
Screen-space Silhouettes for Visualizing Ensembles of 3D Isosurfaces

Ismail Demir∗ Johannes Kehrer† Rüdiger Westermann‡

Computer Graphics and Visualization Group, Technische Universität München, Germany

Figure 1: Visualization of a weather forecast ensemble from the ECMWF Prediction System [29]. This ensemble comprises wind velocity data
and consists of 50 members. For one isovalue, all members are visualized as silhouettes of isosurfaces. Additionally, a mean ensemble member
is rendered as a gray isosurface to enhance the visual perception of the spatial context. Color is used to cluster members by their similarity.

ABSTRACT

Visualizing sets of isosurfaces from 3D scalar ensemble fields is
a difficult task due to inherent occlusion effects, yet it is often re-
quired to analyze the uncertainty represented by such an ensemble.
In this paper, we present a novel visualization technique for ensem-
bles of isosurfaces based on screen-space silhouettes. By using sil-
houettes, the displayed information is reduced to avoid occlusions,
yet the major shape of the surfaces can be maintained. Our ap-
proach preserves spatial coherence and does not make any assump-
tion about the underlying surface distribution. By providing addi-
tional mechanisms, i.e., picking, clustering, cutting and animation,
we enable the user to explore an ensemble of surfaces interactively.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms

1 INTRODUCTION

Scalar field ensembles play an important role in many areas of sci-
ence and engineering. Ensembles are typically generated by N ∈ N

repeated simulation runs, where different input models or param-
eters are used in each run. Each simulation generates a possible
occurrence of the simulated phenomenon, the so-called ensemble
members. For 3D scalar fields, this can be described formally as
a mapping {1, ...,N}×R

3 → R. Visualizing 3D scalar field en-
sembles is a challenging task, since a large amount of data at each
spatial location has to be conveyed to the user, such that important
information is neither lost nor occluded.

∗e-mail: ismail.demir@mytum.de
†e-mail: johannes.kehrer@tum.de
‡e-mail: westermann@tum.de

Different solutions exist to approach this problem. For instance,
volume rendering is an effective technique to visualize the informa-
tion stored in 3D scalar fields, especially with the help of transfer
functions. By interactively adjusting this function, the shape of rel-
evant features can be revealed. In this context, isosurfaces are of
particular interest, i.e., locations exhibiting a constant value [18].
However, volume rendering suffers from occlusion effects, even
if only a single scalar field is rendered. Consequently, this effect
is amplified when multiple ensemble members are superimposed,
which makes an experts analysis quickly unfeasible. As an alter-
native, different members can be visualized by drawing them next
to each other [15]. However, in this case, the spatial context be-
tween similar features in different members is lost. Furthermore,
this method is only feasible for a relatively small number of mem-
bers due to the screen space limitation. Another approach is to
provide the user with statistical data derived from the original en-
semble instead of the individual members [35, 37]. For instance,
mean and standard deviation can be computed at each spatial loca-
tion and then presented to the user. In such a scenario, however,
differences between members are smoothed out and important in-
formation, such as outliers, is lost.

To remedy the problem of occlusion, techniques from informa-
tion visualization such as parallel coordinates or histograms can be
combined with volume rendering by utilizing brushing and link-
ing [12, 16, 26, 45]. The idea behind these approaches is to show
multiple linked views displaying different aspects of the original
data. In this scenario, the user selects regions of interest in one
view and is then provided with visual feedback in all linked views.
Another approach is to cut the original volume into slices and to
render each slice separately. Then, ensemble members can be vi-
sualized via drawing spaghetti plots, by overlaying isocontours of
each member [38]. However, in this representation, the spatial re-
lationships between different slices are lost.

In this work, we propose a novel rendering approach to inter-
actively visualize 3D isosurface ensembles. Our method preserves

spatial coherence, while occlusion effects do not disturb the visual
perception to a considerable degree. By providing interactive mech-
anisms, we enable the user to further explore the data on a more
detailed level. In particular, the main contributions of our approach
are:

• A novel efficient visualization technique for 3D isosurface en-
sembles based on rendering semi-transparent silhouettes. Our
method is spatially coherent both within each member and be-
tween different members.

