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Figure 1: From a set of iso-contours (inlay), our method computes an abstract visualization of the uncertainty that is carried by this set (left).
The visualization is further refined by showing correlations, i.e. probabilities for the joint occurrence of iso-contours in a selected region
(black circle) and other locations along the main trends (color coded in the right image).

Abstract
For an ensemble of iso-contours in multi-dimensional scalar fields, we present new methods to a) visualize their dominant
spatial patterns of variability, and b) to compute the conditional probability of the occurrence of a contour at one location given
the occurrence at some other location. We first show how to derive a statistical model describing the contour variability, by
representing the contours implicitly via signed distance functions and clustering similar functions in a reduced order space. We
show that the spatial patterns of the ensemble can then be derived by analytically transforming the boundaries of a confidence
interval computed from each cluster into the spatial domain. Furthermore, we introduce a mathematical basis for computing
correlations between the occurrences of iso-contours at different locations. We show that the computation of these correlations
can be posed in the reduced order space as an integration problem over a region bounded by four hyper-planes. To visualize
the derived statistical properties we employ a variant of variability plots for streamlines, now including the color coding of
probabilities of joint contour occurrences. We demonstrate the use of the proposed techniques for ensemble exploration in a
number of 2D and 3D examples, using artificial and meteorological data sets.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

To analyze the uncertainty that is represented by an ensemble of
iso-contours, the variability of the ensemble members needs to be
characterized, and the major trends and outliers in the shape and
spatial location of the contours need to be determined. A popular
approach to visually analyze an ensemble of iso-contours is a so-
called spaghetti plot, which shows the contours simultaneously in
a single image.

The inset in Fig. 1(left) shows a spaghetti plot of iso-contours—
distinguished by color—in a 2D geopotential height field. Since
iso-contours can have very complicated shape and topology,
spaghetti plots produce visual clutter when many contours overlap,
and major trends, outliers, and statistical properties of the contour
distribution cannot easily be conveyed. Thus, it is difficult to draw
conclusions from a spaghetti plot on the different topological and
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structural characteristics of the contour set. For iso-contours in 3D
fields, this problem becomes even more severe.

To overcome the limitations of spaghetti plots, Whitaker et
al. [WMK13] and Mirzargar et al. [MWK14] have introduced vi-
sual abstractions for curve-like features based on the concept of
statistical data depth, which enables the computation of a global
ranking of such features and the use of this ranking to derive proba-
bilistic indicators of the feature occurrence around the median. Fer-
stl et al. [FBW16] proposed to model statistically the distribution
of streamlines, and to derive clusters indicating the major trends
represented by an ensemble. By visualizing these clusters instead
of the entire set of streamlines, the main trends can be conveyed
effectively to the user.

In this work we show how to extend the method by Ferstl et al.
for iso-contours in multi-dimensional scalar fields. This is challeng-
ing, because it first requires transforming the contours into a repre-
sentation from which their similarity can be inferred. In contrast to
ensembles of streamlines, which start at the same seeding position
and can be computed using the same path-parametrization, such a
transformation is not immediately given for iso-contours. In princi-
ple, geometry-based approaches for curve clustering [OLK∗14] can
be employed, yet they have difficulties when the contours exhibit
different topologies and no consistent parameterization is given,
which is common in real-world applications.

In addition to analyzing the major trends given by an ensem-
ble of iso-contours, it is also interesting to investigate the relation-
ship between the occurrence of a contour at different locations. In
particular answering the question about the probability that a con-
tour going through a specific location is also going through some
other location can help to further explore the distribution of the
iso-contours within each cluster. Especially when dealing with iso-
contours or pathlines in time-varying fields, the analysis of such
joint occurrences enables the exploration of interesting interrela-
tions between the data properties at different locations and simula-
tion times, and it can even help making predictions on the possible
occurrences of features. To the best of our knowledge, a visual anal-
ysis approach for this kind of dependencies has not been proposed
so far.

In this work, we address the aforementioned problems and pro-
pose new methods to explore the distribution of iso-contours in
multi-dimensional scalar fields. Our specific contributions are:

• Building upon a distance field transformation of iso-
contours [TN14, BM10] to obtain a consistent contour
parametrization, we transform the contour ensemble into a re-
duced order space. According to [FBW16] we extract the major
trends via clustering in the reduced order space, yet instead
of random sampling fitted multivariate normal distributions
we show how to derive analytically the corresponding visual
abstractions in the spatial domain.
• We provide a mathematical formulation for the problem of com-

puting the joint occurrences of contours at different locations via
integration in the reduced order space over a region bounded by
hyper-planes.

For visualizing the main trends in the iso-contour distribution we
use variability plots as proposed by Ferstl et al. [FBW16]. In addi-

tion, we provide an interactive picking mechanism and graphically
highlight joint occurrences with the picked region using color cod-
ing. To demonstrate the kind of information our approach can con-
vey, we have performed a number of experiments using synthetic
and real-world data sets from meteorology.

