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ABSTRACT

We present a new visual analysis approach to support the com-
parative exploration of 2D vector-valued ensemble fields. Our ap-
proach enables the user to quickly identify the most similar groups
of ensemble members, as well as the locations where the variation
among the members is high. We further provide means to visualize
the main features of the potentially multimodal directional distribu-
tions at user-selected locations. For this purpose, directional data
is modelled using mixtures of probability density functions (pdfs),
which allows us to characterize and classify complex distributions
with relatively few parameters. The resulting mixture models are
used to determine the degree of similarity between ensemble mem-
bers, and to construct glyphs showing the direction, spread, and
strength of the principal modes of the directional distributions. We
also propose several similarity measures, based on which we com-
pute pairwise member similarities in the spatial domain and form
clusters of similar members. The hierarchical clustering is shown
using dendrograms and similarity matrices, which can be used to
select particular members and visualize their variations. A user in-
terface providing multiple linked views enables the simultaneous
visualization of aggregated global and detailed local variations, as
well as the selection of members for a detailed comparison.

Keywords: Uncertainty Visualization, Vector Field Data, Coordi-
nated and Multiple Views, Glyph-based Techniques.

Index Terms: I1.3.m [Computer Graphics]: Miscellaneous—

1 INTRODUCTION

Scientists increasingly use computational resources to run a numer-
ical simulation several times with different input parameterizations
or specific model variations. This produces an ensemble of sim-
ulations, each representing a possible realization of the simulated
phenomenon. Scientists then analyze the ensemble variability (or
spread), for example, to find the most likely predictions or separate
similar predictions into groups to give an overview of the major
trends represented by the ensemble.

Especially in meteorology, analyzing the variability of ensem-
bles of vector fields plays an important role. For example, a num-
ber of meteorological features, such as cyclones (low pressure sys-
tems), anticyclones (high pressure systems), and jet streams (strong
upper level winds) are manifest in the wind field. Variations in wind
fields are thus an important source of uncertainty. In particular, poor
forecasts of high impact weather events, e.g., cyclones, can often be
traced back to disturbances in wind direction. To analyze why and
where weather forecasts break, it is helpful to determine where the
wind field disturbances occur and which ensemble members, i.e.,
which physical model or input parameter setting, caused the dis-
turbance. In this work, we propose a visual analysis framework
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to support such an explorative investigation of ensembles of vector
fields. In designing our framework, we have considered the follow-
ing requirements specified by our collaborators from meteorology:

Similarity clustering: Ensemble members should be grouped by

similarity, as this enables an effective identification of outliers.

Distribution-based visualization: Visualizations should convey

the main directional trends at every domain location, to indicate
where the ensemble members start to separate due to disturbances.

Member relationship: Visualizations should reveal relationships

between pairs or groups of members regarding their membership to
local trends, to reveal where certain members behave similarly.

Interactive exploration: Global variability information should be

visualized first, together with means to interactively zoom into the
data to guide the analysis towards regions with interesting behavior.

Our novel approach for the visual analysis of directional data in

2D vector field ensembles builds on the characterization of distribu-
tions based on their modality. It uses the resulting representation to
derive new comparative measures for ensemble members, and vi-
sually encode directional distributions in an intuitive way. Its major
components are:

e Distribution-based classification: We model directional dis-
tributions using mixtures of probability density functions
(pdfs). Each component is represented by its mean direction,
the variation around this mean, and its weight.

o Clustering: We employ the modes of the pdfs to develop sim-
ilarity measures that describe how similar the vectors are lo-
cally, and use these measures to cluster the ensemble members
according to the extent of their variation across the domain.

o Glyph-based visualization: We propose a glyph-based tech-
nique to visualize the directional pdfs. We map the modes to
the shape and orientation of a glyph, comprising a number of
primitives equal to the modality of the mixture model. Glyphs
reveal relevant information, such as the variation in the num-
ber of modes or in spread over the domain of the ensemble.

e Brushing and linking: We propose an interactive user inter-
face with multiple linked views to enable the simultaneous vi-
sualization of aggregated global and detailed local variations.

2 RELATED WORK

The visualization of uncertainty belongs to the top challenges in
scientific visualization [4, 31]. Uncertainty in the data often arises
from ensemble simulations, where each ensemble member is com-
puted with varied parametric conditions. The sheer complexity of
an ensemble hinders an efficient analysis, since the data is typi-
cally spatiotemporal, multivariate, and multivalued [20, 23]. Sev-
eral techniques have been proposed to reduce this complexity, e.g.,
computing statistical summaries such as mean and standard devi-
ation, and visualizing them via color maps, contours, surface de-
formation, opacity, boxplots, or glyphs [23, 26, 29]. Other meth-
ods [19, 30] represent 2D distributions as volumetric data and ap-
ply traditional 3D visualization methods. Full distributions are also
used by Kao et al. [18] for exploring and comparing pdfs from lidar
data. Thompson et al. [40] introduce hixels (per-voxel histograms)
for feature detection. Potter et al. [28] use a contour display to
reveal the normed difference between a user-specified pdf and the
pdfs over a 2D domain. While these methods deal with scalar dis-
tributions, our approach focuses on directional distributions.
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Figure 1: Directional distributions of vector-valued ensembles are modelled using Gaussian Mixture Models (GMMs). The resulting compact
representations are used to design glyphs for visualizing local trends, and derive similarity matrices to classify members locally. The local
similarity matrices are used to identify locations where ensemble members are dissimilar, and cluster members based on their similarity extent.