• An efficient implementation to convert 3D scalar field ensem-
bles into polygonal meshes for different isolevels. In this pro-
cess, all information necessary for rendering is precomputed
and stored at the vertex level. Thus, the workload during ren-
dering is minimized, meaning that even a large number of en-
semble members can be displayed at interactive frame rates.

• By integrating movable cutting planes directly into the 3D
view, we enable the user to gain more detailed insights at spe-
cific spatial locations without losing spatial coherence.

• Different hierarchical clustering algorithms based on isolevels
enable the user to group and analyze members according to
their similarity. Since we compute all clusters in a preprocess,
the user can select and explore them interactively.

• Picking and brushing mechanisms as well as animations that
enable the user to view selected members of interest as com-
plete isosurfaces, thus enhancing the spatial recognition.

2 RELATED WORK

Ensemble visualization belongs to the area of uncertainty visual-
ization, which has been an important research topic in visualiza-
tion for almost two decades [25, 34]. Many useful approaches have
been published and a number of surveys exist [4,17,20,26]. For ex-
ample, diagram-based techniques have been proposed to augment
the spatial context by visual cues, such as glyphs, charts or box
plots [10, 24, 39, 42]. Clustering algorithms are used to break down
larger data sets into groups of similar characteristics [2,5,7,13,23].
In our work, we use clustering to classify silhouettes wrt. their
similarity. Recently, research has also focused on analyzing spatio-
temporal ensemble data [19, 28, 30, 40].

Spaghetti plots are a powerful technique to visualize 2D scalar
field ensembles by simultaneously rendering an isocontour per
member [21, 22, 36, 38, 41]. We extend this method to 3D data
sets and provide interactive techniques to aid the user in the vi-
sual analysis, such as animation and picking. Several methods have
been proposed to visualize isosurfaces extracted from 3D ensemble
data, e.g., by means of animation [6], volume rendering [11,44], or
confidence envelopes [35, 37, 48]. Other methods aim at rendering
multiple isosurfaces into a single 3D view [1, 8]. However, only
a few ensemble members can be visualized simultaneously due to
cluttering and occlusion. Matković et al. [32] visualize ensemble
data as families of data surfaces in combination with cutting planes
showing intersections with the surfaces. We pursue a similar ap-
proach by using cutting planes to guide the user towards specific
regions of interest.

A number of methods exist for reducing 3D shapes to feature
lines such as silhouettes, suggestive contours, ridge and valley lines,
or apparent ridges [9,33,46,47]. We compute silhouettes per mem-
ber based on curvature due to its simplicity and computational effi-
ciency [27], although other methods could be used as well.

3 PREPROCESS

Let us consider a scalar field ensemble given at the vertices of a 3D
Cartesian grid, f : {1, ...,N}×R

3 → R. That is, at each grid point

a scalar value in R is associated with each member. Moreover, a
set of isovalues is specified, I ⊂ R. Now, we generate polygonal
meshes and clustering distributions for each isovalue:

Mesh-Generation. Given a scalar field, i.e., one ensemble mem-
ber, on a Cartesian grid and an isovalue, we first make use of the
marching cubes algorithm to extract the corresponding isosurface
in the form of a polygonal mesh. The marching cubes algorithm,
originally proposed by Lorensen et al. [31], however, produces a
uniformly resolved mesh. Consequently, polygonal primitives are
generated at a very fine resolution, thus wasting memory. To over-
come this drawback, we apply a mesh decimation algorithm that
takes the underlying geometry into account. Our implementation
is based on the quadric mesh simplification method as proposed
by Garland et al. [14]. As a result, we end up with an adaptively
resolved triangle mesh. Next, for every vertex x, we compute the
following attributes and use them in the rendering process:

• We compute the vertex normal by taking the normalized gra-
dient, i.e., n =−g/‖g‖, where g = ∇ fi (x) denotes the gradi-
ent and i refers to the member index. Since the ensemble is
given on a Cartesian grid, we make use of finite differences to
compute the respective derivatives numerically.

