation
of the contours in the cluster. The band to a given number α > 0
of standard deviations is obtained as the region enclosed between the
zero-contours of the two artificial SDFs

d1,2 := mean
i∈C
{di}±α · std

i∈C
{di}, (1)

where “mean” and “std” are operators which compute the component-
wise mean values and standard deviations, respectively. Intuitively,
since each component of a SDF di corresponds to a grid point, the band
contains all grid points at which the value zero is within α standard
deviations of all occurring values, i.e., grid points which are “likely”
to be close to one of the given contours. In the current work, we make
use of variability plots to generate an abstract cluster representation
that can be used in our time-hierarchical visualization approach. We
use α = 1 in all of our examples.

4.2 Agglomerative Hierarchical Clustering
AHC is one of the most commonly used clustering methods (for a
general overview of clustering techniques let us refer to the overview
article by Jain [21]). Given n observations x1, . . . ,xn, AHC builds a hi-
erarchy of clusters (an unbalanced binary tree) from which clusterings
with different numbers of clusters can be derived. First, each observa-
tion is put into a separate cluster of cardinality one, and the hierarchy
is then built by repeatedly merging pairs of similar clusters until all
points are contained in a single cluster. To decide which clusters are

λ = 0.05 λ = 0.10

λ = 0.25 λ = 1.00

Fig. 5. Effect of different thresholds τ = λ · δ on the time-hierarchy of
clusters for the scenario shown in Fig. 11. The horizontal axis corre-
sponds to time, the gray region shows the window of interest (= [ta; tb])
over which the initial clustering is performed and the width of the colored
bars corresponds to the cardinality of the clusters.

merged in every iteration, AHC uses a distance metric and a so-called
linkage criterion.

The distance metric determines the similarity between individual
observations and can be generically specified through a distance ma-
trix D ∈ Rn×n, where each entry (D)i j indicates the distance, or dis-
similarity, between observations i and j. Throughout this work, we
use the Euclidean distances (Dt)i j =

∣∣∣∣∣∣s[t;t]i − s[t;t]j

∣∣∣∣∣∣ between the SDFs

of corresponding iso-contours as distance metric. If an interval [ta; tb]
consisting of multiple time-steps is considered, we use the “mixed”
Euclidean distances(

D[a;b]
)

i j
=

√
b

∑
t=a

∣∣∣∣∣∣s[t;t]i − s[t;t]j

∣∣∣∣∣∣2.
The linkage criterion, on the other hand, specifies how distances be-
tween clusters are determined from the distances (D)i j, such that in ev-
ery iteration the pair of clusters with the smallest distance can be deter-
mined for merging. More precisely, given a clustering of {1, ...,n} into
k disjoint subsets, the linkage criterion defines inter-cluster distances
as a linkage matrix L ∈ Rk×k which is a function of the point-wise
distances given in D. For practical uses, linkage criteria are typically
expressed through a recursive update rule. Starting with L := D, this
update rule specifies how the distances in L have to be adapted when
two clusters are merged. When two disjoint clusters I,J ⊂ {1, ...,n}
are combined into a new cluster I∪J, the corresponding two rows and
two columns in L are collapsed and the new entries—the distances of
the new cluster to other clusters K ⊂ {1, ...,n}— are determined from
the distances between I, J and K:

(L)I∪J,K = f
(
(L)I,K ,(L)J,K ,(L)I,J

)
.

In this work we use linking according to Ward’s method [20] because
it produces more equally sized clusters than average linking as used
by Ferstl et al. [11]. This linkage criterion seeks to minimize the sum
of within-cluster variances, and the corresponding update rule is:

(L)I∪J,K =
(|I|+ |K|) · (L)I,K +(|J|+ |K|) · (L)J,K −|K| · (L)I,J

|I|+ |J|+ |K|
.

Note that the choice of linkage criterion is application dependent
and has a strong influence on the resulting clusterings. Hence, differ-
ent criteria might be preferable in other cases (e.g., average, single or
even complete linking).
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(a) 48h (b) 60h (c) 72h

(d) 96h (e) 120h (f) 192h

Fig. 6. Spaghetti plots of an ensemble of 5600 m geopotential height contour lines at 500 hPa. Each plot shows the lines of all 51 members of the
ECMWF ENS forecast, colored by cluster membership. The forecast from 00:00 UTC 15 October 2012, valid at the indicated lead times, is shown.