2. Related Work

Our technique belongs to the broader class of uncertainty visualiza-
tion techniques. It falls into the category of ensemble visualization
and uses curve clustering for computing confidence bands for sets
of iso-contours.

The importance of uncertainty visualization has been recognized
over more than a decade ago [PWL97], and in a number of works
since then, overviews and taxonomies of uncertainty visualization
techniques have been given, for instance, by Johnson and Sander-
son [JS03]. For the most recent survey on the topic let us refer to
the book by Bonneau et al. [BHJ∗14]. In ensemble visualization, it
is assumed that the uncertainty is represented by a set of possible
data occurrences, rather than a stochastic uncertainty model. Ober-
maier and Joy [OJ14] classify ensemble visualization techniques
into feature-based and location-based approaches.

Related to our work are uncertainty visualization techniques
which encode visually the positional variation that is caused by the
uncertainty on specific features, for instance, the positional vari-
ability of surfaces in space. Techniques include the visualization of
confidence surfaces [PWL97], surface diffusion techniques [GR04]
as well as surface animations [Bro04]. Some more recent ap-
proaches [PRW11, PH10, PWH11] model the uncertainty stochas-
tically and derive probability distributions for particular stochastic
events associated to iso-surfaces.

The visualization of feature variability in ensemble fields is
often performed via spaghetti plots of selected contour lines
or threshold probabilities of 2D fields such as surface wind
speed [PWB∗09, Wil11]. Glyphs and confidence intervals were
introduced to emphasize the Euclidean spread of contour and
curve ensembles [SZD∗10, MWK14, FBW16] and, specifically,
contour boxplots [WMK13] have been applied to weather forecast
data [QM16]. Locations in 3D flow ensembles are characterized
based on the divergence of transport patterns [HOGJ13].

The analysis of mutual data dependencies has mostly been ad-
dressed via the visualization of data correlations. For instance, via
color mapping and slicing [JPR∗], by means of correlation fields
and multi-field graphs [STS06], via glyph-based visualizations of
local covariance structures [KWL∗], or by correlation clustering to
group objects with similar pair-wise correlations [BBC04, PW12].

Our work is also related to clustering approaches for
parametrized curves in 2D and 3D space, which are most often
based on geometric similarity measures. For an overview of sim-
ilarity measures using geometric distances between curves let us
refer to the comparative study by Zhang et al. [ZHT06] and, alter-
natively, for an overview on probabilistic model-based curve clus-
tering algorithms let us refer to the work by Gaffney [Gaf04]. Ag-
glomerative Hierarchical Clustering (AHC) with different cluster
proximity measures has been shown for curves by McLoughlin
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(a) Input in domain space (b) Statistical model in
PCA-space Rr (≈ SDF-space RM)

(c) Contour variability plot (d) Correlation visualization
1st principal component
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Figure 2: Overview of our method: (a) Input set of iso-contours. (b) Statistical model of the corresponding signed distance functions in
the principal component basis, represented by confidence ellipses and geometric cluster medians. (c) Contour variability plot, obtained
by transforming ellipses and medians back to domain space (with cluster strengths indicated by a bar plot). (d) Visualization of global
correlations in the orange cluster by picking a circular region (black) and color coding the conditional probability of contours going through
other regions, given that they go through this picked region.

et al. [MJL∗13]. The overview article by Oeltze et al. [OLK∗14]
evaluates different clustering approaches for streamlines using
geometry-based similarity measures. Thomas et al. [TN14] cluster
iso-contours in a rotation and scale invariant feature space to find
(self-) symmetries in iso-surfaces. To find similarities between dif-
ferent iso-contours of the same scalar field, Carr et al. [CBB06]
use histograms and iso-surface statistics whereas Bruckner and
Möller [BM10] use distance functions and information-theoretic
measures.

An alternative to geometry-based curve clustering approaches
are dimension-reduction techniques, where the initial curves are
represented in some low-dimensional subspace. For shape analy-
sis, Rathi et al. [RDT06] use kernel PCA on distance functions for
shape analysis, and Leventon et al. [LGF00] employ the power of
PCA on distance functions and use a multivariate normal distri-
bution as a statistical shape model. Fofonov et al. [FML15] use
distance functions and dimension reduction to visualize a set of
contour time series as 2D or 3D trajectories.