Clustering is a standard method for analyzing large and complex
data [15]. Bordoloi et al. [5] propose realization- and distribution-
based hierarchical clustering of ensemble data to reduce the amount
of information to be visualized. Bruckner and Moller [8] use
density-based clustering to identify similar volumetric time se-
quences in physically-based ensemble simulations. Beham et al. [3]
use hierarchical clustering to group similar geometric shapes. Hum-
mel et al. [14] cluster using Minimum Spanning Trees to compare
the material transport in flow ensembles. Reh et al. [33] cluster sim-
ilar pores in industrial XCT data into mean objects (MObjects) and
then visualize the per-voxel probability of belonging to an MObject
using transfer functions. In contrast to these approaches, we cluster
ensemble members based on the extent of their similarity, where
the proposed similarity measures are based on the modes of fitted
mixture models.

Fitting Gaussian Mixture Models (GMMs) to the data is a popu-
lar summarization method for pdfs, which provides more insight
than mean and standard deviation alone. Correa et al. [9] use
GMMs to model uncertainty in the visual analysis process, while
Hollister and Pang [13] apply GMMs to perform pdf interpolation.
Liu et al. [22] employ multiple Gaussian components for a volume
rendering of stochastic fields. Pothkow and Hege [27], however,
use nonparametric models for probabilistic function extraction.

Coordinated multiple views are commonly used to study mul-
tivariate relations via linking and brushing [20], or the complex
relations between the input and output of an ensemble simula-
tion [38]. Matrices are useful for studying pair-wise relationships
in data, an early example being scatterplot matrices [2], which plot
data attributes against each other to study correlations. MatrixEx-
plorer [12] uses node-link diagrams and matrices to explore social
networks. Talbot et al. [39] study classifiers in machine learning
using an interactive matrix visualization. Bruckner and Méller [7]
use a matrix to show the similarities between isosurfaces computed
with different isovalues.

Glyph-based techniques have attracted a lot of attention due to
their ability to show many attributes at once [6, 34]. Van Pelt et
al. [41] propose a glyph-based blood flow visualization to compare
different treatment options at multiple zoom levels. Arrow glyphs
are a standard approach to show directional information in vector
fields. Wittenbrink et al. [43] use such glyphs for showing uncer-
tainty in orientation and vector magnitude. Recently, Pfaffelmoser
et al. [26] presented circular glyphs to convey the mean and spread
of the orientation of uncertain 2D vectors. While these methods
assume unimodal distributions, we address multimodal distribu-
tions. Superquadric glyphs are often used to visualize tensors [36].
Schultz and Kindlmann [35] propose higher-order tensor glyphs for
diffusion imaging. Jiao et al. [17] propose glyphs that represent
the fiber orientation distribution function and the associated uncer-
tainty, and HiFiVE glyphs [37] show fiber directions by embedding
their pdfs in a Hilbert space. Even though our glyphs have similar-
ities to those used in other works, to the best of our knowledge, the
mapping of modality information to glyphs has not been addressed
before.

3 OVERVIEW

Our method starts with an ensemble of 2D vector fields given at
the grid points of a Cartesian grid structure. At every point, we
model the distributions of the directional data using a mixture of
Gaussians (cf. Section 4). This enables us to reduce the distribu-
tion to its main features, the so-called modes, which we use in two
different ways: Firstly, to perform a local similarity analysis of the
ensemble members based on their membership to these modes (cf.
Section 5.1). Secondly, to summarize the main features of these dis-
tributions using glyphs, and to use these glyphs to visually encode
the main directions of the modes and their spread at every point (cf.
Section 6.2). Next, we aggregate the local similarity measures over
the whole domain to cluster ensemble members depending on the
extent to which they behave similarly throughout the domain, and
show the locations of their variability (cf. Section 5.2). Finally, we
describe how the visual representation of the comparative analysis
is realized (cf. Section 6.1). The different computational stages
comprising our approach are illustrated in Fig.1. Our interactive
user interface comprising four linked views is shown in Fig. 4.

