
Line Density Control in Screen-Space
via Balanced Line Hierarchies

Mathias Kanzler1, Florian Ferstl1, Rüdiger Westermann1

Abstract

For the visualization of dense sets of 3D lines, view-dependent approaches have been proposed to avoid the occlusion of important
structures. Popular concepts consider global line selection based on line importance and screen-space occupancy, and opacity
optimization to resolve locally the occlusion problem. In this work, we present a novel approach to improve the spatial perception
and enable the interactive visualization of large 3D line sets. Instead of making lines locally transparent, which affects a lines spatial
perception and can obscure spatial relationships, we propose to adapt the line density based on line importance and screen-space
occupancy. In contrast to global line selection, however, our adaptation is local and only thins out the lines where significant occlusions
occur. To achieve this we present a novel approach based on minimum cost perfect matching to construct an optimal, fully balanced
line hierarchy. For determining locally the desired line density, we propose a projection-based screen-space measure considering the
variation in line direction, line coverage, importance, and depth. This measure can be computed in an order-independent way and
evaluated efficiently on the GPU.

Keywords: Scientific Visualization, Flow Visualization, Line Fields, Focus + Context, Line Hierarchy

1. Introduction1

Integral lines such as streamlines or pathlines are among2

the most popular means for visualizing 3D flow fields, because3

they can convey to the user in an intuitive way the structure4

of these fields. For thorough overviews of flow visualization5

techniques in general, and integration-based techniques such6

as integral lines in particular, let us refer to the state-of-the-7

art reports by Weiskopf and Erlebacher [1] and McLoughlin et8

al. [2], respectively.9

However, occlusions and visual clutter are quickly intro-10

duced when too many lines are shown simultaneously. Thus,11

especially in three dimensions a major challenge is to select a12

set of lines—containing as few as possible elements—that cap-13

tures all relevant flow features. A number of effective selection14

strategies for integral lines have been proposed, for instance,15

approaches which determine the line set in a preprocess via16

importance- or similarity-based criteria [3, 4, 5, 6].17

In general, pre-selecting the lines cannot account for the18

problem that parts of relevant lines are occluded by less im-19

portant parts of other lines being closer to the viewpoint in20

the rendered image. To avoid such occlusions, screen-space21

approaches either select the rendered lines dynamically on a22

frame-to-frame basis, for instance, by considering line impor-23

tance and local screen-space occupancy [7, 8], or they locally24

adapt the line opacity to fade out those parts of foreground lines25

that occlude more important lines [9]. Omitting entire lines has26

Email addresses: kanzler@in.tum.de (Mathias Kanzler),
ferstlf@in.tum.de (Florian Ferstl), westermann@tum.de (Rüdiger
Westermann)

the advantage that the remaining lines are not fragmented, mean-27

ing that properties like the line length can still be conveyed. On28

the other hand, this strategy can result in unnecessarily sparse29

depictions, since in some areas a removed line might not have30

caused any disturbing occlusions. Opacity adaption, in contrast,31

resolves the occlusion problem locally by discarding line seg-32

ments instead of entire lines. This enables to emphasize relevant33

focus information while preserving the “surrounding” context34

that does not obscure relevant structures. The focus+context35

principle underlying this approach has been studied extensively36

in the context of volume rendering by Viola et al. [10].37

Opacity adaption, on the other hand, can affect negatively38

the perception of spatial relationships between lines in the con-39

text region. Increasing transparency causes a simultaneous de-40

saturation of the object color, which is perceived as increasing41

distance from the viewer. Due to this effect, which is known as42

aerial perspective, transparent parts of a line can seem to flatten43

out or even bend away from the viewer.44

We propose an alternative approach which avoids this effect.45

Instead of using transparency, we adapt locally the screen-space46

density of the lines to their importance. In this way, the spatial47

perception of the lines remains unaffected. The spatial adjust-48

ment of the line density is achieved via the use of a precomputed,49

fully balanced line hierarchy, and the selection of lines from this50

hierarchy at run-time according to image-based density control51

attributes. The particular hierarchy ensures that lines are re-52

moved uniformly in the domain, and the removal of individual53

line segments is contiguous and does not cause fragmentation.54

Our particular contributions are:55

• A novel combination of line clustering and minimum56

cost perfect matching to construct a fully balanced line57

Preprint submitted to Computers & Graphics May 2, 2017

Figure 1: Visualization of flow fields (Aneurysm I/II, Rings) using line density control. Line color ranges from red (high importance) to light brown (low importance).