4.3 Generation of the time-hierarchy
To generate the required time-hierarchical clustering, we follow the
idea of AHC and use a linkage criterion to determine when clusters
should be merged. The major difference is that now we are considering
multiple time-steps and that the distances between the observations are
time-dependent, i.e., there is a different distance matrix Dt ∈ Rn×n in
every time-step.

We start by defining an inter-cluster distance threshold τ , which
is used to decide when clusters will be merged. Since different dis-
tance metrics and inputs can result in distance values at vastly differ-
ent scales, we make this threshold depend on the initial clustering in
our time-window of interest. Given the corresponding distance matrix
D[a;b] that was used to generate the initial clustering with k clusters,
we compute the corresponding linkage matrix L[a;b] ∈ Rk×k. Let δ

be the smallest non-zero entry of L[a;b]. Then, in the sense of AHC,
δ is the minimum distance between the clusters in the initial cluster-
ing, and we choose the inter-cluster distance threshold relative to δ as
τ := λ ·δ with λ ∈]0;1]. The factor λ can be used to control how fast,
or aggressive, our time-hierarchical clustering merges clusters. Larger
λ will cause clusters to be merged more aggressively, while smaller λ

will defer the merging of clusters to earlier time-steps.
Once τ has been selected, we iterate through the sequence of time-

steps in reversed order, starting at time-step a− 1, and try to merge
clusters as soon as their distance according to the linkage criterion be-
comes smaller than τ . In every time-step t, similar to before, we use
the current clustering with k clusters and the current distance matrix
Dt to compute the corresponding linkage matrix Lt ∈ Rk×k. If any
non-zero entry in Lt is smaller than τ , we merge the two correspond-
ing clusters and update Lt (analogously to regular AHC). We repeat
this procedure in time-step t until no more merges can be performed
with a distance smaller than τ , and then proceed to time-step t − 1.
After processing the first time-step, our time-hierarchical clustering is
finished. Note that, in general, the resulting hierarchy is not a binary
tree because more than one merge can occur in one time-step, and that
there is no guarantee that all clusters are merged into a single cluster
after processing the first time-step. The number of clusters in the first
time-step, however, can be influenced by changing λ . The effect of
different choices for λ on the time-hierarchy of clusters is illustrated
in Fig. 5.

5 SPACE-TIME VISUALIZATION

Given the time-hierarchical clustering of iso-contours, the correspond-
ing cluster tree has to be visualized so that both aspects, the time evo-
lution of single clusters and the splitting of clusters over time, can be
conveyed effectively. This is difficult to achieve, since it requires to
show when and where variations occur that cause clusters to change.
In principle, common techniques including juxtaposition and anima-
tion of spaghetti plots of the contours in each time-step can be applied,
further enhanced by coloring the contours according to their cluster

membership.
Fig. 6 shows juxtaposes, i.e., side-by-side placement in one view,

of spaghetti plots of the 51 iso-contours in a weather forecasts at
9 consecutive time steps, colored according to the proposed time-
hierarchical clustering. One can see immediately that from this kind
of visualization it is difficult to grasp the major spatial shape and vari-
ation of the clusters, their spatial changes over time, and the temporal
split events. Animation, on the other hand, besides its known lim-
itations, fails especially when a sequence of static spaghetti plots is
displayed. This is due to the large number of contour lines that need
to be memorized from image to image and the often rather chaotic
appearance of the plots.

In a first attempt to improve the visualization, one can replace the
spaghetti plots in each time-step by an abstract spatial cluster represen-
tation, for instance, via contour boxplots [48], variability plots [11], or
any other suitable abstraction. As seen in Fig. 7, this helps to better
convey the clusters’ shapes, variations, and splits. Yet it is still diffi-
cult to perceive the relationships between the structures in time-steps
which are not placed close to each other, a common problem of juxta-
position as pointed out by Gleicher et al. [14].

5.1 Space-time cubes
To overcome the limitations of juxtaposition and animation, we pro-
pose to visualize the time evolution of clusters via new techniques that
built upon the concept of space-time cubes [16, 24]. Space-time cubes
define a 3D orthogonal coordinate system, where two dimensions refer
to space and the third dimension refers to time. Spatiotemporal data
points are displayed in this coordinate system to reveal spatiotempo-
ral patterns in the data. In an between-subjects experiment [25] it was
demonstrated that users, when using space-time cubes, needed only
half of the time that was required when using alternative techniques,
to answer complex questions requiring an overall understanding of the
spatiotemporal structure of the data.