4 MODELLING DIRECTIONAL DATA

In this work, we model directional data using parametric mix-
ture models. Popular parametric models for circular data are the
Wrapped Normal (WN) and the von Mises (vM) distributions [10].
Initially we fitted mixtures of both vM and Normal distributions,
and verified the extent to which the modalities (number of compo-
nents) of these mixtures repeated at the grid points. This was neces-
sary because, depending on the initial values of the parameters, the
solution of a mixture model may converge to a local optimum and
yield different structures. To alleviate this problem, we repeated
the fitting process several times with different starting values and
selected as the best solution the one with the highest average silhou-
ette from those whose modalities were obtained most often during
the repeated fittings. Because the Normal mixtures yielded more
consistent results for the considered data sets, we decided, without
loss of generality, to use the GMMs in the rest of the analysis. The
procedures are detailed in Appendix Al.

4.1 Modelling Data using GMMs

Circular data consists of observations that can be regarded either as
unit vectors in the plane or as points on the unit circle. Choosing an
initial direction (the x-axis) and an orientation (counterclockwise)
allows specifying the observations by the angle from the axis to the
point on the unit circle. We model the directional data (given as
angles) using GMMs [25]. The main steps of our algorithm are
outlined bellow. For a sample 6y, ..., 6,, the pdf is
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where N is the number of Gaussian components parameterized by
the mean vectors (; and variances 61-2, and ; are the weights of the
components. For a given N, the 3N parameters { o, Ll;, O'iz} are es-
timated using the Expectation Maximization (EM) algorithm. The
true number of mixture components is, however, unknown and must



be inferred. We determine the modality of a pdf and its structure
automatically, without a priori knowledge on the number of modes.
To this purpose, we first perform a statistical test of randomness, so
that we do not attempt to find clusters when the data is distributed
uniformly. If this is not the case, we follow a procedure similar to
that of Hamerly and Elkan [11] for the k-means algorithm, which
has been shown to work well to determine the correct number of
modes. Instead of k-means, however, we use the less restrictive
EM algorithm, and fit a GMM to the given data set. Specifically,
we start with one component and test whether it can be modeled by
a single Gaussian distribution. If this is not the case, we run the EM
algorithm to fit two Gaussians to the data set and repeat this proce-
dure recursively, until no component needs to be split anymore.

Note that GMMs cannot be applied directly to directional data,
since, depending on the location where the circle is cut to unwrap
it to an interval of length 27 on the real line, a mode on the circle
may split into two modes on the line. Instead of cutting the circle,
Mardia and Jupp [24] recommend repeating a complete cycle of the
data, yielding an interval of length 47 on the real line. This allows
using GMMs with the standard EM algorithm.

Once a GMM has been fitted to the augmented data set, the next
step is to restrict the extended interval to the initial one and sum-
marize the final components on the circle via sample trigonometric
moments. For a component with m angles, we consider the cor-
responding unit vectors and compute the mean direction (t as the
angle of the resultant vector after vector addition. The mean re-
sultant length p associated to the mean direction p is the length of
the resultant vector, normalized by m. p takes values in the range
[0,1], higher values showing increased concentrations around the
mean direction [24]. The two parameters characterize the Wrapped
Normal distribution WN(u,p), the result of wrapping a Normal
distribution .4 (, 62) (given on the line) around the circle:

2
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5 COMPARATIVE ANALYSIS OF ENSEMBLE MEMBERS
BASED ON FITTED GMMs

In this section, we show how the mixture models of the directional
distributions can be used to develop local comparative measures for
the ensemble members and reveal the locations of their variations in
the spatial domain. We then present how the local measures can be
accumulated and used to cluster members depending on the extent
of their similarity. Finally, we give insight into how the behavior of
the members at one grid point can be compared across the domain.

5.1 Local Comparative Measures

Various measures can be used to assess the directional similarity
of two ensemble members at a certain location, e.g., the angle be-
tween the vectors or their cosine similarity. Two members can be
classified as angularly similar if, for example, the measure is below
a prescribed threshold. Instead of imposing an arbitrary threshold,
we use the previously derived mixture models to assess pairwise
similarities relative to the variability of all the ensemble members
(explicit formulae are given in Appendix A2).

GMMs model the n angular observations at every grid point of
the domain with a mixture of Gaussian components. Observations
are assigned to these modes based on the estimated posterior prob-
abilities that an observation belongs to a certain mode. The clus-
tering is called hard when observations are assigned to the mode
which they are most likely to belong to a posteriori, and soft when
observations have various probabilities of belonging to each mode.

For our first local similarity measure — the modality measure —
we use soft clustering and consider two ensemble members as sim-
ilar at a certain location if their angles have a posterior probability
over a given threshold of belonging to the same mode. By using soft
clustering, we do not force members that lie at the borders of two

Figure 2: Similarity measures for selected members of three syn-
thetic data sets. First column: selected members (red) and glyph
representations of a unimodal pdf showing (a) low variation and (b)
high variation, and (c) a bimodal pdf. The next columns depict the
similarity matrices corresponding to the three types of measures.

modes to be classified as similar to the members of only one mode,
and the members that lie well within their clusters are not affected.
At every location, the binary similarity values (1 for directions with
the same mode membership and O otherwise) can be summarized
for n members into an n X n symmetric similarity matrix.