hierarchy.58

• A number of view-dependent, yet order-independent con-59

trol parameters to locally steer the line density.60

• A scalable embedding of local line density control into61

the line rendering process.62

We demonstrate our method for flow visualization in a num-63

ber of real-world examples, and we compare the results of our64

specific modifications and extensions to other view-dependent65

line selection and rendering approaches. Some data sets that66

have been visualized by using our approach are shown in Fig. 1.67

Our evaluations include perceptional as well as performance68

and scalability issues, and they demonstrate the suitability of the69

proposed approach for interactive applications. On the downside,70

since our method splits less important lines into segments, it can71

become difficult to determine the length of these lines from the72

visualization. Furthermore, compared to opacity optimization,73

which smoothly fades out the less important lines, our approach74

generates sharper, more abrupt line endings, which, in some75

cases, can give a less smooth overall impression.76

2. Related Work77

Finding an as small as possible set of integral lines which78

represent a multi-dimensional flow field and its dominant struc-79

tures in a comprehensive way is challenging. One way to ap-80

proach this problem is to use line seeding strategies considering81

criteria like the line density [11, 12, 13, 14], the line distri-82

bution [15, 16, 17, 18, 19, 20, 21], the information entropy83

in the seeded lines [22], or the coverage of specific flow fea-84

tures [3, 4, 6] or geometric line features [5, 23].85

Even though these techniques can be very effective in deter-86

mining a good representative set of lines, they do not consider87

how much occlusion is produced when the seeded lines are ren-88

dered from different viewpoints. As a consequence, even though89

a good coverage of the domain or the relevant flow features in90

object-space can be achieved, lines representing relevant features91

may be occluded in the rendered images.92

To overcome this limitation, view-dependent rendering strate-93

gies for 3D line sets have been introduced. The method by Tong94

et al. [24] deforms occluding lines that should not be in focus,95

so that the focus is revealed. Even though this approach can96

effectively avoid occlusions, the deformation of lines can give97

a wrong impression of the underlying flow field. Most alter-98

native techniques generate an initial set of “important” lines,99

and determine for each new view the subset to be rendered—100

possibly enhanced with additional lines that are generated for101

this view—so that occlusions are reduced and more important102

lines are favored over less important ones [7, 8, 25]. Indicators103

for the amount of occlusion in the rendered images can be based104

on the “overdraw”, i.e., the number of projected line points per105

pixel [7, 8], or the maximum projected entropy per pixel [25].106

When selecting and rendering entire lines, less important107

lines might be removed entirely, even though only a small part108

of it actually occludes some part of a more important line. In the109

worst case this can result in a subset in which only the most im-110

portant lines are kept, yet contextual information represented by111

less important lines is lost (see upper right image of Fig. 2). This112

interferes especially with the focus+context paradigm, which113

suggests to show an importance-filtered fraction of the data114

set, i.e., the focus, embedded into context-conveying positional115

cues. Viola and Gröller [10] and Krüger et al. [26] discuss this116

paradigm in the context of volume rendering, and they propose117

guidelines which we also consider in our work. For integral118

lines, Marchesin et al. [7] and Ma et al. [8] address this problem119

by adding short fragments of less important lines in regions not120

yet occupied.121

Recently, Günther et al. [9] proposed opacity optimization122

to circumvent the problems that are introduced when removing123

entire lines. Instead, the opacity along a line is modified selec-124

tively to fade out the line only in those regions where it occludes125

more important ones. Opacity optimization avoids the removal126

of lines where no occlusions occur, yet in the foreground of127

important lines, less important lines can fade out entirely so that128

contextual information is lost, and mutual spatial relationships129

between these lines become difficult to grasp with increasing130

transparency. This effect is demonstrated in the bottom left131

image of Fig. 2.132

It is worth noting that opacity optimization computes the133

opacity values via a global optimization that considers the line’s134

importance as well as the order of occlusions. Thus, opacity135

2

All Lines Line Selection

Opacity Optimization Our Method

Figure 2: Different approaches to reveal the focus region in the Tornado dataset.

optimization requires to store a per-fragment linked list on the136

GPU, which can become very memory intensive when large and137

dense sets of lines are visualized.138

In our work we aim at combining the strength of local ap-139

proaches to resolve unwanted occlusions, with a view-dependent140

focus+context approach that allows keeping context-conveying141

positional cues even in case of occlusions (see bottom right im-142

age of Fig. 2). We address this problem by using a fully balanced143

hierarchical line set representation to locally adjust the density144

of lines in the domain, so that the important lines are revealed in145

the final rendering. Our hierarchical representation has similari-146

ties to the one used for flow-based line seeding by Yu et al.[6],147

yet the construction algorithm we propose guarantees a balanced148

hierarchy. Even though Yu et al. demonstrate a low standard149

deviation of the numbers of streamlines per cluster from the150

optimum, i.e., when fully balanced, their construction algorithm151

can result in outliers with a high deviation. This can lead to very152

sparse or over-populated clusters, which can counteract reaching153

the prescribed line density in our approach.154

The construction of the line set hierarchy is based on the155

grouping of a set of lines into similar sub-sets, by taking into156

account a given similarity measure. Thus, our work is also157

related to clustering approaches for line sets. For a thorough158

overview of the field let us refer to the recent evaluation of clus-159

tering approaches for streamlines using geometry-based similar-160

ity measures by Oeltze and co-workers [27]. The comparative161

study by Zhang et al. [28] provides a good overview of similarity162

measures using geometric distances between curves. Different163

clustering approaches and similarity measures for fiber tracts in164

Diffusion Tensor Imaging (DTI) data have been evaluated by165

Moberts et al. [29]. We use a variant of Agglomerative Hierar-166

chical Clustering (AHC) with single linkage [30], which groups167

the initial lines in bottom-up fashion and determines the distance168

Line Density Control

Lines

View Dependent

Attribute Maps

Importances 𝑔𝑖
(per Vertex)

Visibilities 𝜌𝑖
(per Vertex)

1 3 4

Preprocess

Runtime

Line Hierarchy

Figure 3: Overview of view-dependent importance driven line rendering.