3. Overview

Given an ensemble of 2D or 3D scalar fields s1, ...,sn ∈ RM (de-
fined on the same grid comprised of M vertices), we consider the
iso-contours which are extracted from each ensemble member si
for the same iso-value v. Note that we are not considering value
uncertainty in this work (i.e., the uncertainty in the choice of the
iso-value itself) and therefore do not consider the possibility that
different ensemble members can contain similar iso-contours with
different iso-values. A comparative analysis of iso-contours is dif-
ficult, because they often consist of many different, disconnected
parts and can vastly differ in length, i.e., they vastly differ in the
number of degrees of freedom. To account for this, we fix this num-
ber to the number of grid vertices M, by representing the contours
implicitly via signed distance functions (SDF). For each contour i
of scalar field si we compute a corresponding SDF di ∈RM , which
specifies at each grid point of si the signed distance to the closest
point on the contour (with the sign indicating on which side of the

iso-contour the point is located). While, in principle, each di is a
grid of signed distance values, it can also be interpreted as a vector
with M entries and, hence, as a point in the Euclidean space RM

which directly corresponds to contour i. We will subsequently refer
to RM as SDF-space.

By using the SDF representations, we can build upon the concept
proposed by Ferstl et al. [FBW16] for generating so-called stream-
line variability plots, i.e., lobular visual abstractions for conveying
the main trends in an ensemble of particle trajectories. An overview
of the corresponding steps we perform in the current work for en-
sembles of iso-contours is shown in Fig. 2. We call the resulting
visual abstractions bands, which can be generated in 2D and 3D
using equivalent operations.

From the SDF representation of the input contours (Fig. 2a),
we compute a statistical model of the contour distribution. This is
required to obtain a mechanism for generating “continuous” dis-
tributions in the spatial domain. To this end, we perform a prin-
cipal component analysis (PCA) of the M-dimensional point set
d1, ...,dn. This is depicted in Fig. 2b, where the gray points are the
points di in the resulting principal component basis (for illustration
purposes the depiction is restricted to the projection to the first two
components), and each of those points corresponds to one contour
from Fig. 2a. Subsequently, we determine a clustering of the trans-
formed points in the so-called PCA-space. By fitting a multivariate
normal distribution (MVN) to each cluster, clusters can be repre-
sented by their geometric median and a confidence ellipse with a
user-defined size in units of standard deviation (Fig. 2b). E.g., the
points in Fig. 2b are grouped into two clusters, and each cluster is
represented by a confidence ellipse with a size of one standard de-
viation (colored ellipses) and its geometric median (colored dots).

Ferstl et al. performed a dense sampling of the ellipses to gen-
erate new streamline realizations following the main trends in the
data, and these realizations were transformed into the spatial do-
main to form the variability lobes. We show in our work that for sets
of iso-contours, represented via distance functions, the shape of the
corresponding bands is fully determined by a box-shaped region
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Figure 3: Standard deviation of distance functions: Four different
ensembles of equally spaced iso-contours (black lines) and corre-
sponding confidence bands (colored green) are shown. Bands in-
dicate the regions within one standard deviation from the mean
contour. Below each image is a corresponding 1D plot of equally
spaced points and an error bar showing mean and standard devia-
tion.

in PCA-space. From this observation we derive a method to ana-
lytically transform the confidence ellipses in PCA-space into their
corresponding representations in the spatial domain. This transfor-
mation yields SDFs from which a contour variability plot can be
derived (Fig. 2c). Conceptually, the visualized bands correspond to
the boundaries of confidence ellipses in PCA-space and illustrate
the standard deviations of the per-cluster sets of contours, which is
illustrated in Fig. 3.

Since box-shaped regions can be used in PCA-space instead of
oriented ellipses to generate exactly the same bands, some infor-
mation that is given by the ellipses’ orientation is lost. The orien-
tation is determined by the off-diagonal entries of the covariance
matrix of the derived clusters, and these entries indicate the pair-
wise correlations in the clustered data. It is important to note that
neglecting this information does not affect the shapes of the bands
generated, yet the missing information can be revealed by another
method allowing us to perform a refined cluster analysis including
joint probabilities for the occurrence of iso-contours at different lo-
cations. We compute these probabilities by performing partial set
operations in PCA-space, which take into account the orientation
of the confidence ellipses. The derived information about the in-
herent dependencies between different locations are finally used to
indicate the clusters’ sub-structures (Fig. 2d).

4. Contour Variability Plots

In the following we assume that a PCA of the SDFs di has been
computed, and that the full set of r := n− 1 principal components
(PCs) is used (the latter assumption will be relaxed later on). Thus,

each di is represented exactly by a corresponding ci ∈ Rr:

di = R(ci) := d̄+Uci (i = 1, ...,n) . (1)

Here, the vector d̄ = 1
n ∑

n
i=1 di denotes the mean SDF, and the

columns of U ∈ RM×r are the PCs, which form an orthonormal
basis of a subspace of the SDF-space. Let us also introduce the
function R(ci) : Rr → RM to denote the corresponding reconstruc-
tion operation from PCA-space to SDF-space. R can be applied
to arbitrary points c ∈ Rr, but then the resulting reconstructions
R(c) are, in general, not valid distance functions. However, they
have similar properties like smoothness and monotonicity, and their
zero-contours can be interpreted as artificial iso-contours.