While this measure differentiates between members that clearly
belong to different modes, it does not give any insight into how
similar the members are within the modes. For instance, mem-
bers modelled by unimodal distributions are all classified as similar,
even if some observations are located far from the main data mass.
We thus propose a second similarity measure — the scaled angular
measure: For every pair of ensemble members that are similar us-
ing the modality measure, we select the mode with the highest sum
of posterior probabilities and consider the members as similar if the
smallest angle between them is less than or equal to the maximum
sample circular standard deviation (cf. Eq. 2) in the domain. In
this way, members with large deviations are no longer considered
similar, even if they belong to the same mode.

If users are also interested in the relatively larger deviations oc-
curring in regions with low variation, the angular deviation can be
computed relative to the local sample circular standard deviation.
Thus, for our third measure — the locally scaled angular measure —
we consider the angular deviation of two members relative to local
variation, locations exhibiting higher variations allowing larger de-
viations than those with lower variations. For uniform distributions,
where all directions are equally likely, we set a threshold, e.g., 7/2,
from which two realizations are considered dissimilar.

Fig. 2 illustrates the proposed similarity measures using three
synthetic examples. The first column contains glyph representa-
tions (cf. Section 6 for details on the glyph construction) of the
corresponding pdfs, together with three selected members; the fol-
lowing columns show the similarity matrices (corresponding to the
three similarity measures) for the selected members. Assessing
members based on their cluster membership (second column), clas-
sifies the members of both unimodal pdfs as similar. For the bi-
modal pdf (Fig. 2(c)), members 1 and 3 belong to different modes
and are classified as dissimilar. Member 2, which is located at the
border of the two clusters, is similar to both 1 and 3. Considering
the angular deviations relative to the highest variability (third col-
umn), new dissimilarities emerge: in Fig. 2(b), member 3 (an out-
lier) is now dissimilar to both 1 and 2 (both inliers); furthermore,
in Fig. 2(c), members 2 and 3, located towards the opposite ends
of the wider lobe, are also classified as dissimilar. Relative to the
local variations (fourth column), members 2 and 3 in Fig. 2(a), and
1 and 2 in (c) are additionally described as dissimilar. Even though
members 1 and 2 in Fig. 2(b) have approximately the same angle as
2 and 3 in (a), they are not dissimilar relative to their local variation.
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Figure 3: Glyphs for various directional distributions: lobular glyphs
showing (a) unimodal pdf, medium variation and (b) bimodal pdf,
main mode (low variation), second mode (high variation), and (c)-(d)
corresponding pie glyphs; (e) uniform pdf.

5.2 Global Comparative Measures

Summarizing similarity measures via similarity matrices at every
grid point reveals the locations in the spatial domain where two or
more members disagree. For instance, to find the regions of differ-
ent behavior for a pair of members (i, j), we extract from every local
similarity matrix the binary value at row i and column j to construct
a binary field of similar and dissimilar locations. For more than two
members, the values at the every grid point range between 0 and 1,
depending on how many pairs of members are similar, out of the
total number of pairs (1 + k(k — 1)/2 for k members).

The binary fields of any two members can be used to define the
global similarity of these members, as the percentage of similar lo-
cations out of the total number of grid points. To summarize all
global similarities into one representation, the pairwise global mea-
sures can be assembled in a global similarity matrix. Then, the
binary fields and the global similarity matrix can be used to group
together ensemble members showing similar behavior.

We cluster ensemble members hierarchically [16], starting with
pairs of similar members and joining clusters at one level into larger
clusters at a next level until a hierarchical cluster tree is formed. For
the linkage criterion, the similarity between sets of observations is
computed by accumulating the similarity values (between 0 and 1)
at the grid points and normalizing by the total number of points.

5.3 Comparing Mixture Models

In addition to comparing ensemble members locally and clustering
them based on their global similarities, we also examine how the
behavior of the members at one point compares to that at other lo-
cations. Several questions arise in this context. For instance, which
other locations exhibit the same modality? This can be answered
by a simple query-based exploration of the modality scalar field.
Queries can also be run to determine the locations where the pdfs
have similar shapes. While there is no best measure to assess the
similarity of two directional pdfs, we looked for a measure that has
a closed form for GMM:s and is thus easily computable on the fly.
We thus built upon the concordance coefficient [32] (cf. Appendix
A3). Finally, we want to assess the extent to which ensemble mem-
bers vary in the same manner at other locations. For instance, given
a bimodal distribution, are the sub-sets of members contributing to
the two modes the same at other bimodal pdfs? To answer this ques-
tion, we compare the similarity matrices at the other points with
the matrix at the selected location and determine the percentage of
common similarities from the total number of similarities.