between two clusters by the shortest distance between any pair169

of elements (one in each cluster). In contrast to the standard170

approach, where in every step exactly one pair of clusters is171

merged, we compute a perfect matching between the clusters172

in each step and simultaneously merge every cluster with some173

other cluster.174

3. Overview175

Our approach is comprised of a preprocess, and a two-stage176

view-dependent line rendering process that is executed repeat-177

edly for each new view. An overview of the different parts of178

our approach is given in Fig. 3. Initially, we start from a set of179

lines which densely cover the flow domain. A line is represented180

by a sequence of vertices vi, and to every vertex the line segment181

connecting this vertex and the next one in the sequence is asso-182

ciated. Every vertex is assigned an importance value gi ∈ [0,1],183

where higher values indicate higher importance. Throughout184

this work we use the local line curvature as importance measure.185

On the given line set, a balanced line hierarchy is computed186

in a preprocess. The hierarchy is represented by a tree data187

structure and constructed in a bottom-up manner: Each single188

line is assigned to one leaf node, and level by level exactly two189

nodes are merged into one new node at the next coarser level.190

Depending on the initial number of lines, at each level at most191

one cluster might not find another cluster to merge with. In192

3

this case, this cluster is propagated to the next coarser level.193

The particular merging strategy to enforce a balanced tree is194

described in Sec. 4. Finally, at each inner node one line is195

selected. This line will be rendered as a representative for the196

set of lines stored at this node, if this set exceeds the locally197

required line density. In our work we usually select the line that198

is most similar to all other lines in this set, yet other choices can199

be incorporated as well (see Sec. 6).200

In the first stage of the rendering process, we calculate for201

every line vertex a visibility value ρi ∈ [0,1] based on the current202

view parameters and the importance information. The visibility203

value indicates if due to the rendering of the segment that is204

associated with the vertex a more important line segment is205

occluded, and it also takes into account additional criteria such206

as the importance difference as well as the overall per-pixel207

occupancy as proposed by Marchesin et al. [7, 8]. Günther208

et al. [9] have demonstrated that the visibility values can be209

computed automatically via opacity optimization. We found that210

by order-independent GPU line rendering in combination with211

screen-space blurring almost identical results can be achieved,212

yet because this approach avoids storing and sorting a per-pixel213

fragment list it scales better in the number of lines and the214

viewport resolution. Our algorithm used to compute the visibility215

values is described in Sec. 5.216

In the second stage, the computed visibility values are used217

in the rendering of the line primitives: When a line segment is218

rendered, the visibility value of the vertex it is associated with219

is used to select a level in the precomputed line hierarchy. Only220

if at this level the line is the representative line for the cluster it221

belongs to, the line segment is rendered, otherwise it is discarded.222

This leads to an automatic local thinning of the less important223

occluding lines.224

4. Line density control225

In every frame, we seek to render a subset of all initial lines,226

so that this subset covers the domain as uniformly as possible227

for any given percentage of displayed lines. At the same time,228

when reducing the line density, lines with similar characteristics229

should be replaced by a good representative. Furthermore, since230

our approach does not remove entire lines but line segments, the231

fragmentation of lines should be kept as small as possible.232

Let N denote the number of lines in the dataset. Our ap-233

proach assigns to each line k a visibility threshold θk, so that234

for any given visibility value ρ ∈ [0;1] the number of lines with235

θk < ρ is roughly equal to ρ ·N, i.e, ∼ 5% of the lines satisfy236

θk < 0.05, ∼ 25% of the lines satisfy θk < 0.25, and so on.237

To ensure that the lines satisfying θk < ρ cover the domain as238

uniformly as possible, hierarchical line clustering as described239

below is used. During rendering, for each vertex i of a line k,240

we compute its visibility ρi (see Sec. 5) and determine whether241

the line segment associated to it should be rendered by testing242

whether ρi < θk.243

To determine the visibility thresholds so that they adhere244

to the aforementioned requirements and, in particular, cause a245

uniform line removed, we build a fully balanced line hierarchy246

(i.e., a fully balanced binary tree). Our algorithm for building247

Hierarchy Level

0

1

2

3
L1 L2 L3 L4

L5 L6 L7 L8

0 1 2 2 3 3 3 3

Line Level lk3 1 3 2 2 3 0 3

L1 L3 L6 L8L4
L5L2L7

0 1

Sort

Map to Visiblity

θ7 θ2 θ4 θ5 θ1 θ3 θ6 θ8

Figure 4: Construction of the line set hierarchy by pairwise node merging. Lines
Li are represented by the leaf nodes, bold edges and color indicate the selection
of representative lines at each level. Nodes are finally linearized and sorted
according to the coarsest level where they are representative, and the sorting
order is mapped to visibility.

this hierarchy is similar to AHC—a greedy clustering approach248

that creates an arbitrary, unbalanced cluster hierarchy—yet it249

works globally and is able to produce a fully balanced hierarchy.250

4.1. Balanced line hierarchy251

We start by computing similarities dM(Lk,Ll) between ev-
ery pair of lines Lk and Ll using the mean of closest point dis-
tance [31]:

dM(Lk,Ll) =mean(dm(Lk,Ll),dm(Ll ,Lk)) ,

with dm(Lk,Ll) =mean
vi∈Lk

min
v j∈Ll
‖vi− v j‖. (1)