In addition to the PCA, we assume that the ci have been clus-
tered, and for each cluster k an approximating MVN distribution
has been computed. Each MVN distribution is parameterized by
a covariance matrix Σk ∈ Rr×r and mean value µk ∈ Rr. Since
the number of points in a cluster is relatively small compared to
the dimension r, usually the covariance matrix does not have full
rank. However, we formally assume that Σ

−1
k exists, which does not

pose a problem because it is not required in our final computation
scheme.

To compute the standard deviation of a set of iso-contours, we
represent the MVN distribution of each cluster in PCA-space using
a single confidence ellipse. From this ellipse, the band representing
the standard deviation of the corresponding set of iso-contours can
be computed analytically, not requiring an exhaustive sampling and
line rasterization process as for streamlines [FBW16].

4.1. Band Computation

The boundary E of a confidence ellipse for any MVN distribution
N (x,µ,Σ) with covariance matrix Σ and mean µ to a given number
of standard deviations α can be defined as the set of points x with
Mahalanobis distance α:

E(Σ,µ,α) =
{

x
∣∣ (x−µ)T

Σ
−1(x−µ) = α

2}.
If we now consider the boundary of the confidence ellipse Ek :=
E(Σk,µk,α) ⊂ Rr representing a cluster k in PCA-space, a set of
SDFs R(Ek)⊂ RM are obtained when this ellipse is transformed to
SDF-space. The corresponding band is defined as the set of points
in domain space which is covered by at least one zero-contour of
all SDFs in R(Ek).

In general, the extraction of a band from a (finite or infinite) set
of distance functions D ⊂ RM can be realized analytically by de-
termining a scalar function L(D) ∈ RM as

L(D) = cmin
{
− cmin

d∈D
{d}, cmax

d∈D
{d}

}
, (2)

where cmin and cmax denote component-wise minimum and max-
imum operators. By construction, L(D) is positive inside the band,
negative outside the band, and its zero-contour corresponds to the
band’s boundary. This is illustrated in Fig. 4 for a 1D example.

To evaluate Eq. (2) for a setD of SDFs we require the minimum
and maximum values in each of the M dimensions (=̂ at each grid
point). This means that each band function L(D) is fully defined
by the axis-aligned bounding box of D in SDF-space and, hence, a
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Figure 4: Illustration of L(D) (Eq. (2)). For a set of 1D SDF-
like functions D = {d1, ...,d5} (gray lines), the “band” covered by
their zero-contours (thick, black lines) is the region where L(D) =
cmin{−cmini di, cmaxi di} ≥ 0.

band in domain space corresponds to an axis-aligned box in SDF-
space (see Fig. 5).

Because R is an orthonormal transformation, R(Ek) in SDF-
space is also a confidence ellipse. Formally, this ellipse can also
be determined directly in SDF-space by fitting a MVN distribution
with Σ

M
k ∈ RM×M and µM

k ∈ RM to the SDFs di of cluster k. This
gives the M-dimensional confidence ellipse EM

k := E(ΣM
k ,µM

k ,α),
which is equal to R(Ek). Consequently, the corresponding band
functions L(R(Ek)) and L(EM

k ) are equal, too.

In practice, on the other hand, the calculation of Σ
M
k is not feasi-

ble due to its large size. However, as shown before, L(EM
k ) is fully

defined by the axis-aligned bounding box of EM
k in RM and, in turn,

the bounding box of a confidence ellipse is fully defined by its mean
and the diagonal of its covariance matrix. Hence, for the computa-
tion of L(EM

k ) = L(R(Ek)), we can simplify Eq. (2) to

L
(
EM

k
)
= cmin

{
−
(

µM
k −α

√
diag(ΣM

k )
)
,

µM
k +α

√
diag(ΣM

k )
}
.

(3)

This means that instead of transforming a confidence ellipse from
PCA-space to domain space, we can construct a band locally (di-
rectly from all di in the corresponding cluster). The band is the
region enclosed by the zero-contours of two fields which are com-
puted point-wise as “mean±α · standard deviation”.

5. Analysis of Global Correlations

In the previous chapter we have shown the construction of the con-
fidence bands in domain space from axis aligned bounding boxes
in SDF-space. We now demonstrate that by considering in addition
the orientation and extent of the confidence ellipses in PCA-space,
we can derive information concerning the probabilities of joint oc-
currences of iso-contours. Underlying this insight is the fact that
the ellipses encode global correlations between the different SDFs
di, giving rise to our intended contour analysis.