6 VISUAL ANALYSIS OF VECTOR ENSEMBLES

Our interactive user interface (cf. Fig. 4) comprises four linked
views, two over the spatial domain and another two abstract repre-
sentations of the members similarities.

6.1 Similarity Visualization

The hierarchical clustering of the ensemble members for any se-
lected similarity measure is summarized graphically as a dendro-
gram (cf. Fig. 4(C)), with the members along the bottom horizontal
axis and the levels of clustering along the vertical axis. The U-
shaped lines join subclusters (consisting of one or more members)

to each other until all members have been linked into a single clus-
ter. Similar members are joined at lower-level clusters, the variabil-
ity among the members increasing as subclusters are merged. The
ordering of the members on the horizontal axis is such that the sum
of the similarities between adjacent leaves is maximized (but with-
out dividing the clusters). To separate the groups of members more
easily, main neighboring branches are depicted in different colors.

Dendrograms provide the users with more than a single set of
clusters, because the nested partitions show how subclusters relate
to one another. Nevertheless, because the merging step is greedy
and constrained by previous choices, rather similar members may
end up in different main branches. Thus, the global similarity of
any two members is shown in the second abstract representation
(cf. Fig. 4(D)) — the global dissimilarity matrix (the complement
of the global similarity matrix). The dissimilarity values are shown
using a sequential ColorBrewer scheme (also used in the two spatial
views). The ordering of the members in the matrix is that of the den-
drogram, the subclusters appearing as block-diagonal forms. Users
can also have the dissimilarity matrix sorted by member ID.

The main view over the domain color codes various derived
scalar fields, such as the modality (default) or the dissimilarity field
of the selected members, showing at each location the number of
dissimilar members out of the total number of pairs. (Groups of)
members may be selected by clicking on the respective branch in
the dendrogram or on a cell in the dissimilarity matrix. Brushing in
the dissimilarity matrix allows the simultaneous selection of several
members. Specific members can also be specified as text input.

6.2 Glyph-based Modality Visualization

Since displaying pdfs over the entire domain would lead to massive
clutter and occlusion, users can interactively zoom into a region (of
fixed dimensions) in a detail view (cf. Fig. 4(B)). To visualize circu-
lar distributions, we propose a lobular glyph (cf. Fig. 3(a)-(b)) that
reveals the main characteristics of a multi-modal directional pdf:
the number of components, as well as their directions, weights, and
widths. A glyph consists of a number of lobes equal to the number
of modes, where the direction, weight, and width of each mode is
mapped visually to the orientation, length, and opening angle of the
corresponding lobe. The width is given by twice the sample circular
standard deviation. For the sake of clarity, lobes have a minimum
opening angle and length. Moreover, for multimodal pdfs, weights
are normalized by the maximum weight before being mapped to the
length of the lobes. Uniform distributions are shown by a full disk
(cf. Fig. 3(e)). To ease the matching process, glyphs have the same
color as the corresponding locations in the main spatial view.

The lobular glyphs convey the main directions in which the ma-
jority of the unit vectors point, and the variation around these di-
rections. Meteorologists, however, frequently show the directions
from which the winds blow as well. To accommodate this type of
visualization, showing the directions from rather than into which
the members point, we need to mirror the glyphs, the direction be-
ing now read from the head of the glyph to the tail. We also modify
the lobular form to a pie (cf. Fig. 3(c)-(d)). Comparing lobular to
pie glyphs, their pointy heads emphasize the main directions and
are thus effective at conveying the direction, especially for narrow
lobes (where showing a clear direction is meaningful). It is, nev-
ertheless, less efficient at showing the variability, because narrow
modes will look narrower displayed via lobes than via pies. Wider
modes will not suffer from this drawback, though, since lobular
glyphs converge to pie glyphs as the width increases. The main
direction is more difficult to read in pie glyphs. However, when
mirrored to show the directions from which the vectors point, the
direction is read from the head to the tail of the pie, which is pointy
and thus clearly indicates the direction. To be able to distinguish the
directions in (from) which most of the members point (if existent),
we draw small anchor circles at the tail (head) of each lobe (pie).
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Figure 4: Multiple linked views of a wind ensemble. View (A) color codes geolocated scalar measures over the entire domain (here the modality
of the distributions), while (B) shows a detail view over the region selected by the user (marked in A by a rectangle), where directional distributions
are displayed using glyphs. The isocontours show the geopotential height. The hierarchical clustering of the ensemble members is shown using
a dendrogram in (C), and the pairwise dissimilarities between ensemble members are shown in the global dissimilarity matrix in (D).