5.1.1 Space-time cluster surfaces
Firstly, we propose the visualization of the temporal cluster evolution
by connecting iso-contours across time to form a space-time cluster
surface. The approach has similarities to the Great Wall of Space-Time
by Tominski and Schulz [47], yet it does not extrude a piecewise lin-
ear base contour along constant time trajectories, but forms a smooth
surface from arbitrarily given iso-contours at every time-step. To build
the surface, we first compute in every time-step and for every cluster a
representative median contour (see Section 10). Other representatives,
like the mean contour, are possible, yet since a Gaussian distribution
assumption is not always justified for the spread of contours belonging
to one cluster, we decided to use solely median contours in this work.

Instead of first extracting polygonal representations of the median
contours and constructing the cluster surfaces from them, we propose
a different approach: For every cluster, we take the signed distance
fields of the median contours and stack them together consecutively
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(a) 48h (b) 60h (c) 72h

(d) 96h (e) 120h (f) 192h

(g) 120h (h) 120h (i) 120h

Fig. 7. Analoguous to Fig. 6. (a-f) Contour variability plots proposed by Ferstl et al. [11]. (g-i) Contour boxplots as proposed by Whitaker et al. [48]:
(g) Contour boxplot computed from all 51 ensemble members, (h) from a single cluster, and (i) one contour boxplot computed from each cluster
(100% data depth bands omitted for simplicity).

with respect to time to form a space-time distance volume. By draw-
ing the level-0 sets in these volumes using volumetric ray-casting and
tri-linear interpolation, temporal interpolation between contours is per-
formed and a smoothly varying cluster surface is rendered. A draw-
back of this approach is that it can result in an inconsistent surface, for
instance, when a contour splits into two disconnected contours from
one time-step to the next. However, if the time step of the numerical
weather prediction output is small enough for the scale of the con-
sidered atmospheric phenomenon, such inconsistencies are rare. As
an example, Fig. 8(a) shows a space-time cluster surface for a single
cluster evolving over time.

To also reveal the spread of the contours belonging to a cluster, the
points of the space-time cluster surfaces are colored in the following
way: At every surface point, we compute the standard deviation of
the signed distance values of all contours, i.e., their distance fields,
belonging to the cluster. The standard deviation is then mapped to
color, as shown in Fig. 8(b). In the shown example, the coloring shows
clearly the increasing spatial spread of the cluster members with ad-
vancing time. Also, the plot shows increased spread along the trough
which is moving eastwards.

An apparent limitation of cluster surfaces are occlusions which are
introduced especially when a highly curved cluster surface consisting
of multiple layers is visualized. It is clear that in such a case it is not
always possible to perceive from the surface the overall shape of the
cluster. On the other hand, this problem can at least partly be alleviated
by rendering the surface on the GPU. Even for high resolution fields,
GPU volume ray-casting can achieve very high frame rates, enabling
an interactive navigation and a detailed exploration of the cluster sur-
face from different perspectives. In combination with clipping planes
and by using transparency and shading effect to emphasize specific
features, a powerful visual encoding of a time-varying cluster of iso-
contours is given.

In principle, the entire cluster tree can be rendered in one single
image containing all individual cluster surfaces, via multi-parameter
volume rendering, i.e., by testing at every sample point along the rays
against the stacked signed distance volumes of all clusters, and render-
ing simultaneously the implicitly given cluster surface in each volume.
The resulting visualization is shown in Fig. 8(c), and it immediately
shows the expected problem of this kind of visualization: Since clus-
ter surfaces overlap and occlude each other, it is hardly possible to
grasp the relevant spatial and temporal changes in one single view. It
can nevertheless be perceived clearly, how the clusters diverge from

each other over time. This is indicated by the fan-like appearance of
the surfaces tree, indicating the fanning out of the cluster medians with
increasing time.

5.1.2 Stacked time-cuts
To overcome the restriction of space-time cluster surfaces to only
one single cluster, we propose an alternative visualization which also
builds upon space-time cubes. The major problem of cluster surfaces
as proposed is that relevant geometric features can be occluded by
other surface parts and spatial reference is increasingly lost with ad-
vancing time, i.e., increasing distance of geometric features to the base
plane. To alleviate these problems, we first restrict the visualization of
the cluster information to a discrete set of time-steps, so-called time-
cuts, by rendering these cuts as a set of slices stacked on top of each
other (see Figs. 10+11). The advantage of such a slice-based visual-
ization is that it enables an almost un-occluded view on the clusters
in each slice, at the same time exploiting the humans’s perceptional
capabilities to form a mental image of the information in-between.
Similar to space-time cluster surfaces, however, care needs to be taken
to choose the time step between two slices small enough for the scale
of the considered phenomenon.