By using the MVN distribution of a single cluster, we investi-
gate the event of iso-contours going through a given location in the
domain. Therefore, let us assume that y is the position of a grid
point with index j ∈ {1, ...,M} in the 2D or 3D domain. Then, all

SDF-space RMDomain space

Figure 5: Domain and SDF space: Each contour in an ensem-
ble (orange lines) corresponds to a point in SDF-space (orange
points). A band of standard deviation corresponds to an axis-
aligned rectangular region in SDF-space (orange regions), which
is determined by the confidence ellipse that is fitted to the points
in SDF-space (purple line). The contours going through the black
and blue circle, respectively, form slabs in SDF-space. From their
intersection, a joint occurrence in the two circles can be computed.

SDFs d ∈ RM corresponding to contours through y have to be zero
at that grid point j, i.e., (d) j = 0. If y does not fall exactly onto a
grid point, we can use linear interpolation. Let wy ∈ [0;1]M denote
the linear interpolation weights for point y, where wy has at most
four or eight non-zero entries in 2D or 3D, respectively, and the
weights sum up to one. Then, all contours through y have to satisfy
dT wy = 0, meaning that the set of contours through y corresponds
to a hyper-plane in SDF-space (with normal wy).

To compute the probability of the occurrence of an event, we
have to extend the hyper-plane to a volumetric region. This is be-
cause the probability that a contour is going exactly through a given
point is zero. A first idea would be to vary y, but this would change
the normal of the corresponding hyper-plane. Instead, we use the
fact that the SDFs store distances to the contours and consider the
event of crossing a circular region rather than a point location.

Let I(y,s) denote the event of an iso-contour coming closer to
the point y than a prescribed radius s. Then the following set of
SDFs corresponds to I(y,s):

{d ∈ RM ∣∣ |dT wy| ≤ s}

This is a subset of RM that is enclosed between two parallel hyper-
planes, and we will refer to such a subset as slab in the following.
A slab can be “restricted” from SDF-space to PCA-space by sub-
stituting d = R(c) = d̄ +Uc according to Eq. (1), resulting in a
r-dimensional slab denoted by S(y,s):

S(y,s) = {c ∈ Rr ∣∣ |cT (UT wy)+ d̄T wy| ≤ s}

For a set of contours, represented by an MVN distribution
N (c,µk,Σk) of a cluster k in PCA-space, we can now calculate the
probability of I(y,s) by integrating over the corresponding slab:

P
(
I(y,s)

)
=

∫
S(y,s)

N (c,µk,Σk) dc.

Furthermore, to investigate correlations between different loca-
tions in the domain, i.e., to determine probabilities of joint occur-
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Figure 6: Coloring of bands for the contour cluster in Fig. 5. Top:
A unicolored variability plot with band and median. Middle: Color
coding of the probability function f (z) at every domain point, and
at points in the band (bottom).

rence of contours at these locations, we can consider a second circu-
lar region at some other point location z with radius t. To calculate
the joint probability of the event I(y,s)∧ I(z, t), which indicates
that a contour comes within a radius s of y and within a radius t
of z, we have to integrate over the union of the two corresponding
slabs (cf. Fig. 5):

P
(
I(y,s)∧ I(z, t)

)
=

∫
S(y,s)∩S(z,t)

N (c,µk,Σk) dc (4)

This r-dimensional integral is difficult to compute directly, yet it
can be transformed analytically into the following integral over a
rectangular region of a 2D MVN distribution:∫ β(wy)+s

β(wy)−s

∫ β(wz)+t

β(wz)−t
N
(
(x1,x2)

T ,0,Σ′k
)

dx2 dx1

with β(w) =−µT
k (U

T w)− d̄T w

and Σ
′
k =

(
wT

y UΣkUT wy wT
z UΣkUT wy

wT
z UΣkUT wy wT

z UΣkUT wz

)
.

(5)

For a proof of this statement let us refer to the supplementary mate-
rial, yet what can be seen immediately is that a change of variables
can be performed such that the normals of the two r-dimensional
slabs are aligned with the first two coordinate axes. This allows col-
lapsing all remaining dimensions of the MVN distribution, leaving
a 2D problem. The computation of 2D rectangular normal probabil-
ities like this is a standard problem in computational statistics and
can be performed, e.g., using the method by Genz et al. [Gen04],
which is included in a number of statistics libraries. To visualize the
result of Eq. (4+5), we choose locations y and z and prescribe the
corresponding radii s and t. The user selects y and lets compute the
joint probabilities for all other regions. For simplicity, we always
use equal radii in this work, i.e., s = t. Additionally, to obtain prob-
ability values in the range [0;1], we normalize the computed values

(a) (b)

(c) (d)