Moreover, the preferred direction is emphasized using a color gra-
dient, the luminance value decreasing as the distance from the tail
increases. According to the Gestalt laws of pattern perception [42],
this enhances the direction information, since the luminance con-
trast makes the head more distinct than the tail. Furthermore, as our
collaborators from meteorology wanted to be able to see the outliers
in addition to the main trends, we allow displaying the members as
gray sticks, either on top of or under the glyphs. Selected members
are shown as black sticks and are always drawn on top.

Finally, users can run queries to see how members at selected
locations behave compared to the other locations (cf. Section 5.3).
The selection of a glyph can be done by clicking into either one
of the spatial views. Once a glyph has been selected, nonsimilar
locations (and corresponding glyphs) fade out and only similar lo-
cations and glyphs maintain their colors. The fading out depends
on the similarity criteria chosen by the user. Thus, when looking
for glyphs where the pdfs have the same modality and/or a simi-
lar pdf shape (up to a predefined threshold), all dissimilar locations
in the main spatial view and the glyphs in the detail view fade out
to the same extent. When searching for locations where ensemble
members vary in the same manner, the degree of fading at each lo-
cation is proportional to the extent to which members disagree in
their behavior. Since the color scheme goes over yellow, in order to
discern between similar yellow glyphs and non-similar gray glyphs,
the contours of the dissimilar glyphs become light gray, while the
contours of the similar glyphs maintain their dark gray color. To
enhance those similar glyphs at locations where members exhibit
comparable behavior, the contours of these glyphs become black.
The contour of the selected glyph is drawn in a contrasting color.

7 RESULTS

We demonstrate the potential of our techniques on three ECMWF
(European Centre for Medium-Range Weather Forecasts) ensem-
bles. The first two data sets are wind ensembles, givenona 101 x 41
Cartesian grid, and comprising 50 members and a control run. Our
third data set is an ensemble of temperature gradient fields derived
from an ECMWEF forecast, given on a 221 x 101 Cartesian grid and
comprising 50 members. Details on the system are available in [21].

7.1 Similarity Analysis

The first ensemble is the 120 hour wind direction forecast at a pres-
sure level of 500 hPa, valid on October 19, 2012. The geolocated
scalar field containing the modalities is shown in the upper spatial
view in Fig. 4, along with the isocontours of the geopotential height
field of the control run. A hard clustering based on an empirical or-
thogonal function analysis of the 500 hPa geopotential field was
available from ECMWE, identifying three main groups of cardinal-
ity 21, 20, and 10. While a detailed analysis of this clustering solu-
tion was not possible (the intra- and inter-cluster similarities were
not available), since at this pressure level winds blow approximately
parallel to the contours of the geopotential heights, we were inter-
ested to verify whether the ECMWF clustering was consistent with
our results. Examining clustering solutions obtained using several
methods and measures is highly important in meteorology, because
there is no single “best” clustering method and the different tech-
niques influence the clustering solutions, so that only consistency
across techniques helps gain confidence in the validity of the re-
sults [1].

We used silhouette coefficients (internal cluster assessment crite-
ria) on the ECMWEF clusters to check the extent to which the mem-
bers in these clusters are both closely related and well-separated
from the members in the other clusters. The analysis revealed that
the members in the third ECMWF cluster (nine of them placed in
the last main group in both the dendrogram and the dissimilarity
matrix in Fig. 4) form a coherent cluster (with coefficients around
0.4 — 0.6) and are well-separated from the majority of the other
members. This is also noticeable in the two abstract views in Fig. 4,
where the merge with the last main branch occurs at the highest
level in the dendrogram and the bulk of the dissimilarity values to
the other members are at the upper end of the color scheme. The
members in the other two ECMWEF clusters were not well-separated
based on the silhouette analysis. However, several nested subclus-
ters consisted primarily of subgroups of these ECMWF clusters.

The two abstract views showing the relationships between the
ensemble members aid the users to quickly identify similar mem-
bers, as these are joined at low levels in the dendrogram and their
pairwise low dissimilarities are shown in the global dissimilarity
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Figure 5: Querying for locations similar to the one selected (corre-
sponding glyph outlined in red). The locally scaled similarity measure
finds only neighboring locations as similar (top figure), whereas the
scaled measure is less restrictive and also indicates remote locations
(bottom figure) as similar.

matrix in a dark blue color (primarily on the diagonal of the ma-
trix). Outliers are also rapidly identified, since these members are
typically merged at a higher level in the dendrogram and the dis-
similarity values vary primarily in the middle and upper range of
the color scheme. An example is member 11, which is the last
member to be merged in the first (orange-colored) subcluster in the
dendrogram.

Various measures of the variability of the members over the do-
main are encoded in the main spatial view, Fig. 4(A) showing the
modality of the pdfs. Users can then select interesting regions to
examine the pdfs at these locations in a detail view (cf. Fig. 4(B)).
We noticed that regions of high variability (due to high spreads or
multimodality) occur primarily at and around the pressure centers
(the smallest circles in the centers of the concentric closed contours
of the geopotential height) and at the boundaries between centers.