• The principal curvatures κ1,κ2 as well as the first principal
curvature direction (PCD) p are calculated according to the

method described by Kindlmann et al. [27]. Let P = I−n ·nT,

H =
(

∂ 2 f
∂xi∂x j

(x)
)

, the Hessian matrix, and G = −PHP/‖g‖.

Next, we compute the trace T and the Frobenius norm F of

G. Now, we obtain κ1,2 =
T±

√
2F2−T 2

2 . Finally, p is obtained
as the eigenvector of G corresponding to the eigenvalue κ1.

• We compute the outlyingness as the mean squared distance to

all members, i.e., o = ∑
N
j=0

(

f j(x)− fi(x)
)2

/N.

To save memory, these values are stored in a packed format. Po-
sition, principal curvatures and the outlyingness are stored in 16-bit
floats per component. Since the normal and PCD are of unit length,
we can store these vectors as a 32-bit unsigned integer. Here, the x
and y−component are stored in the first 16 bits and in the next 15
bits, respectively. The sign of the z−component is stored in the last
bit. These values are later reconstructed in a shader program. In to-
tal, 20 bytes are consumed per vertex. As a result, we end up with N
meshes for each isovalue, where N ∈ N denotes the number of en-
semble members, meaning that N · |I| meshes are generated in total.
See the results section for an analysis of the memory requirement.

Clustering. For clustering, we compute a similarity matrix of
size N ×N, where at each entry (i, j) the difference between mem-
ber i and j is stored. We compute the difference as d (i, j) =

∑x

(

√

| fi(x)−µ|−
√

∣

∣ f j(x)−µ
∣

∣

)2

/m, where µ and m denote the

current isovalue and the number of grid points, respectively. By
taking the square root, changes in values closer to the isovalue are
considered of greater importance.

Clusters are then generated based on the similarity matrix by us-
ing an agglomerative hierarchical clustering method [23]. We begin
with N clusters, where each member is assigned to one unique clus-
ter. Then, we proceed by merging a pair of clusters of minimal dis-
tance. This process is repeated until one cluster remains. Now, for
each step we store the respective cluster distribution. Here, distance
is computed in the following way. Suppose, each cluster contains
exactly one member. Then, we obtain the distance as the corre-
sponding entry in the similarity matrix. Otherwise, we compute
the distance by using a linkage criterion. For instance, the average
linkage criterion, defined as d (A,B) = ∑a∈A,b∈B d (a,b)/(|A| |B|),
yields suitable results in our implementation [3]. Again, this pro-
cess is carried out for each isovalue.

a) b)

d)c)

Figure 2: Visualization using different rendering techniques. a) Semi-
transparent surfaces. b) 3D spaghetti plots of silhouettes. c) Shaded
silhouettes. d) Shaded silhouettes with density-based removal.

4 RENDERING SHADED SILHOUETTES

In this section, we explain the proposed rendering technique for iso-
surface ensembles based on the precomputed per-vertex attributes
and clusters. For a user-selected isovalue and each selected mem-
ber, the corresponding mesh is rendered. Note that rendering solid
isosurfaces suffers from occlusion effects, in particular if multi-
ple members are rendered simultaneously. Although drawing iso-
surfaces with transparency reduces occlusion effects, perceptually
multiple layers of transparency cannot easily be distinguished, and
quickly becomes infeasible when too many surfaces are overlaid.
This can be observed in Fig. 2a. Therefore, we propose a differ-
ent approach based on rendering only silhouettes instead of whole
surfaces. Silhouette rendering is not a novel technique, yet to the
best of our knowledge, it has not been used for ensemble visualiza-
tion so far. Fig. 1 shows a weather forecast ensemble containing 50
members that is rendered using our method. In this view, the gray
isosurface represents the mean of all members, which was gener-
ated by computing the average value at each grid point. Clearly, the
members can be distinguished and the spatial context is preserved.
By rotating the camera, a further improved recognition of the spa-
tial structures is achieved.