Figure 7: Color coding of conditional probabilities. (a) Spaghetti
plots comprised of shifted circles of the same size, and (c) the same
circles cut off and mirrored at the center vertical axis. (b+d) The
bands corresponding to one standard deviation α = 1 (bounded by
green lines). Only when coloring the bands according to f (z) in
a region around point y with radius t (black circle), the contours’
structures can be revealed.

with P
(
I(y, t)

)
. This yields the following function f (z), which is

defined over the entire domain and describes the conditional prob-
ability that contours come within radius t of z, given that they also
come within radius t of y:

f (z) =
P
(
I(y, t)∧ I(z, t)

)
P
(
I(y, t)

) (6)

We optionally use f (z) to color-code the bands in our visualizations
based on a user defined circle (y, t), which is shown in Fig. 6. In this
way, we can highlight regions which are likely to contain contours
that run through the selected region and, therefore, we can reveal
correlations between different regions in the domain which remain
hidden when the bands are visualized in a single color. An example
for such a scenario is shown in Fig. 7. Note that computing the nor-
malization factor P

(
I(y, t)

)
requires an additional integration over

a single slab. This can be achieved either by reducing the integra-
tion to a 1D problem (analogous to the reduction of Eq. (4) to 2D)
or by simply making one of the slabs in Eq. (4+5) infinitely large.

6. Contour Variability Plots

In this section we give additional details concerning the PCA com-
putation and the clustering process in PCA-space. Furthermore, we
describe how to compose and generate the final contour variability
plots.

PCA: In practice, we do not use the full set of (n− 1) PCs,
but we reduce the PCA-space to a dimension r ≤ n− 1. To de-
termine r, we use the common explained variance criterion: Let
σ j denote the variance of the PCA coefficients along the j-th PC.
Then the total amount of explained variance by r PCs is defined
as: ex(r) = ∑

r
j=1 σ j/∑

n−1
j=1 σ j . Based on a threshold τ ∈ [0,1], we

choose the smallest r which satisfies ex(r)≥ τ. Since the input iso-
contours often contain many small details and the dimensionality of
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the PCA-space only has a minor impact on the performance of our
implementation, we usually only drop the very insignificant PCs.
I.e., we use τ = 0.999 in all our experiments, which, for the me-
teorological ensembles used in our work, leads to roughly 35-45
required PCs out of 51.

Clustering: To separate the major trends in a contour ensemble,
the resulting PCA coefficients c1, ...,cn ∈ Rr are clustered. We do
not fit multiple MVN distributions directly to the data using the
commonly applied Expectation Maximization algorithm, because
it leads to numerical problems due to the high dimensionality of
the PCA-space and does not ensure a good spatial separation of the
clusters in this space. Instead, we use agglomerative hierarchical
clustering (AHC) with average linking, which is initialized with
the Euclidean distances in PCA-space as distance measure. Fur-
thermore, we perform an automated guess for the optimal number
of clusters using the L-method [SC04]. This initial guess can by
changed by the user, causing clusters to split and merge recursively
according to the AHC hierarchy. For a deeper discussion of these
choices for clustering we refer the reader to [FBW16].

Median Contour: For each cluster of input contours, we draw
an artificial median contour (which does not exist in the original set
of contours) as a single representative for that cluster. We compute
the geometric median ĉk of the corresponding points in PCA-space
and transform it back to the initial domain by extracting the zero-
contour of R(ĉk). We draw the median contour with a line width
corresponding to the relative size of the cluster, and each plot is
augmented with an additional bar plot to show these sizes exactly.

Bands: For each cluster, a band corresponding to a user-defined
size α in units of standard deviation is drawn (we use α = 1 in all
our examples). Bands are computed according to Eq. (3) and visu-
alized as filled, transparent polygons in 2D, and using iso-surface
raycasting in 3D. Since thin bands can often not be represented by
a single scalar field, we use two intermediate fields and delay the
outermost cmin operation in Eq. (3) until the values have been in-
terpolated from these intermediate fields.

Outliers are detected by our hierarchical clustering as clusters of
cardinality one. The contour in an outlier cluster is drawn directly
and no band is shown (cf. Figs. 1, 9g+h, 10c+d). To this end, we do
not explicitly search for outliers.

Correlation Color Coding: The user can click on a lobe in order
to pick a circle of interest (always shown in black), defining the
circle (y, t). The picked lobe is then visualized on top of all others
and color coded with f (z) according to Eq. (6), using the same
radius t for both involved circles. The values that are shown are
therefore actual probability values (and not a probability density),
indicating at every point z the conditional probability that a line
through the black circle is also going through a circle of the same
size centered at z.

7. Results

This section presents meteorological examples of 2D and 3D con-
tour variability plots and of 2D correlation visualizations, using
weather forecast data from the European Centre for Medium-Range
Weather Forecasts (ECMWF) Ensemble Prediction System (ENS).