Local understanding can also be enhanced by running queries
to determine, for a selected glyph, glyphs with the same modal-
ity, a similarity pdf under a threshold 7, and a similar behavior of
the ensemble members. Fig. 5 shows an example, where the bi-
modal glyph of the selected location is drawn in a red outline in the
top figure. The top figure reveals locations where members behave
similarly in the neighborhood of the selected glyph. The glyphs that
are most faded out and drawn with a light gray contour have differ-
ent modalities and are thus dissimilar. Regarding the pdf shape, the
amount of allowed angular deviation in the means depends on the
existent variation: A mode with a higher variation and a larger devi-
ation is assessed as more similar than a mode with a lower variation
and a smaller deviation, if its deviation is larger relative to the exis-
tent variation. As the bimodal glyphs have the main modes pointing
in a direction similar to that of the selected glyph, the similarity in
shape (for a threshold 7 = 1) does not exclude any of these glyphs.
The final color of the glyphs that represent pdfs of similar modal-
ity and shape depends on whether the members at these locations
vary in the same manner. Because we use the locally scaled angular
similarity measure, the percentage of members classified as similar
at other locations is around 70% only in the immediate neighbor-
hood of the selected point. Glyphs at these locations are visually
enhanced in the figure. Other locations do not exceed 30%. If,
however, we use the scaled angular measure instead (relative to the
maximum global variation), several remote locations reach values
of even 80%, while the neighboring locations are over 90%. This

Figure 6: Clustering representations of the 51 ensemble members
at 850 hPa (shown here) reveal better separated groups than at 500
hPa: dendrogram view (top) and dissimilarity matrix (bottom). The
color coding of the dissimilarity varies from blue (low) to yellow (high).

happens because this measure considers members as similar if they
belong to the same mode and their angular deviation is within the
maximum limit allowed. An example of a remote region exhibiting
similar locations is shown in the bottom figure of Fig. 5. Here, it
can also be noticed that several glyphs showing bimodal pdfs have
been classified as dissimilar due to their different pdf shapes.

The second ensemble is the 120 hour wind direction forecast at a
pressure level of 850 hPa. Closer to the ground, the wind direction
is influenced by the surface (due to friction). Regions of high vari-
ability occupy a much larger area than before, emerging at pressure
centers, boundaries between centers, and over irregular terrain.

The groups of ensemble members are now better separated than
at the 500 hPa level, (cf. Fig. 6 for the locally scaled angular simi-
larity measure). Only a few ensemble members exhibit similarities
to members in other clusters. The dendrogram points out several
outliers merging at high levels, members 16 and 39 (their dissim-
ilarity values to all members are outlined in brown in the dissimi-
larity matrix) being the last members to be merged. Their outlier
status is confirmed by the dissimilarity matrix, which nonetheless
also reveals that the two members are rather similar to one another.

Fig. 7 (top) illustrates the dissimilarity field for a group of three
similar members (according to the locally scaled angular similar-
ity measure). The scalar dissimilarity field is displayed in the same
spatial view as the modality field. There are four possible values,
depending on the number of dissimilar pairs out of the three pos-
sible (besides the O value occurring when all three members are
similar). Adding a fourth member, dissimilar to the previous three
according to the global dissimilarity matrix, reveals that the latter
disagrees with the previous three at the majority of the locations that
were previously shown as similar (colored dark-blue in Fig. 7 (bot-
tom)). This is indicated by the dissimilarity value at these locations,
which shows that three out of the six pairs possible are dissimilar.

The third data set is the temperature gradient ensemble, at a pres-
sure level of 200 hPa, valid on January 12, 2011. Fig. 8 (top) shows
the geolocated scalar field containing the modalities, together with
the isotherms of the mean temperature field. It can be noticed that
uniform distributions (modality zero), indicative of no preferred di-
rection in the greatest rate of change in temperature, occur primarily
around the centers of the air masses of the mean field, while multi-
modal distributions tend to occur across the boundaries of warm and
cold air masses. A detail view of such a region located at the bound-
aries is shown in Fig. 8 (bottom). Its location within the whole
domain is marked in brown in the top figure.



Figure 7: Spatial view highlighting dissimilar locations for a group of
three similar members (top). Updated dissimilar field after a fourth
member, dissimilar to the first three, is added (bottom).

7.2 Implementation, Performance and Scalability

Our tests were run on a standard desktop PC, equipped with an In-
tel i7-4790 quad-core processor running at 3.6GHz and with 12GB
RAM. All computational operations were performed in Matlab in
a preprocessing step, using available Matlab functionality to fit
GMMs on the real line and for the normality tests. For each of
the two wind ensembles, it took roughly 12 minutes to perform all
computations (including the ten repetitions), while the larger tem-
perature gradient ensemble required about 80 minutes. The most
time consuming operation was the fitting (most of the processing
time), followed by the similarity computations and the global as-
sembly. Other operations, such as computing the clustering or the
glyph representations, last no longer than a few seconds for all data
sets. Due to the compact representation of the fitted pdfs, the mem-
ory requirement of all precomputed quantities is moderate. We are
able to handle the analysis session with multiple linked views at
interactive frame rates (see the accompanying video).