Once the attributes are reconstructed in the vertex shader, render-
ing silhouettes is done in the fragment stage. By using the normal
n, the curvature along view direction κ and the view vector v, we

compute the silhouette coefficient as σ =
∣

∣v ·nT
∣

∣/
√

τκ (2− τκ).
Here, τ denotes the silhouette thickness, such that a silhouette is
present iff σ ≤ 1. Let us refer to [27] for further details on the
derivation. To efficiently compute κ in the fragment shader, we
make use of the precomputed principal curvatures κ1,2 and the
PCD p as introduced in the previous section. First, we obtain
the angle ϕ between the PCD and the view direction, projected
onto the plane aligned with the normal at the fragment position,
as cosϕ = 〈v−〈n,v〉n, p〉. Now, we calculate the curvature in view

direction as κ = κ1 · cos2 ϕ +κ2 · sin2 ϕ . This equation holds, be-
cause PCDs are always aligned orthogonal to each other. Note that

it is not necessary to actually compute ϕ , since cos2 ϕ + sin2 ϕ = 1.
By drawing fragments with σ ≤ 1 as opaque using a solid color,
and discarding all other fragments, we obtain 3D spaghetti plots
as can be seen in Fig. 2b. However, this approach suffers from the
drawback that distinguishing different members of the same color is
infeasible without rotating the camera. To overcome this limitation,
we make use of shading and transparency effects. Given an RGB-

color value c and silhouette coefficient σ , we return the RGBA-
color value (c,1) if σ < 1

2 ,
(

c · 1
2 ,1−

(

σ − 1
2

)

/ 1
2

)

if 1
2 ≤σ ≤ 1, and

discard the fragment otherwise. The result is depicted in Fig. 2c.

To reduce the amount of visual clutter, consider the observa-
tion that there are some regions where the density of silhouettes
is greater. Hence, we can eliminate a number of silhouettes in such
regions without losing important information, since all these sil-
houettes share a similar shape. In doing so, unnecessary data is
removed from the visualization, thus making it easier to grasp for
the user. To identify silhouettes that are suitable for removal, we re-
sort to the outlyingness o as explained in the previous section. This
value indicates how much difference there is between the value of
the current member and all other members at a given position wrt.
the selected isovalue. Thus, lower values imply a greater density
of isosurfaces and therefore a greater density of silhouettes. This
gives rise to the following algorithm, implemented in the fragment
shader. Let iM ,sG denote the member index and group size. Here,
the group size determines the number of nuances for silhouette re-
moval. Then, we obtain the group index by iG = iM (mod sG). Let
o∗Min,o

∗
Max ∈R denote the global minimum and maximum outlying-

ness threshold. Now, we compute the thresholds for group index
iG as oMin (iG) = o∗Min + iG ·

(

o∗Max −o∗Min

)

/sG,oMax (iG) = o∗Min +

(iG +1) ·
(

o∗Max −o∗Min

)

/sG. Finally, we compute the outlyingness-

based opacity as α (iG,o) = clamp
(

o−oMin(iG)
oMax(iG)−oMin(iG)

,0,1
)

. If the

result equals 0, the fragment is discarded. Otherwise, the alpha-
component of the fragment shader output is multiplied by α (iG,o).
To identify regions where most members agree, the user can start
out with a lower degree of silhouette removal and then gradually in-
crease this threshold to focus on finer structures. This can be done
by dynamically adjusting o∗Min and o∗Max. The result is shown in
Fig. 2d. As an alternative to altering the opacity, we could also
resort to color-coding the silhouette density or adjusting the thick-
ness, although this is not shown here.

5 VISUALIZING DETAILS ON DEMAND

According to the information seeking mantra “Overview first,
zoom and filter, then details-on-demand” proposed by Shneider-
man [43], we have implemented several mechanisms to visualize
user-selected details.

Cutting Planes. We have integrated movable cutting planes into
our implementation to enable the user to gain more detailed in-
sights at specific locations of interest. This process is illustrated
in Fig. 3b,d. Rendering cutting planes is accomplished in the frag-
ment stage. First, we compute the distance d from the fragment’s
position to the cutting plane along the view direction v. To prevent
occlusion, fragments lying in front of the plane, i.e., d < 0, are dis-
carded. To render intersection curves of thickness ε , we consider
a fragment as lying on the plane iff the following conditions are
met: a) The distance along the view direction, projected onto the
surface normal, is within the plane thickness, i.e., 〈v,n〉d ≤ ε; b)
the distance along the view direction is within the plane thickness,
along the view direction, projected onto the plane normal nP, i.e.,
d ≤ 〈v,nP〉ε . In this case, the fragment is rendered by using the
term 〈v,n〉d to compute shading and opacity as explained for the
silhouette coefficient.