Here, vi and v j denote the vertices along a line. Note that any252

other pairwise distance metrics for lines can be used without253

affecting our algorithm, e.g. metrics based on Euclidean dis-254

tances [32, 33], curvature and torsion signatures [34, 35], predi-255

cates for stream- and pathlines based on flow properties along256

these lines [36], or user-selected streamline predicates [37].257

Now every line is represented by a leaf node, and pairs of258

nodes are grouped to generate the first coarse level of the tree259

hierarchy using a globally optimal approach: The similarities260

in Eq. (1) define a fully connected distance graph, with lines261

Lk as nodes and distances dM(Lk,Ll) as edge weights. On this262

graph, we compute a minimum cost perfect matching, which is263

a perfect matching that minimizes the sum of all included edge264

weights. The edges of the matching define the inner nodes on265

the first coarse level of the hierarchy, where each node stores the266

lines contained in the matched leaf nodes. In order to generate267

the remaining coarse levels of the line hierarchy, we recursively268

apply the perfect matching scheme on the remaining sets of269

4

lines. This reduces the number of sets by a factor of two in every270

step, until all lines are contained in one set, i.e., the root of the271

hierarchy. Fig. 4 illustrates the construction principle for a line272

set consisting of 8 elements.273

For a fully connected graph with n nodes, the specific match-274

ing can be computed with a worst case runtime complexity of275

O(n3 logn) using Edmond’s Blossom algorithm [38]. In our276

implementation we use the LEMON library [39] to compute277

the matching. It employs priority queues to achieve a runtime278

complexity of O(n2 logn). Even though this still doesn’t indicate279

good scalability of the construction algorithm, we demonstrate280

in Sec. 6 that the hierarchy can be built within a few minutes for281

typical scenarios.282

Every time a matching is computed and two line sets are283

merged, the distances between the sets of lines (i.e., the nodes in284

the distance graph) need to be updated. In classical hierarchical285

clustering schemes this is known as the linkage step, and several286

linkage criteria exist, such as single linkage, complete linkage287

and weighted-average. For a comparative evaluation let us refer288

to the work by Moberts et al. [29]. In our application, we use289

single linkage, i.e., the distance between two sets of lines is set290

to the minimum of all pairwise distances between the members291

from either set, since it produces the most spatial coherent merg-292

ing of clusters. It is worth noting here that a fully balanced line293

hierarchy is computed regardless of the specific linkage used.294

4.2. Hierarchical line visibility295

The computed hierarchy serves as the basis for assigning296

visibility thresholds to each line. First, for each inner node we297

select a line which best represents all the lines belonging to that298

node (illustrated in Fig. 4 by the colored bold edges). We start299

at the first coarse level and select for every node a representative300

line from each pair of lines. Here we choose the longer one301

because it usually carries more information. The representatives302

for nodes on the remaining coarse levels are chosen in agreement303

with the previous choices, i.e., for each node we limit our choice304

to the representatives of both child nodes at the next finer level.305

In this case, we pick the representative which has the smaller306

average distance to all other lines represented by the node, i.e.,307

according to the initial similarities dM .308

After all representatives have been selected, we assign to309

each line k the coarsest level lk at which this line is a representa-310

tive line in one of the nodes. We then assemble a list of 2-tuples311

(k, lk), which contain one line-number/level pair for each line.312

This list is sorted according to the hierarchy levels lk, and finally313

each line k gets assigned the visibility threshold θk =
s

N−1 de-314

pending on its position s ∈ 0, . . . ,N−1 in the sorted list. In the315

bottom part of Fig. 4 we illustrate the sorting of lines and the316

assignment of visibility thresholds to the lines.317

Due to the particular construction scheme, the most repre-318

sentative lines—according to the hierarchy—are assigned very319

low thresholds and are very likely to be shown, whereas the less320

representative lines are assigned higher thresholds. Note that321

the sorting order is not unique because there are many lines that322

share the same hierarchy level. In practice, we rank all lines with323

equal lk according to the similarity to other lines, such that very324

similar lines are removed first in the final visualization. Fig. 5325

ρ = 1.00 ρ = 0.66

ρ = 0.33 ρ = 0.10

Figure 5: Line density control in the Tornado dataset using a balanced line
hierarchy. Lines are thinned out uniformly according to the global visibility ρ .

shows an example which demonstrates the use of the constructed326

hierarchy to uniformly thin out a given line set.327

5. Visibility computation via Per-Pixel Attributes328

To determine the visibility of the line vertices, for each ver-329

tex a visibility value ρi is computed, and this value is matched330

against the visibility threshold of the line the vertex belongs to.331

If the line’s threshold is larger than the vertex’s visibility value,332

the vertex is discarded. Since the line set hierarchy already333

represents local and global line relationships, we can compute334

the vertex visibility on a per-pixel basis, by using screen-space335

projections of different line attributes. Conceptually, the com-336

putation is performed in three steps, which are illustrated in337

Fig. 6: First, by rendering all lines with attributes corresponding338

to importance and line direction, multiple screen-space textures339

are generated. These textures, respectively, contain per pixel the340

maximum importance, the number of fragments, the variance of341

line directions, and the depth of the fragment with the highest342

importance, along the view rays. Second, a Gaussian blur filter343

is applied to each texture to obtain a screen-space continuous344

distribution of attributes. Third, for each vertex the blurred tex-345

tures are sampled at the corresponding screen-space position and346

the visibility attributes are used to compute a visibility value.347

In the following, we describe the different visibility at-348

tributes, each in the range [0;1], and their combination to form349

the final visibility values.350

Maximum importance M: From all line fragments falling351

into a pixel, we find the highest importance value. After blur-352

5

Lines

Importances g𝑖
(per Vertex)

Visibilities 𝜌𝑖
(per Vertex)

Create attribute textures

Blur

Combine

Depth
Directional
Variance

Coverage
Maximum
Importance

Figure 6: Visibility computation using per-pixel attributes. Four textures are
generated by rasterizing different line attributes, the textures are blurred, and
they are then accessed by the vertices (by sampling at their projected screen
coordinates) to calculate per-vertex visibilities.

ring the resulting values, one can determine for any line vertex353

whether another vertex with a higher importance is in its vicinity.354

In this case, the visibility can be reduced accordingly to fade out355

less important lines in the close surrounding of important ones.356

Depth D: By using the depth of the most important line357

fragment that maps onto a pixel, less important foreground lines358

can be faded out, and even cutaway views of the important359

structures can be realized.360

Coverage C: Regions where many lines are projected onto361

the same location suffer from visual clutter. Therefore, in such362

regions the overall amount of lines should be reduced. We count363

the amount of fragments along each view ray and store the result,364

normalized by a fixed maximum count.365

Directional variance V : The rational behind this measure366

is to thin out the foreground lines where they cause the occlusion367

of equally important lines with vastly different directions, and368

thus to emphasize the directional variance along the viewing369

direction. In regions where foreground and background lines370

follow a similar direction, their density will solely be steered371

by the importance, depth and coverage criteria. We thus al-372

low the occlusion of equally important background lines if they373

have similar direction. Only if there is a directional variation,374

foreground lines are further thinned out to reveal this varia-375

tion. To address this, the directional variance of all lines being376

projected into a pixel is computed, and in regions with a high377

directional variance the computed visibility values are decreased.378

In particular, we use the so-called circular variance of the (three-379

dimensional) view-space directions of all lines projected into a380

pixel. Given a set of unit-length direction vectors d1, ...,dn, the381

circular variance is defined as σ(d1, ...,dn) = 1−|| 1n ∑i di||. If382

the directional variance is high, σ is close to one, while it is zero383

if all directions are equal.384

Finally, the visibility values ρi are computed for each vertex i

by combining the importance value gi with the information
stored in the texture maps. Let si denote the projected position
of vertex i in screen-space, then ρi is calculated according to the
following formula:

ρi =
1

1+(1−gλ
i) ·P

with P = m ·M(si)+ c ·C(si)+ v ·V (si)+d · less(i,D(si))

(2)