Regarding scalability, an increase in the grid dimensions reflects
only on the spatial view, where the size of the pixel for each grid
point decreases (cf. Fig. 8 (top)). The detail view showing the di-
rectional distributions is not affected, since the number of shown
glyphs was adjusted to fit the displayed view and is constant for all
grid dimensions (cf. Fig. 8 (bottom)). The two abstract views are
also not influenced by the grid size. A significant increase in the
number of ensemble members, however, would affect the readabil-
ity of the abstract views (but not that of the domain views). Since
the data sets used by our collaborators generally comprise approx-
imately 50 members, legibility is not problematic in our case. En-
sembles with considerably more members would nevertheless re-
quire focus and context techniques, or zooming and panning.

8 CONCLUSION AND EVALUATION

In this paper, we proposed a novel technique that allows an interac-
tive comparative exploration of 2D ensembles of vector fields. To
this purpose, we modelled the directional distributions at every grid
point using mixtures of Gaussians. Fitting GMMs employs an EM
algorithm and is thus prone to converging to local optima. Never-
theless, the used repetition process helped to significantly reduce
the percentage of non-repetitive structures. Based on the GMM
modelling, we introduced similarity measures to reveal the loca-
tions where two or more ensemble members disagree locally (with
respect to the behavior of the whole ensemble). These measures
were then used to identify the most similar groups of members. We
also proposed a novel glyph-based technique that permits an intu-

Figure 8: ECMWF temperature gradient ensemble: spatial view with
221 x 101 modality field (top) and 18 x 7 detail view (bottom).

itive visualization of distributions of 2D directional data.

In developing our techniques, we collaborated with domain ex-
perts from meteorology, from whom we have already received in-
formal feedback. The experts highly appreciated the interaction
facilities that allowed them to select a spatial region and investigate
the corresponding directional distributions in the detail view. They
also liked the color-coding of the modalities, which helped them
identify the locations with multimodal distributions. However, they
were initially hesitant about the matrix, since they were not familiar
with such a representation and thus required some effort to under-
stand it. On the other hand, they found it interesting to quickly
grasp which members disagree with most of the other members
(as the corresponding columns/rows were mainly yellow). They
also found the possibility to select ensemble members in the ma-
trix and dendrogram, and inspect the locations where these mem-
bers agree/disagree with other members very useful. Moreover,
they liked the option to blend in the individual ensemble members,
which allowed them to see outliers in addition to the modes. They
found that the lobular glyphs nicely convey the modality of the
distributions, but preferred the pie glyphs, which resembled other
graphical representations used in meteorology.

While this first feedback was positive, we will evaluate the full
potential of our method in a more detailed ensemble analysis in
the future. To gain an initial insight into how the lobular glyphs
compare to the pie glyphs, we conducted a user study with 65 in-
experienced participants (54 males and 11 females, aged 18 to 30
years). The participants were given six main tasks (three for the
lobular glyphs and another three for the pie glyphs) in a limited
amount of time, namely to estimate, for each primitive in every fig-
ure, either its direction, its spread, or the ratio between its length
and the maximum length in the respective figure. They were also
asked to assess the difficulty of the task on a five-level Likert scale.
The questions were identical for both lobes and pies, but in a dif-
ferent order. Furthermore, the subtasks of each main task were split
on two different pages and delivered in two separate batches, so that
we could also record the answers of the participants to the two types
of visualizations after they had got to interact with both. Upon a
preliminary examination of the results, we noticed that participants
were equally capable of solving the tasks with either method, the
difference in accuracy (measured via mean and standard deviation)
being insignificant. In the perceived difficulty, however, we noticed
that the majority of the participants (81%) found the lobes more in-
tuitive when estimating directions, while they preferred the pies for



the other two types of tasks (87% for the spread and 81% for the
ratios). In the future, we would like to gain a deeper understanding
of the ability of the users to assess the different characteristics of
directional data using the two proposed methods.

Moreover, we plan to extend our analysis to 3D directional data.
The mathematical analysis in 3D is already available: we model
the directional data using a mixture model of von Mises-Fisher
components — the equivalent of the Gaussian distribution on the
sphere. However, even though the proposed methods for 2D ex-
tend straightforwardly to 3D, the 3D representation requires further
improvements to minimize clutter and occlusion. Another aspect
will be to include time-varying vector ensembles and reveal rel-
evant information on the ensemble dynamics. Possible solutions
could include animation, illustrative techniques, or alpha-blending
of glyphs from different time steps.
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