Clustering. We utilize hierarchical clustering algorithms to
group members wrt. their similarity. Due to the preprocess, the
clusters can be selected interactively. E.g., in Fig. 1 members are
clustered into five groups. By showing or hiding clusters separately,
the user can focus on cluster-specific features. In this way, outliers
can quickly be identified and trends can be analyzed in more detail.

Picking and Brushing. We have developed picking and brush-
ing functionality by checking the mouse coordinates against the
screen space coordinates in the fragment stage. Thereby, we pro-
vide means to view selected members as isosurfaces to enhance to

a) b) c) d)

Figure 3: Results from two ensemble data sets. a) An outlier was selected in the ECMWF data set (bottom left) to get a better understanding of
its shape. b) A cutting plane allows us to analyze a feature in more detail. c) Overview of a Navier-Stokes flow simulation comprising 56 runs. d)
A cutting plane reveals the inner structures. The underlying flow is depicted at the bottom right.

visual recognition. This also serves as a point of reference to facil-
itate the spatial perception of the silhouettes. In Fig. 1, the mean
surface is visualized in gray. Note that this method is only effective
for displaying one or a few members as otherwise occlusion effects
prevail.

Animation. To quickly discover differences and similarities be-
tween a selected subset of members of interest, we provide the user
with the ability to animate over members. He first selects a subset
of members by picking and brushing. Then, during the animation,
one member after another is visualized by a solid isosurface. To
make the transitions easier to understand, members are sorted by
cluster index and similarity.

6 RESULTS

We now discuss some results to demonstrate the potential of our
visualization technique. To begin with, let us consider an ensemble
comprising wind velocities of a weather forecast simulation by the
ECMWF Ensemble Prediction System [29]. This ensemble con-
sists of 50 members of resolution 128× 256× 16. In Fig. 1, for
an isovalue of 30 m

s the resulting isosurfaces are visualized as sil-
houettes. An additional mean member is included, as explained be-
fore. To store the data for visualizing all 51 members (including the
mean), roughly 16 MiB are consumed per isovalue. On a standard
desktop PC, the process of precomputation takes ≈ 3 minutes for
generating all meshes and another ≈ 2 minutes for computing the
similarity matrix. The time for computing the clusterization based
on the similarity matrix is negligible. Note that the computational
cost is proportional to the grid resolution and the number of mem-
bers. Rendering the image in Fig. 1 took 3.6ms measured on an
NVIDIA GeForce GTX 580 graphics card at a viewport resolution
of 1900× 1200. This means that our implementation enables the
user to interactively analyze an ensemble of isosurfaces.

By observing the visualization in Fig. 1, we can spot two regions,
where most, if not all, simulation runs agree on a wind velocity of
30 m

s . One such region is located above the Baltic Sea and the other
region above the North Atlantic Ocean south of Greenland. Note
that we have also determined that the wind velocities within these
regions are greater than 30 m

s by studying other isovalues, although
this is not shown here. Moreover, there is another region located in
the middle where only some members exhibit the aforementioned
wind velocity. By clustering the members into five groups and using
color to indicate the cluster membership, we can discover the main
trends arising at that region. Here, we can also identify an outlier
and investigate the shape of that member’s isosurface by picking
the respective silhouette. This is shown in Fig. 3a. Due to the pre-
process, the user can change the number of clusters interactively.

Let us now focus again on the second region. Here, we find a
structure of curls on the top, where only some members agree as
this area is clearly separated from the mean isosurface. If we place
a cutting plane as shown in Fig. 3b, we can analyze this feature in
more detail and discover the inner structures. By moving the plane,
the spatial perception is enhanced, and ellipsoid zones of higher

wind velocity are revealed, indicating isolated air turbulences pre-
dicted by some simulation runs.