The positive scalar weights m, c, v and d are used to balance the385

contributions from the different texture maps and can be modi-386

fied interactively by the user. The parameter λ ≥ 0 controls the387

visibility of important lines. High values cause more important388

lines to become visible, effectively overruling the value of P. To389

incorporate the depth values stored in D, we perform a depth390

comparison, i.e., less(i,D(si)) is one if the depth of vertex i is391

smaller than D(si), and zero otherwise.392

6. Results and Discussion393

To evaluate the quality and efficiency of our approach, we394

have performed a number of tests using different data sets. All395

our results were generated on a standard desktop computer396

equipped with an Intel 6×3.50 GHz processor, 32 GB RAM,397

and an NVIDIA GeForce GTX 970 graphics card. The view-398

port resolution was set to Full HD (1920×1080). The following399

datasets were used:400

• Tornado: 330 randomly seeded streamlines in a synthetic401

flow resembling a tornado. The most interesting struc-402

ture is the single vertical vortex core in the center of the403

domain.404

• Rings: 450 magnetic field lines in the decay of magnetic405

knots, as studied by Candelaresi et al. [40]. In this specific406

time step, the lines assume the form of Borromean rings.407

• Heli: 600 randomly seeded streamlines in an experimental408

flow of rotor wakes around a descending helicopter [41]409

(the helicopter geometry is not shown). The most promi-410

nent structures in this flow are the vortices formed by the411

helicopter blades.412

• Aneurysm I / II: 4700 / 9200 streamlines in blood flows413

through two different aneurysms, as studied by Byrne et414

al. [42]. The lines were randomly seeded in the interior of415

the aneurysm and advected both forward and backward up416

to the boundary. For the hemodynamic analysis of these417

flows the vortices forming inside the aneurysms are of418

crucial interest.419

• Turbulence: 80000 randomly seeded streamlines in a420

simulated turbulence field of resolution 10243 [43].421

In Table 1, the second column gives the number of ini-422

tially seeded streamlines and the average number of vertices423

per streamline. The line hierarchy and corresponding visibility424

thresholds are computed in a preprocess. The columns labeled425

6

Table 1: Performance statistics for the precomputation of the visibility thresholds, the visibility computation via per-pixel attributes as well as the rendering of the
final images for our test datasets. ∗In practice, we distribute the attribute map generation across several frames to favor smooth camera movements and refine the
attribute map if time is available. ∗∗Edges in the graph with no influence on the result were removed in a preprocess.

Precomputation Visibility computation Every frame
Dataset Lines (vertices per line) Similarity [s] Hierarchy [s] Projections∗ [ms] Blur [ms] Visibility [ms] Filter [ms] Final Rendering [ms] Sum [ms]

Tornado 330 (720) 3.2 0.16 0.9 0.27 0.04 0.5 1.6 3.31
Rings 450 (560) 3.8 0.22 0.9 0.26 0.05 0.9 2.6 4.71

Heli 600 (600) 12 0.38 1.3 0.27 0.07 1.0 1.9 4.54
Aneurysm I 4700 (410) 192 64 12.0 0.27 0.76 1.6 3.8 18.43

Aneurysm II 9200 (367) 382 562 22.5 0.27 1.23 3.2 6.5 33.7
Turbulence 80000 (220) 6923 25388 ∗∗ 72 0.27 6.00 14.1 51.3 143.67

Precomputation summarize the timings for constructing the hier-426

archy for the test datasets. We give separate times for the compu-427

tation of similarity values between line pairs (column Similarity,428

measured on the GPU) and building the line hierarchy (col-429

umn Hierarchy, measured on the CPU), which includes perfect430

matching and the computation of the final visibility thresholds.431

In contrast to the computation of pairwise means of closest point432

distances between lines, which can be parallelized in a straight433

forward way on the GPU, perfect matching cannot easily be434

parallelized. Due to this, the runtime complexity of perfect435

matching can lead to the situation where it dominates the overall436

computation time, yet the timings indicate that for reasonable437

amounts of streamlines the overall time is still acceptable.438

The remaining columns in Table 1 give additional times that439

are required at runtime for visualizing the datasets. Column440

Projections shows the time required for generating the visibil-441

ity attribute via line rendering, Blur the time for blurring the442

attributes, and Visibility the time for computing the visibility443

values for each vertex. Since we render opaque lines from which444

we remove certain parts, lines can fall apart into many short445

pieces. To avoid the resulting visual clutter, short line segments446

are filtered out by a line-based, one-dimensional erosion and447

dilation operation in the GPU buffer storing the line geometry.448

Timings in column Filter refer to this filtering. Lastly, column449

Final Rendering shows the time required to generate the final450

image in each frame.451

The rendering of opaque lines, which can change from frame452

to frame, can introduce unpleasant popping artifacts during ani-453

mations. To alleviate this effect, in animations we temporarily454

allow for transparent lines. We smoothly blend the current per-455

vertex visibility values towards the new values, thus letting the456

solution converge when the camera stops. Let us refer the reader457

to the accompanying video for demonstrating this effect.458

6.1. Visualization parameters459

Our approach for computing the visibility values ρi allows460

the user to control several parameters (see Eq. 2), so that the vi-461

sualizations can be adapted to specific datasets and requirements.462

Fig. 14 shows a number of examples demonstrating the effects463

of different attribute settings on the final visualizations. Fig. 7464

demonstrates the effects that are achieved when only one of the465

4 visibility attributes M,D,C,V (see Sec. 5) is used to compute466

per-vertex visibility values.467

In the upper row of Fig. 7, we show two visualizations468

in which only the per-pixel maximum importance (M) and469

depth (D) values are used, respectively. It can be seen that470

in the first case the visibility of all unimportant lines around im-471

portant lines is reduced, whereas only unimportant lines in front472

of important ones are removed in the latter case. Therefore, by473

using a combination of both values, the user can control the num-474

ber of lines that are removed in the foreground and background475

of important lines.476

In the bottom row, we compare the effects that can be477

achieved via the per-pixel coverage (C) and the directional vari-478

ance (V), respectively. These values can be used to control the479

overall line density on the screen. On the one hand, the cover-480

age values remove lines uniformly with the goal of achieving a481

uniform screen coverage, yet important lines remain unaffected482

due to the gi-term in Eq. 2. On the other hand, the directional483

variance values can be used to reduce the line density only in484

regions where many lines with varying direction meet. Hence,485

these values can be used to reduce visual clutter in the visualiza-486

tions.487

Maximum Importance (only m > 0) Depth (only d > 0)

Coverage (only c > 0) Directional Variance (only v > 0)

Figure 7: Line density control in the Tornado datasets via per-pixel maximum
importance, depth, coverage, and directional variance. Only the corresponding
weight in Eq. 2 is set to a positive value. All other weights are set to 0.