(a) C
C
C
C
C
CC

(b)

(c)

Figure 8: Spatial variability of an ensemble of 500 hPa geopo-
tential height contour lines. The ECMWF ENS forecast from
00:00 UTC, 15 October 2012, valid at 00:00 UTC, 20 October
2012, is shown. (a) Geopotential height contours (m) of the en-
semble control forecast (5600 m highlighted in red). Note the dis-
tinct trough over Spain (blue axis). (b) Spaghetti plot of the 5600
m contour lines of all 51 ensemble members, colored by cluster
membership. (c) Contour variability plot.

The forecasts include 50 perturbed members and a control run. For
details, we refer to e.g. [LP08]. For the present study, we use the
forecast from 00:00 UTC 15 October 2012 that has been used pre-
viously by Rautenhaus et al. [RKSW15]. The example region en-
compasses 101 × 41 × 62 grid points. For the 2D examples, the
data were interpolated to vertical levels of constant pressure.

For 2D interactive demonstrations, our implementation uses
the MATLAB implementations of PCA and AHC. The publicly
available FORTRAN implementation of the method by Genz et
al. [Gen04] was used for the calculation of the 2D rectangular, nor-
mal probabilities. A custom implementation was used for comput-
ing signed distance transforms in which, firstly, we compute the
unsigned distance field to an iso-contour of a given scalar field us-
ing fast marching [Set99] and, secondly, determine the sign of the
resulting distance value at every grid point by comparing its scalar
value against the specified iso-value. Since the conditional proba-
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all 51 iso-contours(a) all clusters (median only)(b) cluster 1(c) cluster 2(d)

cluster 3(e) cluster 4(f) cluster 5(g) cluster 6(h)

Figure 9: Contour variability plot for an ensemble of 3D wind speed contours representing the jet stream. 50 ms−1 iso-surfaces of the
ECMWF ENS forecast from 00:00 UTC, 15 October 2012, valid at 18:00 UTC, 19 October 2012 are shown. For comparison, the same scene
as in Fig. 6 in [RKSW15] has been chosen. The images show (a) a “3D spaghetti” plot of all 51 iso-surfaces (colored by cluster membership),
(b) the median contours of six clusters identified by the algorithm, and (c-h) the median contour (opaque) and the outer boundary of the
“band” (transparent) for the six clusters. Note that clusters 5 and 6 contain one outlier each.

bilities f (z) typically are smooth, we compute them in a texture
using half the grid spacing of the original grid.

All presented results were generated on a standard desktop PC
(Intel Xeon X5675 processor with 6 × 3.0 GHz, 8 GB RAM and
an NVIDIA Geforce GTX 680). On this machine, the generation
of a contour variability plot for an ensemble of 2D forecast fields
(101× 41 grid) takes on average 270 ms. The timing includes 66
ms for the distance transformation, 31 ms for the PCA of the dis-
tance functions, and 31 ms for hierarchical clustering. The time
increases by 80 ms if a correlation visualization for a single clus-
ter is computed. For the 3D example, the contour variability plot
(i.e., the SDFs for median contours and the outer boundaries of the
“bands”) was pre-computed and rendered via iso-surface raycast-
ing in the open-source visualization tool Met.3D [RKSW15]. The
pre-computation required 11.8 s, including 8.1 s for the distance
transform, 2.6 s for the PCA and 40 ms for hierarchical clustering.

7.1. Contour variability plots

To demonstrate the proposed contour variability plots, we discuss
two meteorological examples. Figure 8 shows 2D contours of the
forecast geopotential height field at 500 hPa. Spaghetti plots of such
fields are frequently encountered in meteorology (e.g., [Wil11]).
The geopotential height field of the control forecast (Fig. 8a) shows
a distinct trough extending from Ireland over Spain (blue line). We
focus on the 5600 m contour. The spaghetti plot of all members’
5600 m contours (Fig. 8b) reveals variability in the line ensemble,
in particular in the trough region. Without cluster coloring, it is im-
possible to discern differences and trends (not shown). The colour-
ing in Fig. 8b increases the information content; the variability plot
in Fig. 8c clearly shows the possible scenarios. The purple and or-
ange clusters contain the majority of the members. The bands of
both clusters are largely similar, except for the region around and
east of the trough. The lines in the orange cluster represent a much
stronger trough. In contrast, contours in the third cluster (green)

show notable differences both south of Greenland and in the trough
region. We note that the clustering algorithm takes into account the
entire domain. If the user’s interest is centred on a particular fea-
ture in a particular region, it may be useful to let the user select a
subregion.