As a second example, let us consider an ensemble featuring an
incompressible fluid flow evolving around an ellipsoid obstacle. 56
Navier-Stokes simulation runs were performed with different vis-
cosities on a Cartesian grid of resolution 145× 49× 49. After a
given simulation time, the vorticity magnitude was saved as the
scalar field ensemble. The result is presented in Fig. 3c using our
visualization technique. Clearly, it is easily possible to visually dis-
tinguish members as only minimal occlusion effects occur. By in-
serting a cutting plane, we can also gain insight into the inner re-
gions and study the behavior of the flow simulation in more detail
as shown in Fig. 3d. In this data set, the use of animation proved to
be helpful, since the shape changes gradually along the sequence of
all members. We demonstrate this in the accompanying video clip.

7 CONCLUSION

In this work, we have presented a novel visualization technique for
3D scalar field ensembles. Our approach is based on the idea of
rendering silhouettes instead of solid isosurfaces. Hence, occlusion
artifacts are minimized without losing spatial coherence. We have
also implemented several ways to provide a more detailed analy-
sis of the ensemble. That is, by enabling the user to place cutting
planes in the 3D view and by providing means of clustering and
animation, the ensemble can be investigated according to different
criteria. To study individual members in the context of the whole
ensemble, the user can resort to picking and brushing functionality.
Moreover, by precomputing all computationally involved parts in
a preprocess, we have accomplished rendering at interactive rates.
We have demonstrated the effectiveness of our approach by visual-
izing and analyzing two ensembles of very different characteristics.
In both cases, our method was able to reveal relevant features and
supported the user to gain insight into the spatial structures.

In the future, we plan to extend our implementation to time-
varying ensembles. In this regard, the concept of animation might
prove as an effective tool. We also aim at integrating mechanism
to automatically detect relevant features and place cutting planes or
other visual clues accordingly. By utilizing the GPU, the prepro-
cess could be significantly sped up, although we do not consider
this as a critical issue, as it has no effect on the rendering perfor-
mance. We further plan to investigate our results in a user study in
collaboration with domain experts to evaluate the practical benefits
of our method.

ACKNOWLEDGMENTS

Access to ECMWF prediction data has been kindly provided in the
context of the ECMWF special project “Support Tool for HALO
Missions”. We are grateful to the special project members Marc
Rautenhaus and Andreas Dörnbrack for providing the ECMWF
ENS dataset of 17 October 2012. This work was supported by the
European Union under the ERC Advanced Grant 291372 SaferVis
- Uncertainty Visualization for Reliable Data Discovery.

REFERENCES

[1] O. S. Alabi et al. Comparative visualization of ensembles using en-

semble surface slicing. In Proc. SPIE Vis. and Data Analysis, 2012.

[2] M. Beham, W. Herzner, M. E. Gröller, and J. Kehrer. Cupid: Cluster-

based exploration of geometry generators with parallel coordinates

and radial trees. IEEE TVCG, 20(12):1693–1702, 2014.

[3] E. J. Bijnen. Cluster analysis – Survey and evaluation of techniques.

Springer Netherlands, Dordrecht, 1973.

[4] G.-P. Bonneau, H.-C. Hege, C. R. Johnson, M. M. Oliveira, K. Potter,

P. Rheingans, and T. Schultz. Overview and state-of-the-art of uncer-

tainty visualization. In Scientific Visualization, pages 3–27. Springer,

2014.

[5] U. D. Bordoloi, D. L. Kao, and H.-W. Shen. Visualization techniques

for spatial probability density function data. Data Science Journal,

3:153–162, 2004.

[6] R. Brown. Animated visual vibrations as an uncertainty visualisation

technique. In Proc. GRAPHITE, pages 84–89, 2004.

[7] S. Bruckner and T. Möller. Result-driven exploration of simulation

parameter spaces for visual effects design. IEEE TVCG, 16(6):1468–

1476, 2010.

[8] S. Busking, C. Botha, L. Ferrarini, J. Milles, and F. Post. Image-based

rendering of intersecting surfaces for dynamic comparative visualiza-

tion. The Visual Computer, 27:347–363, 2011.

[9] F. Cole, K. Sanik, D. Decarlo, A. Finkelstein, T. Funkhouser,

S. Rusinkiewicz, and M. Singh. How well do line drawings depict

shape. ACM Trans. on Graph. (Proc. of SIGGRAPH), 2009.