7

Opacity Line Density

O
pa

ci
ty

O
pt

im
iz

at
io

n
Pe

r-
Pi

xe
lA

ttr
ib

ut
es

Figure 8: Visualizations of the Aneurysm I dataset. Top left: Opacity optimiza-
tion + line opacity as by Günther et al. [9]. Top right: Opacity optimization [9] +
line thinning as by our approach. Bottom left: Visibility attributes as by our ap-
proach and line opacity [9]. Bottom right: Visibility attributes and line thinning
as by our approach.

Fig. 9 demonstrates the use of the directional variance to488

effectively visualize streamlines in regions where the flow field489

exhibits highly varying directions. When the directional vari-490

ance is not used (left image), background lines are more or less491

entirely occluded by foreground lines with similar importance,492

even though they have vastly different orientations. By using the493

directional variance (right image), the density of both the fore-494

ground and background lines is reduced, so that the directional495

variance along the view rays is revealed and a good impression496

of the overall flow structure is achieved.497

Figure 9: Effect of using the directional variance in the Aneurysm II dataset.
Left: The directional variance is not used. Right: When the directional variance
is used, the density of lines is reduced to emphasize the variation of the line
directions along the view rays.

6.2. Cluster representatives498

One major design decision underlying our approach is the499

use of a line hierarchy that can enforce a fairly even spatial500

distribution of the lines at all hierarchy levels. Therefore, at501

every inner node of the hierarchy the line most similar to all502

other lines of the corresponding cluster is usually selected as503

the cluster representative. Instead, however, any other selection504

criteria can be used, depending on the particular aspect of the505

data that should be retained across the hierarchy level. For506

instance, Fig. 10 demonstrates the difference between using507

the most similar and the most important line of each cluster as508

representative. While in the former case a better coverage of the509

domain and in particular the surrounding context is achieved,510

in the latter case some important lines are kept which are lost511

otherwise. Even though it is clear that many different criteria512

can be used and even combined in general, we did not analyze513

this option further due to our aforementioned design decision.514

Figure 10: Different choices of cluster representatives at the inner nodes of
the line hierarchy for the Aneurysm II dataset. Left: The most similar line is
selected. Right: The most important line is selected.

6.3. Comparison515

In Fig. 8, we compare our approach to opacity optimiza-516

tion [9]. We further show how the individual components of517

both methods can be even combined in a modular way. The518

computation of the visibility values is performed either via the519

global optimization of opacity (top row) or via our proposed520

approach based on screen-space projections (bottom row). Note521

that even though our approach does not operate globally, it gen-522

erates visibility values that lead to visualizations which are very523

similar to the results obtained via opacity optimization.524

The visibility values, computed in either way, are further525

processed by mapping them to opacity (left column) or using526

them to control locally the line density via our proposed ap-527

proach (right column). In principle, both approaches reveal the528

important structures, but the differences are noticeable. The use529

of opacity makes it difficult to fully capture the spatial content,530

in particular the spatial relationships between the important lines531

and the unimportant lines in the foreground and in the vicinity532

of the important lines. In contrast, by adapting the line density,533

yet preserving line color and shading, our approach keeps unim-534

portant lines as contextual spatial cues. Let us also refer here535

to the accompanying video, which demonstrates an even better536

3D spatial perception when the user can interactively navigate537

around the line structures.538

In Fig. 11, we include our results into the comparison pro-539

vided by Günther et al. [9]. The approach of Marchesin et al. [7]540

is able to give a good overview of the flow, but cannot always541

reveal the important structures. Günther et al. [9] is able to542

emphasize important structures by locally adapting the trans-543

parency of line segments. Our approach can better reveal the544

spatial embedding of the focus regions into the surrounding, at545

the same time being able to show the focus region in a quite546

unobscured way.547

8

Figure 11: Rings (top) and Tornado (bottom) - left to right: all lines, Marchesin et al. [7], Günther et al. (2011) [44], Günther et al. (2013) [9], our approach

6.4. Line rendering548

In the final image, lines are always rendered as shaded tubes549

of equal radius. The tubes are constructed on-the-fly in a ge-550

ometry shader on the GPU. For every line vertex a new set of551

vertices is generated, and these vertices are displaced about the552

tube radius along the vertex’s normal vector. Normals are as-553

signed to the vertices initially as the normalized change of the554

unit tangent vectors.555

The i-th vertex in the newly created vertex set is rotated556

about 360/n · (i− 1) degrees around the forward oriented tan-557

gent, where n is the number of created vertices per vertex. By558

constructing for every pair of consecutive vertex sets the quadri-559

lateral connecting vertices i and i+1 from either set, the tube560

is constructed incrementally. The specific connectivity order561

ensures that the tubes do not twist unnecessarily. To visually562

separate the tubes, the angle between the surface normal and the563

vector along the view direction is used to draw silhouettes. Line564

segments with a tangent nearly parallel to the view direction are565

excluded from silhouette-drawing. Other rendering styles are566

also possible, see Stoll et al. [45] for example.567

Into our visualization approach we have integrated different568

rendering styles for the loose line ends, which result from cutting569

away parts of the lines. We compare three different options in570

Fig. 13: a) We simply cut the lines without any further ado. b)571

We avoid an abrupt and visually disturbing break by letting the572

lines fade out over a short end-piece. This is achieved by quickly573

decreasing the opacity along these pieces. Regular line endings574

at the domain boundary are simply cut. c) We continuously575

narrow the lines over a short end-piece. The end-pieces are576

longer than the ones we use in b) to keep a smooth transition577

of the geometry. Of all the different possibilities, we found578

the last one to achieve the best spatial impression. It indicates579

where a line is fragmented, preserves the spatial location, and580

generates a smooth transition towards the line endings. Changing581

the line width, on the other hand, can conflict with perspective582

foreshortening, since a line bending away from the viewplane583

can appear with the same width when projected. Due to the cross-584

sectional tapering and the rather short line endings, however,585

only in very rare cases does this effect appear.586

7. Conclusion and future work587

In the future, one particular focus will be on the investigation588

of greedy algorithms for constructing an approximate balanced589

line hierarchy to reduce the pre-processing cost. Furthermore,590

we will analyse extensions of our approach to make it applicable591

to ensemble fields. In ensemble fields, multiple line sets are592

available and have to be analyzed regarding different properties.593

In particular, one is interested in finding similarities or outliers,594

which can be realized by building respective means into the595

construction of the line set hierarchy that is used in our work.596

In addition, ensemble-specific visibility attributes and density597

control mechanisms need to be investigated and incorporated598

into the line rendering approach, to be able to effectively reveal599

the ensemble variability.600

8. Acknowledgments601

We thank Steffen Oeltze and Juan Cebral for providing the602

bloodflow data. This work was supported by the European Union603

under the ERC Advanced Grant 291372 SaferVis: Uncertainty604

Visualization for Reliable Data Discovery.605

9

Figure 12: Controlling the density of 80.000 lines in the Turbulence dataset [43] via our approach (left). Complete line set (right).