With space-time slices, however, it is still difficult to identify the
spatial relationships between features at different times, because no
common points of orientation are given in the slices. Therefore, we
slightly modify and enhance the plot by a) visualizing in each slice
a map showing the ground over which the space-time cube is built,
and b) letting the user place and move interactively so called vertical
drop lines at reference locations. In combination with rendering the
cube’s edges, drawing silhouettes around the slices, and color coding
cluster and ground information differently, a significantly enhanced
localization of features and their spatial relationships is obtained.

6 RESULTS

To demonstrate the practical application of the proposed methods, we
discuss two real-world weather forecasting cases that occurred during
an atmospheric research campaign (“T-NAWDEX-Falcon”, cf. [43])
in 2012 and analyze the corresponding time-hierarchical clusterings.
The cases were also previously used by Ferstl et al. [11] and Rauten-
haus et al. [40]. Forecast data are obtained from the ECMWF Ensem-
ble Prediction System (ENS). The ensemble comprises an unperturbed
control run (i.e., started from the “best” initial conditions) and 50 per-
turbed members (e.g., [26]). Our example region covers the North At-
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(a)(b)

(c)

Fig. 8. Space-time cluster surfaces: a) Single cluster median. b) Same
as a) but with color coded standard deviation. c) Simultaneous visual-
ization of all time-hierarchical clusters.

lantic and Europe and encompasses 101 × 41 × 62 grid points. Data
are available on vertical levels of constant pressure from the TIGGE
archive [45]. For the present study, we use forecasts from 00:00 UTC
15 October 2012 and from 00:00 UTC 17 October 2012.

Visualization methods including contour variability plots, time-
hierarchical cluster tree view and stacked time-cuts have been imple-
mented in the open-source ensemble visualization tool Met.3D [40].
Figure 1 shows a screenshot of the system in use. The user is able to
interactively navigate through time and within the displayed scenes in
real-time. Cluster correspondence of the individual ensemble mem-
bers is pre-computed. For the computation of the initial clustering,
our implementation uses the MATLAB implementation of AHC. The
computation of SDFs via fast marching [44] and the time-hierarchical
clustering use a custom implementation. All presented results were
generated on a standard desktop PC (Intel Xeon X5675 processor with
6 × 3.0 GHz, 8 GB RAM and an NVIDIA Geforce GTX 680). The
time required to compute a time-hierarchical clustering is dictated
by the computation of SDFs and takes about 1.5 s for both shown
cases (the generation of the initial clustering and the time-hierarchy
only take about 30ms). Rendering times for the horizontal sections in
Met.3D are on the order of a few ms (cf. Table 2 in [40]).

6.1 Example 1: Trough
Our first example examines the temporal development of an upper-
level low-pressure trough over the North Atlantic and Europe. We
assume the following scenario: On Monday, 15 October 2012, the
user (forecaster) is interested in the large-scale atmospheric develop-
ment towards the end of the week (cf. the scenario described in [43]).
The geopotential height field at 500 hPa is a common product to judge
such developments (e.g., [1]). Figure 9a shows the forecast geopoten-
tial height field of the control forecast, valid at 12:00 UTC 19 October
2012. A distinct trough approaches Europe, extending from Ireland
over Spain to Morocco (cf. Fig. 2 in [43]). We select the 5600 m con-
tour as a representative line for the situation to judge the uncertainty
in the ensemble (red line in Fig. 9a). To apply the time-hierarchical
clustering algorithm, we define a region covering 30° W to 20° E and
30° N to 70° N (green box in Fig. 9a) and a 24-hour time window
starting at 12:00 UTC 19 October 2012 as the region of interest.