[10] I. Demir, C. Dick, and R. Westermann. Multi-charts for comparative

3D ensemble visualization. IEEE TVCG, 20(12):2694–2703, 2014.

[11] S. Djurcilov, K. Kim, P. Lermusiaux, and A. Pang. Visualizing scalar

volumetric data with uncertainty. Computers & Graphics, 26(2):239–

248, 2002.

[12] H. Doleisch and H. Hauser. Smooth brushing for focus+context visu-

alization of simulation data in 3D. J. WSCG, 10(1–3):147–154, 2002.

[13] F. Ferstl, K. Bürger, and R. Westermann. Streamline variability plots

for characterizing the uncertainty in vector field ensembles. IEEE

TVCG, 22(1):767–776, Jan 2016.

[14] M. Garland and P. S. Heckbert. Surface simplification using quadric

error metrics. In Proc. SIGGRAPH ’97, pages 209–216, 1997.

[15] M. Gleicher, D. Albers, R. Walker, I. Jusufi, C. D. Hansen, and J. C.

Roberts. Visual comparison for information visualization. Information

Visualization, 10(4):289–309, 2011.

[16] D. L. Gresh, B. E. Rogowitz, R. L. Winslow, D. F. Scollan, and C. K.

Yung. WEAVE: A system for visually linking 3-D and statistical vi-

sualizations, applied to cardiac simulation and measurement data. In

Proc. IEEE Visualization, pages 489–492, 2000.

[17] H. Griethe and H. Schumann. The visualization of uncertain data:

Methods and problems. In Proc. SimVis, pages 143–156, 2006.

[18] C. Hansen. The visualization handbook. Elsevier Butterworth-

Heinemann, Burlington, MA, 2005.

[19] L. Hao, C. Healey, and S. Bass. Effective visualization of temporal

ensembles. IEEE TVCG, 22(1):787–796, Jan 2016.

[20] C. Heinzl, S. Bruckner, M. E. Gröller, A. Pang, H.-C. Hege, K. Pot-

ter, R. Westermann, T. Pfaffelmoser, and T. Möller. Uncertainty and

parameter space analysis in visualization. IEEE VisWeek Tutorial,

2012.

[21] T. Höllt, A. Magdy, G. Chen, G. Gopalakrishnan, I. Hoteit, C. Hansen,

and M. Hadwiger. Visual analysis of uncertainties in ocean forecasts

for planning and operation of off-shore structures. In Proc. IEEE Pa-

cific Visualization Symposium, pages 185–192, 2013.

[22] T. Höllt, A. Magdy, P. Zhan, G. Chen, G. Gopalakrishnan, I. Hoteit,

C. D. Hansen, and M. Hadwiger. Ovis: A framework for visual analy-

sis of ocean forecast ensembles. IEEE TVCG, 20(8):1114–1126, 2014.

[23] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recogn.

Lett., 31(8):651–666, 2010.

[24] M. Jarema, I. Demir, J. Kehrer, and R. Westermann. Comparative

visual analysis of vector field ensembles. In Proc. IEEE VAST, pages

81–88, 2015.

[25] C. R. Johnson and A. R. Sanderson. A next step: Visualizing errors

and uncertainty. IEEE Comput. Graph. Appl., 23(5):6–10, 2003.

[26] J. Kehrer and H. Hauser. Visualization and visual analysis of multi-

faceted scientific data: A survey. IEEE TVCG, 19(3):495–513, 2013.

[27] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Moller. Curvature-

based transfer functions for direct volume rendering: Methods and

applications. In Proc. IEEE Visualization, pages 513–520, 2003.

[28] P. Kothur, M. Sips, H. Dobslaw, and D. Dransch. Visual analytics for

comparison of ocean model output with reference data: Detecting and

analyzing geophysical processes using clustering ensembles. IEEE

TVCG, 20(12):1893–1902, 2014.

[29] M. Leutbecher and T. Palmer. Ensemble forecasting. Journal of Com-

putational Physics, 227(7):3515–3539, 2008.