Figure 13: Visualization of the Aneurysm II dataset using different rendering styles for line endings at cut-offs resulting from partial line removal. (left) Cropping
lines without transition, (middle) short transparent line ends and (right) reduced diameter at line ends—our preferred choice—.

10

m = c = v = d = 0, λ = 1 m = 30, c = 5, v = 5, d = 40, λ = 2.0 m = 20, c = 30, v = 10, d = 40, λ = 1.2

m = c = v = d = 0, λ = 1 m = 10, c = 10, v = 10, d = 100, λ = 2 m = 10, c = 30, v = 30, d = 20, λ = 2

m = c = v = d = 0, λ = 1 m = 40, c = 44, v = 52, d = 170, λ = 4 m = 50, c = 35, v = 20, d = 150, λ = 4

Figure 14: Demonstration of different parameter combinations for the visibility computation in Eq. 2. From top to bottom: Heli, Tornado, Aneurysm II.

11

[1] Weiskopf D, Erlebacher G. Overview of flow visualization. The Visualiza-606

tion Handbook 2005;:261–78.607

[2] McLoughlin T, Laramee RS, Peikert R, Post FH, Chen M. Over608

two decades of integration-based, geometric flow visualization. Com-609

puter Graphics Forum 2010;29(6):1807–29. doi:10.1111/j.1467-610

8659.2010.01650.x.611

[3] Verma V, Kao D, Pang A. A flow-guided streamline seeding strategy. In:612

Proc. IEEE Visualization. ISBN 1-58113-309-X; 2000, p. 163–70.613

[4] Ye X, Kao D, Pang A. Strategy for seeding 3D streamlines. In: Proc. IEEE614

Visualization 2005. 2005, p. 471–8. doi:10.1109/VISUAL.2005.1532831.615

[5] Chen Y, Cohen J, Krolik J. Similarity-guided streamline placement with er-616

ror evaluation. IEEE Transactions on Visualization and Computer Graphics617

2007;13(6):1448–55. doi:10.1109/TVCG.2007.70595.618

[6] Yu H, Wang C, Shene CK, Chen JH. Hierarchical streamline bundles. IEEE619

Transactions on Visualization and Computer Graphics 2012;18(8):1353–620

67. doi:10.1109/TVCG.2011.155.621

[7] Marchesin S, Chen CK, Ho C, Ma KL. View-dependent streamlines for 3D622

vector fields. IEEE Transactions on Visualization and Computer Graphics623

2010;16(6):1578–86. doi:10.1109/TVCG.2010.212.624

[8] Ma J, Wang C, Shene CK. Coherent view-dependent streamline selection625

for importance-driven flow visualization. Proc SPIE 8654, Visualization626

and Data Analysis 2013;doi:10.1117/12.2001887.627

[9] Günther T, Rössl C, Theisel H. Opacity optimization for 3D line fields.628

Proc ACM SIGGRAPH 2013;32(4):120.629

[10] Viola I, Kanitsar A, Gröller ME. Importance-driven volume rendering. In:630

Proc. IEEE Visualization. 2004, p. 139–45.631

[11] Turk G, Banks D. Image-guided streamline placement. In:632

Proc. ACM SIGGRAPH. ISBN 0-89791-746-4; 1996, p. 453–60.633

doi:10.1145/237170.237285.634

[12] Mao X, Hatanaka Y, Higashida H, Imamiya A. Image-guided streamline635

placement on curvilinear grid surfaces. In: Proc. IEEE Visualization.636

ISBN 1-58113-106-2; 1998, p. 135–42.637

[13] Mattausch O, Theußl T, Hauser H, Gröller E. Strategies for interac-638

tive exploration of 3D flow using evenly-spaced illuminated streamlines.639

In: Proceedings of the 19th Spring Conference on Computer Graphics.640

New York, NY, USA: ACM. ISBN 1-58113-861-X; 2003, p. 213–22.641

doi:10.1145/984952.984987.642

[14] Schlemmer M, Hotz I, Hamann B, Morr F, Hagen H. Priority streamlines:643

A context-based visualization of flow fields. In: Proc. EG/IEEE VGTC644

EuroVis. 2007, p. 227–34.645

[15] Jobard B, Lefer W. Creating evenly-spaced streamlines of arbitrary density.646