In Fig. 9, 3D contour clustering is applied to an example from
Rautenhaus et al. [RKSW15]. 50 ms−1 wind speed iso-surfaces are
used as representative features of the jet stream, strong winds (with
core wind speeds often exceeding 50 ms−1) within narrow bands
typically encountered around 10 km height (e.g., [Ahr08]). Rauten-
haus et al. [RKSW15] (their Fig. 6) show iso-surfaces of selected
single members and of ensemble statistical quantities, rendered by
the Met.3D system. To discern different scenarios of jet feature
characteristics, the user of Met.3D can animate over the ensemble
members, i.e., cycle through the display of single members. Our
clustering method largely enhances this simple approach. Fig. 9a
shows the iso-surfaces of all members in a “3D spaghetti” plot. In
3D, differences between the members are even more difficult to dis-
cern than in the 2D case; there is little more information in the plot
that in the plot of the ensemble maximum in Fig. 6f of [RKSW15].
In 3D, plots of all cluster medians and their bands (as in Fig. 8c)
also suffer from cluttering. We hence visualize a composite of the
cluster medians only to show the major scenarios of the jet stream
feature (Fig. 9b), as well as individual medians and bands of six
clusters that our method has detected (ordered from the largest to
the smallest cluster in Fig. 9c-h). While with this approach, the user
still needs to animate over the clusters to get information on pos-
sible jet characteristics, the number of animation steps is reduced
from 51 members to 6 clusters.

7.2. Correlation Visualization

Examples of plots with the proposed visualization of global corre-
lations are depicted in Fig. 10. Fig. 10a shows correlations of iso-
contours passing through a user-positioned circle within the purple
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(a) (b)

(c) (d)

Figure 10: Spatial correlations. (a) Correlations in the purple cluster of Fig. 8c. (b) Correlations of a cluster of 680 m contour lines of
geopotential height at 925 hPa show a behavior similar to the idealized case in Fig. 7b (forecast from 00:00 UTC, 17 October 2012, valid
at 12:00 UTC, 21 October 2012). (c) Contour lines of 0 °C of the temperature field at 850 hPa are clustered into a single cluster and three
outliers (same forecast as in Fig. 8). (d) Except for the westernmost part of the analyzed region, these lines are almost entirely uncorrelated.

cluster of the example in Fig. 8c. Over western Europe, strong cor-
relations are visible; iso-contours that describe a more pronounced
trough (circle positioned over southern Spain) tend to proceed on
the western edge of the cluster band over the North Sea (i.e., deeper
troughs are more narrow). In other regions, however, the position
of the lines is largely uncorrelated to the strength of the trough.
Closer to the surface (925 hPa and 36 hours later; Fig. 10b), the
low-pressure system visible south of Greenland in Fig. 8a can be
well identified in the geopotential height field. Here, contour lines
in the selected cluster resemble a situation similar to the one in
Fig. 7a+b. We conclude that the system has similar size in the indi-
vidual ensemble members within the cluster, but is shifted in space.

Our third example (Fig. 10c+d) shows 0 °C temperature iso-
contours at 850 hPa. Here, the contour lines contain many high
frequency details; in the spaghetti plot, structures are impossible to
discern (Fig. 10c). Our clustering methods yields one large cluster
and three outliers. Positioning the circle in the cluster band south
of Greenland (Fig. 10d) reveals correlations in the westernmost part
of the region, where the low pressure system pushes cold air from
the northwest towards the southeast. Hence, if air below 0 °C has
been pushed as far south as the circle location at 50 °W, the cold
air has also been pushed to the southern side of the variability band
further west. East of the circle, however, the contour lines passing
through the circle are distributed almost uniformly within the band,
indicating that the deviations of the contours from the cluster me-
dian are of random nature and not globally correlated. In this case,
we cannot make any conclusion, e.g., about the 0 °C boundary be-
ing located further south over Great Britain if it is located further
south at 50 °W. The uniform distribution is confirmed by placing
the circle at different locations (one of which is shown in the inset).

8. Conclusion and Future Work

In this work we have shown that the use of distance functions en-
ables us to generate contour variability plots which allow for a char-
acterization of the uncertainty that is represented by an ensemble
of iso-contours. In contrast to spaghetti plots, the visual abstraction
that is provided by our method effectively conveys the major trends
and outliers in a given set of iso-contours. While our method is nat-
urally limited in 3D due to overlaps and occlusion problems, our
clustering and visual abstraction nevertheless provide an improve-
ment over having to animate through single ensemble members. In
addition, the proposed color coding of confidence bands can assist
a user in detecting global correlations between occurrences of con-
tours at different locations. It enables the interactive exploration of
interior structures in clusters. Thus, it can help to improve an initial
clustering and to decide whether a local or a global analysis of a set
of contours is appropriate. In the future, we plan to further investi-
gate the potential of our approach to analyze the time evolution of
dynamical phenomena and to use our clustering to determine the
occurrence of similar features yet at different locations and times.
Moreover, we will address the current limitation of our method in
3D, that despite clustering and visual abstraction, occlusions and
visual clutter thereof are introduced.
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