[30] L. Liu, M. Mirzangar, R. M. Kirby, R. Whitaker, and D. H. House.

Visualizing time-specific hurricane predictions, with uncertainty, from

storm path ensembles. Comput. Graph. Forum, 34(3):371–380, 2015.

[31] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolu-

tion 3D surface construction algorithm. SIGGRAPH Comput. Graph.,

21(4):163–169, Aug. 1987.

[32] K. Matković, D. Gračanin, B. Klarin, and H. Hauser. Interactive visual

analysis of complex scientific data as families of data surfaces. IEEE

TVCG, 15(6):1351–1358, 2009.

[33] M. Mirzargar, R. T. Whitaker, and R. M. Kirby. Curve boxplot:

Generalization of boxplot for ensembles of curves. IEEE TVCG,

20(12):2654–2663, 2014.

[34] A. T. Pang, C. M. Wittenbrink, and S. K. Lodha. Approaches to un-

certainty visualization. The Visual Computer, 13(8):370–390, 1997.

[35] T. Pfaffelmoser, M. Reitinger, and R. Westermann. Visualizing the

positional and geometrical variability of isosurfaces in uncertain scalar

fields. Comput. Graph. Forum, 30(3):951–960, 2011.

[36] T. Pfaffelmoser and R. Westermann. Visualizing contour distributions

in 2D ensemble data. In EuroVis-Short Papers, pages 55–59, 2013.

[37] K. Pothkow and H.-C. Hege. Positional uncertainty of isocon-

tours: Condition analysis and probabilistic measures. IEEE TVCG,

17(10):1393–1406, 2011.

[38] K. Potter et al. Ensemble-Vis: A framework for the statistical visu-

alization of ensemble data. In Proc. IEEE Int’l. Conf. Data Mining

Workshops, pages 233–240, 2009.

[39] K. Potter, J. Kniss, R. Riesenfeld, and C. Johnson. Visualizing sum-

mary statistics and uncertainty. Comput. Graph. Forum, 29(3):823–

832, 2010.

[40] K. Potter, A. Wilson, P.-T. Bremer, D. Williams, V. Pascucci, and

C. Johnson. A flexible approach for the statistical visualization of

ensemble data. In Proc. IEEE ICDM Workshop Knowledge Discovery

from Climate Data, 2009.

[41] J. Sanyal, S. Zhang, J. Dyer, A. Mercer, P. Amburn, and R. J. Moor-

head. Noodles: A tool for visualization of numerical weather model

ensemble uncertainty. IEEE TVCG, 16(6):1421–1430, 2010.

[42] T. Schultz, L. Schlaffke, B. Schölkopf, and T. Schmidt-Wilcke. Hifive:

A hilbert space embedding of fiber variability estimates for uncer-

tainty modeling and visualization. Comput. Graph. Forum, 32(3):121–

130, 2013.

[43] B. Shneiderman. The eyes have it: A task by data type taxonomy

for information visualizations. In Proc. IEEE Symposium on Visual

Languages, pages 336–348, 1996.

[44] D. C. Thompson, J. A. Levine, J. Bennett, P.-T. Bremer, A. Gyulassy,

V. Pascucci, and P. P. Pébay. Analysis of large-scale scalar data us-

ing hixels. In Proc. IEEE Symposium on Large Data Analysis and

Visualization, pages 23–30, 2011.

[45] M. Q. Wang Baldonado, A. Woodruff, and A. Kuchinsky. Guidelines

for using multiple views in information visualization. In Proc. Work-

ing Conference on Advanced Visual Interfaces, pages 110–119, 2000.

[46] R. T. Whitaker, M. Mirzargar, and R. M. Kirby. Contour boxplots: A

method for characterizing uncertainty in feature sets from simulation

ensembles. IEEE TVCG, 19(12):2713–2722, 2013.

[47] K. Wu and S. Zhang. A contour tree based visualization for exploring

data with uncertainty. Int’l. J. Uncertainty Quantification, 3(3):203–

223, 2013.

[48] B. Zehner, N. Watanabe, and O. Kolditz. Visualization of grid-

ded scalar data with uncertainty in geosciences. Computers & Geo-

sciences, 36(10):1268–1275, 2010.