In: Proc. Eurographics Workshop on Visualization in Scientific Computing.647

ISBN 978-3-211-83049-9; 1997, p. 43–55. doi:10.1007/978-3-7091-6876-648

9 5.649

[16] Mebarki A, Alliez P, Devillers O. Farthest point seeding for efficient650

placement of streamlines. In: Proc. IEEE Visualization. 2005, p. 479–86.651

doi:10.1109/VISUAL.2005.1532832.652

[17] Liu Z, Moorhead R, Groner J. An advanced evenly-spaced streamline653

placement algorithm. IEEE Transactions on Visualization and Computer654

Graphics 2006;12(5):965–72. doi:10.1109/TVCG.2006.116.655

[18] Li L, Shen HW. Image-based streamline generation and rendering. IEEE656

Transactions on Visualization and Computer Graphics 2007;13(3):630–40.657

doi:10.1109/TVCG.2007.1009.658

[19] Li L, Hsieh HH, Shen HW. Illustrative streamline placement659

and visualization. In: Proc. IEEE PacificVis. 2008, p. 79–86.660

doi:10.1109/PACIFICVIS.2008.4475462.661

[20] Spencer B, Laramee RS, Chen G, Zhang E. Evenly spaced streamlines662

for surfaces: An image-based approach. Computer Graphics Forum663

2009;28(6):1618–31.664

[21] Rosanwo O, Petz C, Prohaska S, Hege HC, Hotz I. Dual streamline seeding.665

Proc IEEE PacificVis 2009;0:9–16.666

[22] Xu L, Lee TY, Shen HW. An information-theoretic framework for flow667

visualization. IEEE Transactions on Visualization and Computer Graphics668

2010;16(6):1216–24. doi:10.1109/TVCG.2010.131.669

[23] McLoughlin T, Jones M, Laramee R, Malki R, Masters I, Hansen C.670

Similarity measures for enhancing interactive streamline seeding. IEEE671

Transactions on Visualization and Computer Graphics 2012;19(8):1342–672

53. doi:10.1109/TVCG.2012.150.673

[24] Tong X, Chen CM, Shen HW, Wong PC. Interactive streamline exploration674

and manipulation using deformation. In: IEEE PacificVis. 2015, p. 1–8.675

doi:10.1109/PACIFICVIS.2015.7156349.676

[25] Lee TY, Mishchenko O, Shen HW, Crawfis R. View point evaluation and677

streamline filtering for flow visualization. In: Proc. IEEE PacificVis. 2011,678

p. 83–90. doi:10.1109/PACIFICVIS.2011.5742376.679

[26] Krüger J, Schneider J, Westermann R. Clearview: An interac-680

tive context preserving hotspot visualization technique. IEEE Trans-681

actions on Visualization and Computer Graphics 2006;12(5):941–8.682

doi:10.1109/TVCG.2006.124.683

[27] Oeltze S, Lehmann D, Kuhn A, Janiga G, Theisel H, Preim B. Blood684

flow clustering and applications in virtual stenting of intracranial685

aneurysms. IEEE Transactions on Visualization and Computer Graphics686

2014;20(5):686–701. doi:10.1109/TVCG.2013.2297914.687

[28] Zhang Z, Huang K, Tan T. Comparison of similarity measures for688

trajectory clustering in outdoor surveillance scenes. In: Proc. Inter-689

national Conference on Pattern Recognition; vol. 3. 2006, p. 1135–8.690

doi:10.1109/ICPR.2006.392.691

[29] Moberts B, Vilanova A, van Wijk J. Evaluation of fiber clustering methods692

for diffusion tensor imaging. In: Proc. IEEE Visualization. 2005, p. 65–72.693

doi:10.1109/VISUAL.2005.1532779.694

[30] Jain AK. Data clustering: 50 years beyond k-means. Pattern Recogn Lett695

2010;31(8):651–66.696

[31] Corouge I, Gouttard S, Gerig G. Towards a shape model of white matter697

fiber bundles using diffusion tensor MRI. In: IEEE International Sympo-698

sium on Biomedical Imaging: Nano to Macro. 2004, p. 344–347 Vol. 1.699

doi:10.1109/ISBI.2004.1398545.700

[32] Chen Y, Cohen J, Krolik J. Similarity-guided streamline placement with er-701

ror evaluation. IEEE Transactions on Visualization and Computer Graphics702

2007;13(6):1448–55.703

[33] Rössl C, Theisel H. Streamline embedding for 3D vector field explo-704

ration. IEEE Transactions on Visualization and Computer Graphics705

2012;18(3):407–20.706

[34] Yu H, Wang C, Shene CK, Chen JH. Hierarchical streamline bundles. IEEE707

Transactions on Visualization and Computer Graphics 2012;18(8):1353–708

67.709

[35] McLoughlin T, Jones MW, Laramee RS, Malki R, Masters I, Hansen CD.710

Similarity measures for enhancing interactive streamline seeding. IEEE711

Transactions on Visualization and Computer Graphics 2013;19(8):1342–712

53.713

[36] Born S, Pfeifle M, Markl M, Scheuermann G. Visual 4D MRI blood flow714

analysis with line predicates. In: IEEE PacificVis Symposium. 2012, p.715

105–12.716

[37] Salzbrunn T, Scheuermann G. Streamline predicates. IEEE Transactions717

on Visualization and Computer Graphics 2006;12(6):1601–12.718

[38] Edmonds J. Paths, trees, and flowers. Canadian Journal of mathematics719

1965;17(3):449–67.720

[39] Lemon graph library. http://lemon.cs.elte.hu/trac/lemon;721

2004 (accessed February 29, 2016).722

[40] Candelaresi S, Brandenburg A. Decay of helical and nonhelical magnetic723

knots. Phys Rev E 2011;84. doi:10.1103/PhysRevE.84.016406.724

[41] Yu YH, Tung C, van der Wall B, Pausder HJ, Burley C, Brooks T, et al.725

The HART-II test: Rotor wakes and aeroacoustics with higher-harmonic726

pitch control (HHC) inputs - the joint German/French/Dutch/US project.727

58th Annual Forum of the AHS, Montreal, CN 2002;.728

[42] Byrne G, Mut F, Cebral J. Quantifying the large-scale hemodynamics729

of intracranial aneurysms. Amer J of Neuroradiology 2014;35:333–8.730

doi:10.3174/ajnr.A3678.731

[43] Aluie H, Eyink G, E. V, Kanov SCK, Burns R, Men-732

eveau C, et al. Forced MHD turbulence data set.733

http://turbulence.pha.jhu.edu/docs/README-MHD.pdf;734

2013 (accessed May 13, 2016).735

[44] Günther T, Bürger K, Westermann R, Theisel H. A view-dependent and736

inter-frame coherent visualization of integral lines using screen contribu-737

tion. In: Proceedings of Vision, Modeling, and Visualization. Eurographics738

Assosciation; 2011, p. 215–22.739

[45] Stoll C, Gumhold S, Seidel HP. Visualization with stylized line primitives.740

In: Visualization, 2005. VIS 05. IEEE. IEEE; 2005, p. 695–702.741

12