Fig. 6 shows spaghetti plots of a number of time steps of the fore-
cast, colored by cluster membership. The plots up to a forecast lead
time of 120 h clearly show the approximate development of the 5600 m
contour, at 120 h an increased uncertainty in the region of interest can

(a)

(b)

Fig. 9. Context for the two real-world examples. (a) Geopotential height
contour lines of the ECMWF ensemble control forecast at 500 hPa. The
forecast from 00:00 UTC 15 October 2012, valid at 12:00 UTC 19 Oc-
tober 2012, is shown. The 5600 m contour line is highlighted in red.
The green box shows the selected region of interest. (a) The same as
(a) but at 925 hPa, showing the forecast from 00:00 UTC 17 October
2012, valid at 00:00 UTC 21 October 2012. The 680 m contour line is
highlighted in red.

be observed. At longer lead times, the plot quickly becomes illegible.
Also, as noted in Sec. 5, the spatial shape of the clusters, their temporal
development, and, in particular, the split events are hard to discern.

Our proposed alternative visualizations, the space-time cluster sur-
faces and the stacked time-cuts with time-hierarchical clustering, are
shown in Figs. 8 and 10. If the user is interested in a particular cluster,
Fig. 8a shows the space-time cluster surface. The depiction is similar
to a 2D Hovmöller diagram [13] and at a glance provides a qualita-
tive depiction of the trough’s eastward movement with time. How-
ever, in contrast to a 2D Hovmöller diagram, the 3D display frees the
color channel to display the corresponding cluster’s standard deviation
(Fig. 8b). As discussed for the spaghetti plots, this depiction as well
highlights that uncertainty first increases around the trough.

The cluster tree (Fig. 10) provides a compact summary of the
clustering computed from the selected region of interest (highlighted
in gray). In the selected time window, the algorithm distinguishes
three clusters of roughly similar size (with the purples cluster slightly
smaller). In the first 60 h of the forecast, the ensemble members are
similar to each other (all in the orange cluster), at 60 h and 66 h lead
time, the members split into the final clusters. In the stacked time-
cuts, the temporal development of the clusters is immediately visible.
A time step of 12 h has been chosen between consecutive slices, small
enough to capture the development of the considered large-scale phe-
nomenon. As a spatial reference, we have placed a vertical pole west
of Portugal (the pole can be interactively moved by the user). The vi-
sualization clearly shows how and when the forecast splits into three
scenarios that predict troughs of different strength in the region of in-
terest (purple cluster – strong trough; green cluster – weak trough;
orange cluster – in between). Hence, the information of interest (the
possible scenarios for the temporal development of the trough) can
very quickly be obtained from a single image.

6.2 Example 2: Low pressure system contours
Our second example focuses on the strong low-pressure system which
is visible south of Greenland in Fig. 9a (former Hurricane Raphael;
cf. [43] and Fig. 10b in [11]). Closer to the surface at 925 hPa and
in the forecast initialized 48 h later (00:00 UTC 17 October 2012),
the system can be represented by the 680 m contour line. Figure 9b
shows the control forecast valid at 00:00 UTC 20 October 2012, along
with a spatial region of interest centered around the system (50° W to
10° W and 30° N to 70° N). As the time window of interest, we define
a 48-hour interval starting at 06:00 UTC 20 October 2012.
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Fig. 10. Stacked time-cuts with variability plots of an ensemble of
5600 m geopotential height contour lines at an elevation of 500 hPa.
The ECMWF ENS forecast from 00:00 UTC 15 October 2012, valid at
00:00 UTC 16 October 2012 (lowest slice, 24 h forecast lead time) to
12:00 UTC 21 October 2012 (uppermost slice, 168 h forecast lead time),
is shown. Slices are plotted at 12 h intervals. Note how the ensemble
members cluster into forecasts that predict a trough of varying strength.
A vertical pole (red) provides a spatial reference for the temporal devel-
opment of the trough features. The inset shows the corresponding time-
hierarchical cluster tree (the temporal region of interest is highlighted in
gray). Compare to Fig. 8 in [11].

Fig. 11. Stacked time-cuts with variability plots and time-hierarchical
cluster tree as in Fig. 10 but showing an ensemble of 680 m geopoten-
tial height contour lines at an elevation of 925 hPa. The ECMWF ENS
forecast from 00:00 UTC 17 October 2012, valid at 00:00 UTC 18 Octo-
ber 2012 (lowest slice, 24 h forecast lead time) to 12:00 UTC 23 October
2012 (uppermost slice, 168 h forecast lead time), is shown. Slices are
plotted at 12 h intervals. Compare to Fig. 10b in [11].
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Fig. 12. Space-time cluster surface of the purple cluster in Fig. 11, col-
ored by standard deviation of signed distance values.

Figure 1 shows a screenshot of our system during the analysis of
the forecast case, Fig. 11 shows stacked time-cuts as in Fig. 10. In this
example, the clustering algorithm distinguishes four forecast scenar-
ios for the region of interest, this time with differing cluster sizes. In
particular, note that the green cluster contains only very few members,
while the majority of members (i.e., the most likely scenario) is rep-
resented by the purple cluster. Again, the stacked time-cuts provide
a compact visual summary of the temporal development of the fore-
casts in a single image. We see that the four clusters mainly differ in
shape and orientation in the temporal region of interest, at later time
steps they are also shifted in space and differences become larger. The
space-time cluster surface of the purple cluster is shown in Fig. 12. In
this view, the continuous time evolution of the cluster median it is eas-
ier to see. In particular, the approach of a second depression towards
the end of the forecast period is highlighted. The red color, however,
indicates the high associated uncertainty.

6.3 Characteristics of time-hierarchical clustering
To analyze characteristics of the proposed time-hierarchical cluster-
ing technique, we computed average inter-cluster and intra-cluster dis-
tances for each time-step t of both example cases. The average inter-
cluster distance is computed as the average of all entries in Dt which
correspond to a distance between members of two different clusters.
The average intra-cluster distance for each cluster is computed as the
average of all non-zero entries in Dt which correspond to a distance
between two members of the respective cluster.

Figure 13 shows the temporal evolution of both measures. As ex-
pected from the assumption of increasing ensemble spread with time,
the average inter-cluster distance increases as well. The only exception
can be observed after 54 h lead time in example 2, where the clusters
slightly approach each other before starting to diverge again.

The intra-cluster distances also increase with time over most parts
of the forecasts, however, distances slightly decreasing with time can
be observed as well. If both splits and merges were allowed in our
algorithm, decreasing distances (with time) could cause clusters to
merge again. This could happen, e.g., in Fig. 13a, where a “tempo-
rary” split might occur starting from 36 to 42 h lead time and end-
ing from 48 h to 54 h lead time. We note that since our algorithm
moves backward in time, the identified splits (in forward time direc-
tion) are always the last possible splits when compared to the case that
re-merging clusters are allowed. The algorithm could also be modified
to always find the first split with increasing time.

For our examples, we observe in all timesteps that the average inter-
cluster distance is greater or equal than (most of) the average intra-
cluster distances. However, the strength of this characteristic decreases
with increasing time difference to the time window of interest.

7 LIMITATIONS AND FUTURE WORK

Underlying our approach is the assumption that there is a monotonic
increase in the number of clusters over time and that merge events do
not occur. Thus, given the initial clustering regarding the selected time
window, the clusters which are derived via our hierarchical merging
backwards in time cannot always represent the contour distribution at
earlier time steps equally well. The time-hierarchy rather shows how
the initial clusters develop prior to the selected time window. Because
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(a) Example 1
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(b) Example 2

Fig. 13. Average inter- and intra-cluster distances for the examples
shown in (a) Fig. 10 and (b) Fig. 11. Average inter-cluster distances
can only be computed in timesteps with more than one cluster.

of this, misleading results can be generated for ensembles not showing
the specific diverging nature which we assume. In the future we plan
to extend our approach with respect to this limitation, by considering
split and merge events like the ones discussed in the previous section,
and by providing options to analyze the stability of the cluster evo-
lution over time. Secondly, to generate the initial clustering, we will
analyze the effect of using alternative clustering approaches that work
on scalar fields instead of on iso-contours, such as the clustering used
at ECMWF [9]. Finally, we will investigate how to embed space-time
cluster surfaces into stacked representations to enable a better estima-
tion of the cluster evolutions in-between the visualized time-cuts.

8 CONCLUSION

In this work we have presented a new approach for visualizing the
spatial and temporal evolution of iso-contours in ensembles of 2D
time-varying scalar fields. We have achieved this via a specific time-
hierarchical clustering of the initial set of contours, and the conversion
of the contours per cluster into an abstract representation showing the
major trend and spread of the cluster. We have introduced novel visu-
alization approaches for analyzing the evolution of single clusters over
time, via space-time cluster surfaces, and the simultaneous depiction
of all clusters in a spatio-temporal context, via stacked time-cuts. In
combination with additional geo-references, an intuitive understand-
ing of the evolution of the clusters over time is enabled.
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